Electron Storage Ring Requirements
Electron Ion Collider
Electron Storage Ring Requirements
General, functional and performance requirements associated with the Electron Storage Ring of the Electron Ion Collider.
- NameWBSDescriptionUpdatedStatusTBD
ESR : Electron Storage Ring Performance Requirements
- 6.04The ESR shall be able to accept single bunches of spin-polarized electrons as injected from the RCS at the energies specified in the Master Parameter Table (MPT). [Document#:EIC-SEG-RSI-005]05/16/2025ApprovedFALSE
- 6.04All ESR quadrupoles shall be designed to facilitate beam based alignment.05/16/2025ApprovedFALSE
- 6.04The ESR main arc quadrupoles shall be powered to accommodate the Lattice requirements having the appropriate number of circuits to power the focusing and defocusing quadrupoles in each sextant of the ESR.05/16/2025ApprovedFALSE
- 6.04The ESR alignment requirements are established by dynamic aperture and polarization tracking. The ESR RMS alignment tolerances shall be such that all the beam parameter listed in the MPT can be satisfied. [Document#:EIC-SEG-RSI-005]05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR lattice shall provide a minimum dynamic aperture of 10 sigma with respect to Gaussian electron beam distribution in all three dimensions (horizontal, vertical, and longitudinal) having a vertical emittance of half the horizontal design emittance.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04.05The maximum beam excursion orbit shall be TBD05/16/2025In ProcessFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.05The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.05/16/2025ApprovedFALSE
- 6.04The ESR Lattice shall contain provisions for correctors such as skew quadrupoles, Dipole correctors etc. as needed.05/16/2025ApprovedFALSE
- 6.04The ESR shall have a depolarization time long enough to ensure an average polarization of 70%, assuming an injected polarization level of 80% and a bunch replacement rate of two bunches per second.05/16/2025ApprovedFALSE
- 6.03.03The ESR extraction system shall have another three bump magnets, its own septum magnet and use the strip line injection kicker to extract and replace the circulating bunches.05/16/2025Not ApplicableFALSE
- 6.04.05The ESR vacuum chamber shall provide sufficient horizontal and vertical aperture to accommodate; a +/-15 sigma beam, where the vertical RMS beam size is based on the emittance of a fully coupled beam, plus an additional 10 mm horizontal and 5 mm vertical margin to account for expected orbit errors.05/16/2025ApprovedFALSE
- 6.04.05The typical (standard) vacuum chamber aperture shall be 80 x 36 mm.05/16/2025ApprovedFALSE
- 6.04.05Special aperture requirements and/or aperture file shall be provided by or approved by physics.05/16/2025ApprovedFALSE
- 6.04.05The dynamic pressure around the ESR shall be consistent with a beam gas lifetime of >10[hrs] with the design currents after an integrated beam current of 1000 [A.h].05/16/2025ApprovedFALSE
- 6.04.05There shall be no upper pressure limit as long as the average pressure is maintained.05/16/2025ApprovedFALSE
- 6.04.05The average vacuum level in the ESR Arc sections after conditioning (for 1000Ahrs) shall be <5x10-9 Torr.05/16/2025ApprovedFALSE
- 6.04.05On 15 m on each side (or one vacuum sector) of the SRF cavities shall be processed to class ISO 5.05/16/2025ApprovedFALSE
- 6.04.05There shall be no pressure bumps in the ESR exceeding (TBD)[Torr]05/16/2025In ProcessFALSE
- 6.04.05The ESR vacuum chamber and all its components shall be designed to withstand a total synchrotron radiation load of 10 MW, considering the uneven linear load particularly related to the super-bends.05/16/2025ApprovedFALSE
- 6.04.06.04The ESR shall have two synchrotron light monitors (SLM) and one X-ray pin hole monitor05/16/2025In ProcessFALSE
- 6.04.06.04The longitudinal bunch profile monitor shall have a turn-by-turn capability based on a single bunch in the fully filled bunch train.05/16/2025In ProcessFALSE
- 6.04.06.04TThe SLM systems shall measure the crabbing angle, longitudinal bunch parameters, H & V beam size and global coupling.05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure a crabbing angle of 12.5 mrad with accuracy of 10 %05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the Longitudinal bunch parameters with accuracy of TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the H & V beam size with accuracy of H=?? V=?? units05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the Global coupling with accuracy of TBD -05/16/2025In ProcessFALSE
- 6.04.06.04One SLM port shall be located downstream of a dipole in an appropriate location in the ESR, exact location not critical.05/16/2025In ProcessFALSE
- 6.04.06.04The second SLM port shall be located in a complimentary location in the lattice to ensure all the necessary SLM measurements can be made. TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The SLM light extraction port mirrors shall be good quality, having a surface finish better than 1/10 Lambda05/16/2025In ProcessFALSE
- 6.04.06.04The SLM light extraction port mirrors shall be water cooled to avoid image distortion.05/16/2025In ProcessFALSE
- 6.04.06.04There shall be an enclosed SL transport from the light extraction port to the SLM optical lab rooms. Length to be determined by the distance to optical lab room, should be minimized to reduce vibration problems.05/16/2025In ProcessFALSE
- 6.04.06.04The locations of the SLM optical lab rooms shall be TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The double-slit interferometer method shall be used to measure transverse beam size05/16/2025In ProcessFALSE
- 6.04.06.04The standard transverse resolution of an SLM using visible light shall be ~60 um05/16/2025In ProcessFALSE
- 6.04.06.04The resolution using the double-slit method shall equal to 10 um05/16/2025In ProcessFALSE
- 6.04.06.04A streak camera shall be used to measure the bunch longitudinal profiles05/16/2025In ProcessFALSE
- 6.04.06.04A position sensitive photo-diode will provide photon beam centroid information which shall supplement the orbit stability measurements by the BPMs05/16/2025In ProcessFALSE
- 6.04.06.04A GigE CCD/CMOS camera, externally triggerable with exposure times ranging from 10 nsec to 5 sec, shall be used to image the visible radiation05/16/2025In ProcessFALSE
- 6.04.06.04A commercially available gated camera with gate width of <2 nsec (compared to a minimum bunch spacing of 10 nsec) shall be used to detect injection oscillations and for beam studies.05/16/2025In ProcessFALSE
- 6.04.06.04The location of the X-ray pinhole monitoring system shall be TBD05/16/2025In ProcessFALSE
- 6.04.06.04The target resolution of the X-ray pin hole monitoring system shall be ~ 5 um (or as best that can be achieved with the machine parameters and commercial equipment) 5 um05/16/2025In ProcessFALSE
- 6.04.06.04The X-ray pin hole monitor shall provide independent measurement of the energy spread and horizontal/vertical emittance. H=V=15.4 nm05/16/2025In ProcessFALSE
- 6.04.06.04The X-ray pinhole photon beamline shall be equipped with gated cameras that will be employed to provide high resolution turn-by-turn profile measurements05/16/2025In ProcessFALSE
- 6.04.06.04Several different size pinholes sizes shall be incorporated to allow easy alignment and measurements at different beam currents and energies.05/16/2025In ProcessFALSE
- 6.04.06.04A pinhole assembly including tungsten slits shall provide sufficient resolution to precisely measure the beam size05/16/2025In ProcessFALSE
- 6.04.05The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.05/16/2025ApprovedFALSE
- 6.04.05The ESR vacuum chamber material shall be chosen such that the SR power can be intercepted by the arc chambers and in addition good radiation shielding will be provided to prevent damage to other components.05/16/2025ApprovedFALSE
- 6.04.05The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.05/16/2025ApprovedFALSE
- 6.04.05The impedance of the entire ESR vacuum system, including the interaction regions in IR06 and IR08, shall allow for the bunch intensities, beam currents, and bunch numbers contained in the Master Parameter Table (MPT). [Document#:EIC-SEG-RSI-005]05/16/2025ApprovedFALSE
- 6.04.05The vacuum system global impedance shall be less than the impedance budget as provided by accelerator physics.05/16/2025ApprovedFALSE
- 6.04The ESR shall deliver a spin polarized electron beam with time-averaged polarization of at least 70 percent.05/16/2025ApprovedFALSE
- 6.07.02The ESR controls system shall be capable of producing arbitrary spin pattern at injection05/16/2025In ProcessFALSE
- 6.07.02The number of bunches @ 18GeV shall be 290 cnt05/16/2025In ProcessFALSE
- 6.07.02The Spin pattern control granularity shall be 1 bunch05/16/2025In ProcessFALSE
- 6.07.02The number of bunches @ 10GeV and below shall be 1160 cnt05/16/2025In ProcessFALSE
- 6.04The polarization lifetime of the beam in the ESR shall be maximized to maximize time-averaged polarization based on the given replacement frequency and polarization degree of the bunches provided by the injector.05/16/2025ApprovedFALSE
- 6.04The polarization lifetime maximum optimization in the ESR shall be accomplished by proper spin matching which minimizes the spin diffusion.05/16/2025ApprovedFALSE
- 6.07.02The ESR controls system shall be capable of producing arbitrary spin pattern at injection05/16/2025In ProcessFALSE
- 6.07.02The number of bunches @ 18GeV shall be 290 cnt05/16/2025In ProcessFALSE
- 6.07.02The Spin pattern control granularity shall be 1 bunch05/16/2025In ProcessFALSE
- 6.07.02The number of bunches @ 10GeV and below shall be 1160 cnt05/16/2025In ProcessFALSE
- 6.04The ESR shall include a system to absorb the energy of bunches which are periodically and continually ejected from the ESR to accommodate freshly polarized bunches.05/16/2025ApprovedFALSE
- 6.04The ESR shall be capable of having all polarized electron bunches in the ring continually replaced while the electron beam is in collision with a hadron beam, thus allowing for arbitrary spin patterns for the collider experiments.05/16/2025ApprovedFALSE
- 6.07.02The ESR controls system shall be capable of producing arbitrary spin pattern at injection05/16/2025In ProcessFALSE
- 6.07.02The number of bunches @ 18GeV shall be 290 cnt05/16/2025In ProcessFALSE
- 6.07.02The Spin pattern control granularity shall be 1 bunch05/16/2025In ProcessFALSE
- 6.07.02The number of bunches @ 10GeV and below shall be 1160 cnt05/16/2025In ProcessFALSE
- 6.04The ESR shall be capable of delivering bunches with longitudinal spins to the IP.05/16/2025ApprovedFALSE
- 6.04The ESR shall provide electron bunches having the bunch parameters specified in the MPT. [Document#:EIC-SEG-RSI-005]05/16/2025ApprovedFALSE
- 6.04The ESR lattice arc magnet structure shall contain an array of regular FODO cells05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR lattice arc magnet structure shall consists of a quadrupole, a sextupole, a bending section, and a dipole corrector in each arc half-cell.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR lattice arc magnet structure shall accommodate slightly different average arc radii in the individual arcs by adjusting the drift spaces between individual elements in each FODO cell.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR beamline bending sections shall contain three individual dipole magnets, referred to as “super-bends”.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR super-bends shall generate additional synchrotron radiation damping to support a large beam-beam parameter of 0.1 and to create the required horizontal design emittance in the Master Parameter Table (MPT) when the ESR is operated at energies below 10 GeV. [Document: EIC-SEG-RSI-005]05/16/2025ApprovedFALSE
- 6.04.06.04The ESR shall have two synchrotron light monitors (SLM) and one X-ray pin hole monitor05/16/2025In ProcessFALSE
- 6.04.06.04The longitudinal bunch profile monitor shall have a turn-by-turn capability based on a single bunch in the fully filled bunch train.05/16/2025In ProcessFALSE
- 6.04.06.04TThe SLM systems shall measure the crabbing angle, longitudinal bunch parameters, H & V beam size and global coupling.05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure a crabbing angle of 12.5 mrad with accuracy of 10 %05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the Longitudinal bunch parameters with accuracy of TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the H & V beam size with accuracy of H=?? V=?? units05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the Global coupling with accuracy of TBD -05/16/2025In ProcessFALSE
- 6.04.06.04One SLM port shall be located downstream of a dipole in an appropriate location in the ESR, exact location not critical.05/16/2025In ProcessFALSE
- 6.04.06.04The second SLM port shall be located in a complimentary location in the lattice to ensure all the necessary SLM measurements can be made. TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The SLM light extraction port mirrors shall be good quality, having a surface finish better than 1/10 Lambda05/16/2025In ProcessFALSE
- 6.04.06.04The SLM light extraction port mirrors shall be water cooled to avoid image distortion.05/16/2025In ProcessFALSE
- 6.04.06.04There shall be an enclosed SL transport from the light extraction port to the SLM optical lab rooms. Length to be determined by the distance to optical lab room, should be minimized to reduce vibration problems.05/16/2025In ProcessFALSE
- 6.04.06.04The locations of the SLM optical lab rooms shall be TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The double-slit interferometer method shall be used to measure transverse beam size05/16/2025In ProcessFALSE
- 6.04.06.04The standard transverse resolution of an SLM using visible light shall be ~60 um05/16/2025In ProcessFALSE
- 6.04.06.04The resolution using the double-slit method shall equal to 10 um05/16/2025In ProcessFALSE
- 6.04.06.04A streak camera shall be used to measure the bunch longitudinal profiles05/16/2025In ProcessFALSE
- 6.04.06.04A position sensitive photo-diode will provide photon beam centroid information which shall supplement the orbit stability measurements by the BPMs05/16/2025In ProcessFALSE
- 6.04.06.04A GigE CCD/CMOS camera, externally triggerable with exposure times ranging from 10 nsec to 5 sec, shall be used to image the visible radiation05/16/2025In ProcessFALSE
- 6.04.06.04A commercially available gated camera with gate width of <2 nsec (compared to a minimum bunch spacing of 10 nsec) shall be used to detect injection oscillations and for beam studies.05/16/2025In ProcessFALSE
- 6.04.06.04The location of the X-ray pinhole monitoring system shall be TBD05/16/2025In ProcessFALSE
- 6.04.06.04The target resolution of the X-ray pin hole monitoring system shall be ~ 5 um (or as best that can be achieved with the machine parameters and commercial equipment) 5 um05/16/2025In ProcessFALSE
- 6.04.06.04The X-ray pin hole monitor shall provide independent measurement of the energy spread and horizontal/vertical emittance. H=V=15.4 nm05/16/2025In ProcessFALSE
- 6.04.06.04The X-ray pinhole photon beamline shall be equipped with gated cameras that will be employed to provide high resolution turn-by-turn profile measurements05/16/2025In ProcessFALSE
- 6.04.06.04A pinhole assembly including tungsten slits shall provide sufficient resolution to precisely measure the beam size05/16/2025In ProcessFALSE
- 6.04.06.04Several different size pinholes sizes shall be incorporated to allow easy alignment and measurements at different beam currents and energies.05/16/2025In ProcessFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The polarity of the ESR center bending magnet shall be capable of being wired in reverse to control the beam emittance and to damp the beam. The polarity will be dictated by the beam energy.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR FODO cell shall operate with a horizontal and vertical betatron phase advance of 60 degrees per arc section at beam energies of 10 GeV and below.05/16/2025ApprovedFALSE
- 6.04The ESR sextupole wiring scheme shall accommodate the required sextupole families needed per arc to create the 60 degree FODO cell phase advance at < 10 GeV.05/16/2025ApprovedFALSE
- 6.04The ESR FODO cell shall operate with a horizontal and vertical betatron phase advance of 90 degrees per arc section to maintain the required horizontal beam emittance in the MPT at 18 GeV. [Document#:EIC-SEG-RSI-005]05/16/2025ApprovedFALSE
- 6.04The ESR vertical emittance shall be controlled by appropriate beam orbit manipulations and horizontal-vertical cross coupling.05/16/2025ApprovedFALSE
- 6.04.06The ESR instrumentation system shall include dual-plane Beam Position Monitors (BPMs) adjacent to each vertically focusing quadrupole. Provisions shall be made in the vacuum chamber design to install additional dual-plane BPMs at the horizontally focusing quadrupoles, if needed.05/16/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall provide dual plane (horizontal and vertical) beam positional measurements.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor (BPM) Pick-Ups (PU) shall be positioned in the following locations approved by physics as defined in the lattice:07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor (BPM) Pick-Ups (PU) mechanical and electrical center in the locations identified shall be:07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups housing shall have a +/- 10 (mrad) corresponding to +/- 0.6 (degree) roll tolerance with regards to BPM measurements in respect to the vacuum chamber.07/25/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups design shall be less than or equal to the allocated impedance and is within the accepted overall ESR impedance budget approved by physics. (replace with loss factor)07/25/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall fulfill resolution requirements over the horizontal and vertical beam position range with respect to its fiducials of +/- 3 (mm).07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall be designed to ensure the maximum temperatures of the components (due to heating by the beam) are acceptable for reliability and operations.07/30/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall be designed to be baked to 250 °C for UHV processing.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall be designed to operate reliability with capability to withstand a lifetime radiation dose of TBD MGy.07/25/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Button configuration will be mirror symmetric with respect to the mid-and center planes. Deviation from symmetry shall be such that corresponding BPM reading errors are less then 20 microns.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR BPM Pickup shall be designed to operate in an ambient temperature degree from X (C) to X (C).07/30/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups symmetrical configuration (postion between the four buttons and the relative to the fiducials on top of the button) shall be stable under the inference of the expected operational thermal changes to the extent that corresponding changes in the bpm reading deviate less than 20 µm.07/25/2025ApprovedFALSE
- 6.04.06The ESR BPMs shall have turn-by-turn orbit measurement capability based on a single, remotely selectable bunch out of the fully filled bunch train to enable injection optimization.05/16/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor (BPM) Electronics shall have the following capabilities defined for the low intensity pilot injection energies and high intensity collision energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]07/25/2025ReviewedFALSE
- 6.04.06.01The ESR Beam Position Monitor (BPM) Electronics shall have the following time resolutions for data refresh defined for the beam energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]:07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM Electronics shall have the following time resolutions for data logging defined for the beam energies:07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM Electronics shall have the following measurement resolutions defined for beam energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]:07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM Electronics shall be designed to operate reliability with capability to withstand a lifetime radiation dose of TBD MGy.07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM Electronics shall be designed to operate in an ambient temperature degree from X (C) to X (C).07/25/2025ReviewedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall provide dual plane (horizontal and vertical) beam positional measurements.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor (BPM) Pick-Ups (PU) shall be positioned in the following locations approved by physics as defined in the lattice:07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor (BPM) Pick-Ups (PU) mechanical and electrical center in the locations identified shall be:07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups housing shall have a +/- 10 (mrad) corresponding to +/- 0.6 (degree) roll tolerance with regards to BPM measurements in respect to the vacuum chamber.07/25/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups design shall be less than or equal to the allocated impedance and is within the accepted overall ESR impedance budget approved by physics. (replace with loss factor)07/25/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall fulfill resolution requirements over the horizontal and vertical beam position range with respect to its fiducials of +/- 3 (mm).07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall be designed to ensure the maximum temperatures of the components (due to heating by the beam) are acceptable for reliability and operations.07/30/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall be designed to be baked to 250 °C for UHV processing.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall be designed to operate reliability with capability to withstand a lifetime radiation dose of TBD MGy.07/25/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Button configuration will be mirror symmetric with respect to the mid-and center planes. Deviation from symmetry shall be such that corresponding BPM reading errors are less then 20 microns.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR BPM Pickup shall be designed to operate in an ambient temperature degree from X (C) to X (C).07/30/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups symmetrical configuration (postion between the four buttons and the relative to the fiducials on top of the button) shall be stable under the inference of the expected operational thermal changes to the extent that corresponding changes in the bpm reading deviate less than 20 µm.07/25/2025ApprovedFALSE
- 6.04.06The ESR instrumentation system shall include a beam current monitor to measure average beam current.05/16/2025ApprovedFALSE
- 6.04.06.02A DCCT shall measure the average beam current in the ESR.05/16/2025In ProcessFALSE
- 6.04.06.02The measurement resolution averaged over 1 sec shall be < 5 uA05/16/2025In ProcessFALSE
- 6.04.06.02The DCCT beamline device impedance shall be approved by beam physics.05/16/2025In ProcessFALSE
- 6.04.06.02Measurement drift tolerance (thermal effects) shall be ≤ 1 uA/K05/16/2025In ProcessFALSE
- 6.04.06.02The DCCT sensor in the ring shall operate in the temperature range of 15 to 35 degrees C05/16/2025In ProcessFALSE
- 6.04.06.02The range of average beam current to be measured shall be 0.156x10-3 to 2.5 A05/16/2025In ProcessFALSE
- 6.04.06.02The DCCT system shall have a remote controlled self calibration system05/16/2025In ProcessFALSE
- 6.04.06.02The DCCT system shall provide measurements with absolute accuracy of better than 0.2 %05/16/2025In ProcessFALSE
- 6.04.06.02The measured average current shall be archived at a rate of 10 Hz Hz05/16/2025In ProcessFALSE
- 6.04.06.02The measured average current shall be provided to users at a rate of 10 Hz05/16/2025In ProcessFALSE
- 6.04.06.02The DCCT sensor assembly in the ring shall be radiation resistant05/16/2025In ProcessFALSE
- 6.04.06The ESR instrumentation system shall include a system to measure individual bunch charges and bunch pattern.05/16/2025ApprovedFALSE
- 6.04.06.02A bunch pattern monitor shall be installed in the ESR to measure indiviual bunch charge with an accuracy 1 %05/16/2025In ProcessFALSE
- 6.04.06.02The Bunch pattern monitor shall be capable of measuring Bunch patterns ranging from a single bunch, to a filled ring with 1,160 bunches05/16/2025In ProcessFALSE
- 6.04.06The ESR instrumentation system shall include a system to measure transverse beam profiles.05/16/2025ApprovedFALSE
- 6.04.06.03The transverse feedback systems shall be capable of counteracting single-bunch rise times of 1 ms05/16/2025In ProcessFALSE
- 6.04.06.03Placeholder, Input needed TBD05/16/2025In ProcessFALSE
- 6.04.06.03Placeholder, Input needed TBD05/16/2025In ProcessFALSE
- 6.04.06The ESR instrumentation system shall include a system to measure longitudinal beam profiles.05/16/2025ApprovedFALSE
- 6.04.06.03The requirements for longitudinal feedback are ??? TBD05/16/2025In ProcessFALSE
- 6.04.06.03The Longitudinal feedback systems shall be capable of counteracting single-bunch rise times of 1 ms05/16/2025In ProcessFALSE
- 6.04.06The ESR longitudinal bunch profile monitor needs turn-by-turn capability based on a single bunch in the fully filled bunch train to allow timing and energy adjustment for injection optimization.05/16/2025ApprovedFALSE
- 6.04.06.03The requirements for longitudinal feedback are ??? TBD05/16/2025In ProcessFALSE
- 6.04.06.03The Longitudinal feedback systems shall be capable of counteracting single-bunch rise times of 1 ms05/16/2025In ProcessFALSE
- 6.04.06The ESR instrumentation system shall include system to measure H & V betatron tunes.05/16/2025ApprovedFALSE
- 6.04.06.03Stripline kickers (H & V) shall be used to excite the beam so tunes can be measured using turn-by-turn BPM data.05/16/2025In ProcessFALSE
- 6.04.06.03The magnitude of the kick required for the horizontal kicker shall be TBD units05/16/2025In ProcessFALSE
- 6.04.06.03The magnitude of the kick required for the vertical kicker shall be TBD units05/16/2025In ProcessFALSE
- 6.04.06.03The location of the tune meter kicker striplines in the ESR shall be TBD units05/16/2025In ProcessFALSE
- 6.04.06.03The kicker waveform (risetime and shape) requirements shall be TBD units05/16/2025In ProcessFALSE
- 6.04.06.03The impedance of the kicker beamline device shall be approved by beam Physics.05/16/2025In ProcessFALSE
- 6.04.06The ESR instrumentation system shall facilitate all required feedback systems (slow transverse, longitudinal and transverse bunch-by-bunch)05/16/2025ApprovedFALSE
- 6.07.02The slow orbit feedback correction output rate shall be 10 Hz05/16/2025In ProcessFALSE
- 6.07.02The slow orbit feedback BPM data averaging period shall be tbd -05/16/2025In ProcessFALSE
- 6.04.06.03The transverse slow feedback system bandwidth shall bs 10 Hz05/16/2025In ProcessFALSE
- 6.04.06The ESR instrumentation system shall include beam loss monitor system with detectors located only at select regions of the ESR.05/16/2025ApprovedFALSE
- 6.04.06.05BLM shall be needed to needed to protect sensitive equipment.05/16/2025In ProcessFALSE
- 6.04.06.05The number of BLM installed in the ESR shall be TBD ea05/16/2025In ProcessFALSE
- 6.04.06.05BLM shall be installed at the following locations in the ESR TBD05/16/2025In ProcessFALSE
- 6.04.06.05The sensitivity of the BLM detectors shall be TBD units?05/16/2025In ProcessFALSE
- 6.04.06.05Where possible existing RHIC BLM's can be relocated to identify ESR & HSR losses05/16/2025In ProcessFALSE
- 6.04.06.05The response time from loss detection to abort shall be TBD us05/16/2025In ProcessFALSE
- 6.04The ESR magnets shall meet the requirements defined by the physics lattice.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR magnets shall have the required field quality to meet the operational needs.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The “super-bends” in the ESR ARC sections shall consist of two long dipoles on either end of a short dipole.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The good field region of the ESR dipoles shall extend over a horizontal range of at least 4 centimeters in the radial direction, for all operational beam energies from 5 to 18 GeV. This will take into account the orbit changes due to the reverse bends.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04All ESR quadrupoles shall be designed to facilitate beam based alignment.05/16/2025ApprovedFALSE
- 6.04The maximum integrated field strength of the ESR FODO sextupoles needs to be sufficient to provide chromatic correction at all energies from 5 to 18 GeV with two low-beta interaction regions.05/16/2025ApprovedFALSE
- 6.07.02The BBA quad strength command output rate shall be 1 Hz05/16/2025In ProcessFALSE
- 6.04The aperture of all ESR magnets shall be large enough to accommodate the ESR vacuum chamber.05/16/2025ApprovedFALSE
- 6.04The ESR Shall have a conventional orbit corrector scheme, with single-plane correctors located at the respective quadrupoles. The strength of these correctors needs to be chosen to correct for any source of orbit distortion and should have enough margin for beam based diagnostic purposes, Harmonic Spin bumps and emittance generating bumps.05/16/2025ApprovedFALSE
- 6.04All dipoles in the ESR, including those in IRs 6 and 8, shall be connected in series to a single main power supply.05/16/2025ApprovedFALSE
- 6.04The ESR main arc quadrupoles shall be powered to accommodate the Lattice requirements having the appropriate number of circuits to power the focusing and defocusing quadrupoles in each sextant of the ESR.05/16/2025ApprovedFALSE
- 6.04The ESR quadrupoles in the straight sections IR02, IR04, IR10 and IR12 and in the transition from the arc to the straight section structure shall be wired to provide the optimized betatron phase advance across each straight section, as required for dynamic aperture optimization.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR quadrupoles shall have provisions to vary individual strengths by approximately 1% for beam-based alignment purposes.05/16/2025ApprovedFALSE
- 6.04The ESR sextupole power supply scheme shall be laid out such that the sextupole family structure can be configured for both the 60 and the 90 degree lattice along with a small number of individually powered sextupoles in the transition regions between arcs and straight sections with minimal effort, cost and minimizing any risk of error.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR magnets shall be fed by a system of power supplies matched in voltage and maximum current to the specifications and requirements of the respective magnets05/16/2025ApprovedFALSE
- 6.04The ESR magnet power supplies shall be capable of providing the stability the ESR needs to operate05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall be designed to fulfill all necessary parameters as set by the Master Parameter Table (MPT). [Document#: EIC-SEG-RSI-005]05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured voltage shall be 4 MV.05/29/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to operate with a beam current up to 2.5 A.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity shall be designed to handle a minimum forward power of 800 kW.05/16/2025ApprovedFALSE
- 6.08The ESR RF System shall utilize superconductivity.05/16/2025ApprovedFALSE
- 6.08.04.01The cavity helium bath maximum designed operational temperature shall be 2 K.05/16/2025ApprovedFALSE
- 6.08.04.01The cavity helium bath maximum designed operational pressure shall be 30 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The cavity helium bath designed operational pressure stability shall be ±0.1 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cavity helium jacket shall have a minimum helium bath vapor surface area of 0.049 m^2.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed helium supply operational temperature shall be 5.5 K.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed helium supply operational pressure shall be 3 to 3.5 bar.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed combined helium return temperature shall be 20 to 100 K.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed combined helium return pressure shall be 2.4 to 2.6 bar.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed sub-atmospheric helium return temperature shall be 4.5 K.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed sub-atmospheric helium return pressure shall be 30 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity maximum Niobium temperature shall be 5 K during operation.05/16/2025ApprovedFALSE
- 6.08.04.01The warm beamline maximum vacuum shall be 5.0e-7 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The cold beamline maximum vacuum shall be 1.0e-9 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The beamline vacuum maximum leak rate shall be 5e-10 mbar L/s.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall conform to the ESR lattice.05/16/2025ApprovedFALSE
- 6.04.06.04The ESR shall have two synchrotron light monitors (SLM) and one X-ray pin hole monitor05/16/2025In ProcessFALSE
- 6.04.06.04The longitudinal bunch profile monitor shall have a turn-by-turn capability based on a single bunch in the fully filled bunch train.05/16/2025In ProcessFALSE
- 6.04.06.04TThe SLM systems shall measure the crabbing angle, longitudinal bunch parameters, H & V beam size and global coupling.05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure a crabbing angle of 12.5 mrad with accuracy of 10 %05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the Longitudinal bunch parameters with accuracy of TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the H & V beam size with accuracy of H=?? V=?? units05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the Global coupling with accuracy of TBD -05/16/2025In ProcessFALSE
- 6.04.06.04One SLM port shall be located downstream of a dipole in an appropriate location in the ESR, exact location not critical.05/16/2025In ProcessFALSE
- 6.04.06.04The second SLM port shall be located in a complimentary location in the lattice to ensure all the necessary SLM measurements can be made. TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The SLM light extraction port mirrors shall be good quality, having a surface finish better than 1/10 Lambda05/16/2025In ProcessFALSE
- 6.04.06.04The SLM light extraction port mirrors shall be water cooled to avoid image distortion.05/16/2025In ProcessFALSE
- 6.04.06.04There shall be an enclosed SL transport from the light extraction port to the SLM optical lab rooms. Length to be determined by the distance to optical lab room, should be minimized to reduce vibration problems.05/16/2025In ProcessFALSE
- 6.04.06.04The locations of the SLM optical lab rooms shall be TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The double-slit interferometer method shall be used to measure transverse beam size05/16/2025In ProcessFALSE
- 6.04.06.04The standard transverse resolution of an SLM using visible light shall be ~60 um05/16/2025In ProcessFALSE
- 6.04.06.04The resolution using the double-slit method shall equal to 10 um05/16/2025In ProcessFALSE
- 6.04.06.04A streak camera shall be used to measure the bunch longitudinal profiles05/16/2025In ProcessFALSE
- 6.04.06.04A position sensitive photo-diode will provide photon beam centroid information which shall supplement the orbit stability measurements by the BPMs05/16/2025In ProcessFALSE
- 6.04.06.04A GigE CCD/CMOS camera, externally triggerable with exposure times ranging from 10 nsec to 5 sec, shall be used to image the visible radiation05/16/2025In ProcessFALSE
- 6.04.06.04A commercially available gated camera with gate width of <2 nsec (compared to a minimum bunch spacing of 10 nsec) shall be used to detect injection oscillations and for beam studies.05/16/2025In ProcessFALSE
- 6.04.06.04The location of the X-ray pinhole monitoring system shall be TBD05/16/2025In ProcessFALSE
- 6.04.06.04The target resolution of the X-ray pin hole monitoring system shall be ~ 5 um (or as best that can be achieved with the machine parameters and commercial equipment) 5 um05/16/2025In ProcessFALSE
- 6.04.06.04The X-ray pin hole monitor shall provide independent measurement of the energy spread and horizontal/vertical emittance. H=V=15.4 nm05/16/2025In ProcessFALSE
- 6.04.06.04The X-ray pinhole photon beamline shall be equipped with gated cameras that will be employed to provide high resolution turn-by-turn profile measurements05/16/2025In ProcessFALSE
- 6.04.06.04A pinhole assembly including tungsten slits shall provide sufficient resolution to precisely measure the beam size05/16/2025In ProcessFALSE
- 6.04.06.04Several different size pinholes sizes shall be incorporated to allow easy alignment and measurements at different beam currents and energies.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF cryomodule cavity beam axis to the tunnel floor shall be vertically alignable to 1381.09 ± 20 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in X shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Y shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Z shall be ± 5 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the pitch shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the roll shall be ± 0.04 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the yaw shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall be installed in the straight sections of the ESR lattice within the existing RHIC tunnel in IR10.05/16/2025ApprovedFALSE
- 6.04.06.04The ESR shall have two synchrotron light monitors (SLM) and one X-ray pin hole monitor05/16/2025In ProcessFALSE
- 6.04.06.04The longitudinal bunch profile monitor shall have a turn-by-turn capability based on a single bunch in the fully filled bunch train.05/16/2025In ProcessFALSE
- 6.04.06.04TThe SLM systems shall measure the crabbing angle, longitudinal bunch parameters, H & V beam size and global coupling.05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure a crabbing angle of 12.5 mrad with accuracy of 10 %05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the Longitudinal bunch parameters with accuracy of TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the H & V beam size with accuracy of H=?? V=?? units05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the Global coupling with accuracy of TBD -05/16/2025In ProcessFALSE
- 6.04.06.04One SLM port shall be located downstream of a dipole in an appropriate location in the ESR, exact location not critical.05/16/2025In ProcessFALSE
- 6.04.06.04The second SLM port shall be located in a complimentary location in the lattice to ensure all the necessary SLM measurements can be made. TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The SLM light extraction port mirrors shall be good quality, having a surface finish better than 1/10 Lambda05/16/2025In ProcessFALSE
- 6.04.06.04The SLM light extraction port mirrors shall be water cooled to avoid image distortion.05/16/2025In ProcessFALSE
- 6.04.06.04There shall be an enclosed SL transport from the light extraction port to the SLM optical lab rooms. Length to be determined by the distance to optical lab room, should be minimized to reduce vibration problems.05/16/2025In ProcessFALSE
- 6.04.06.04The locations of the SLM optical lab rooms shall be TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The double-slit interferometer method shall be used to measure transverse beam size05/16/2025In ProcessFALSE
- 6.04.06.04The standard transverse resolution of an SLM using visible light shall be ~60 um05/16/2025In ProcessFALSE
- 6.04.06.04The resolution using the double-slit method shall equal to 10 um05/16/2025In ProcessFALSE
- 6.04.06.04A streak camera shall be used to measure the bunch longitudinal profiles05/16/2025In ProcessFALSE
- 6.04.06.04A position sensitive photo-diode will provide photon beam centroid information which shall supplement the orbit stability measurements by the BPMs05/16/2025In ProcessFALSE
- 6.04.06.04A GigE CCD/CMOS camera, externally triggerable with exposure times ranging from 10 nsec to 5 sec, shall be used to image the visible radiation05/16/2025In ProcessFALSE
- 6.04.06.04A commercially available gated camera with gate width of <2 nsec (compared to a minimum bunch spacing of 10 nsec) shall be used to detect injection oscillations and for beam studies.05/16/2025In ProcessFALSE
- 6.04.06.04The location of the X-ray pinhole monitoring system shall be TBD05/16/2025In ProcessFALSE
- 6.04.06.04The target resolution of the X-ray pin hole monitoring system shall be ~ 5 um (or as best that can be achieved with the machine parameters and commercial equipment) 5 um05/16/2025In ProcessFALSE
- 6.04.06.04The X-ray pin hole monitor shall provide independent measurement of the energy spread and horizontal/vertical emittance. H=V=15.4 nm05/16/2025In ProcessFALSE
- 6.04.06.04The X-ray pinhole photon beamline shall be equipped with gated cameras that will be employed to provide high resolution turn-by-turn profile measurements05/16/2025In ProcessFALSE
- 6.04.06.04A pinhole assembly including tungsten slits shall provide sufficient resolution to precisely measure the beam size05/16/2025In ProcessFALSE
- 6.04.06.04Several different size pinholes sizes shall be incorporated to allow easy alignment and measurements at different beam currents and energies.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule maximum length shall be 7.2 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule maximum width shall be 2.15 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule maximum height shall be 1.7 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cryomodule cavity beam axis to the tunnel floor shall be vertically alignable to 1381.09 ± 20 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in X shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Y shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Z shall be ± 5 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the roll shall be ± 0.04 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the pitch shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the yaw shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic box maximum height shall be 2.1m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic box maximum length (not including vacuum jacketed lines) shall be 1.5 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic box maximum width shall be 1.0 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic valve box minimum vertical stay clear height above the cryomodule shall be 0.92 m.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall conform to the EIC Code of Record.05/16/2025ApprovedFALSE
- 6.08.04.01All cryomodule surfaces accessible to workers shall be within the temperature range of 283 to 333 K.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by ASME B31.3.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by ASME BPVC.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by ASTM C1055.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by NFPA 70.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by NFPA 70E.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by API 520 & API 521.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by AWS.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by CGA S1.3.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards as directed by the DOE Vacuum Vessel Consensus Standards.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to meet or exceed the maximum working pressures defined by the EIC pressure document (Document No. TBD).05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems within the tunnel shall operate within its yearly radiation exposure budget.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that cannot be maintained in-situ shall be designed with a minimum lifetime radiation tolerance of 1 MGy.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall have a minimum operating lifetime of 20 years05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall operate through a minimum of 200 thermal cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner 1% range tuning cycles shall be 100,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner full range tuning cycles shall be 1,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that cannot be maintained in-situ shall be designed with a minimum lifetime radiation tolerance of 1 MGy.05/16/2025ApprovedFALSE
- 6.08.04.01All critical monitoring and control instruments that cannot be maintained in-situ shall utilize a back-up instrument.05/16/2025ApprovedFALSE
- 6.08The ESR RF System shall be designed to minimize unscheduled downtime, maintenance time and repair time to achieve ESR operational availability.05/16/2025ApprovedFALSE
- 6.07.02The ESR controls system shall be capable of producing arbitrary spin pattern at injection05/16/2025In ProcessFALSE
- 6.07.02The Spin pattern control granularity shall be 1 bunch05/16/2025In ProcessFALSE
- 6.07.02The number of bunches @ 18GeV shall be 290 cnt05/16/2025In ProcessFALSE
- 6.07.02The number of bunches @ 10GeV and below shall be 1160 cnt05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 300K to 150K shall be 10 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 150K to 50K shall be 30 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 50K to 4.5K shall be 10 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 4.5K to 2K shall be 0.5 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum warmup rate of the SRF cavity between 50K to 150K shall be 30 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall achieve steady state temperature with the cavity bath at 4K in a maximum of 2 days.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall achieve a full warm-up cycle from 4K to 295K in a maximum of 2 days.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall operate through a minimum of 200 thermal cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner 1% range tuning cycles shall be 100,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner full range tuning cycles shall be 1,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The manufactured SRF Cryomodule Cavity shall produce no field emission at 4 MV.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that cannot be maintained in-situ shall be designed with a minimum lifetime radiation tolerance of 1 MGy.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.08.04.01All critical monitoring and control instruments that cannot be maintained in-situ shall utilize a back-up instrument.05/16/2025ApprovedFALSE
- 6.08.04.01The active SRF cavity tuning mechanism components (motor/gearbox/drive mechanism) shall be replaceable and maintainable in-situ.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cavity slow tuner tuning rate shall be 800 Hz/s.05/16/2025ApprovedFALSE
- 6.08The ESR Storage RF System shall be designed to accelerate electrons.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF longitudinal impedance (accelerator definition) shall be 52 MΩ Ghz.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF horizontal impedance (accelerator definition) shall be 24 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF vertical impedance (accelerator definition) shall be 24 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum broadband RF power emitted from the cryomodule shall be 30 kW for all EIC design energies and currents.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to operate with a beam current up to 2.5 A.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured voltage shall be 4 MV.05/29/2025ApprovedFALSE
- 6.08.04.01The SRF cavity nominal cold frequency shall be 591.149 MHz.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity field probe Qext range shall be 1.00E11 to 2.00E11.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity shall be designed to handle a minimum forward power of 800 kW.05/16/2025ApprovedFALSE
- 6.04The phase advance of each straight section shall be tunable in order to optimize the dynamic aperture of the ESR.05/16/2025ApprovedFALSE
- 6.04The ESR straight sections IR02, IR04, IR10 and IR12 shall be based on FODO cells.05/16/2025ApprovedFALSE
- 6.04Ther ESR shall have matching sections at the ends of each of the straight sections to compensate for the different FODO cell lengths with respect to the arc FODO cells imposed by geometric constraints.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04.05The ESR vacuum chamber shall provide sufficient horizontal and vertical aperture to accommodate; a +/-15 sigma beam, where the vertical RMS beam size is based on the emittance of a fully coupled beam, plus an additional 10 mm horizontal and 5 mm vertical margin to account for expected orbit errors.05/16/2025ApprovedFALSE
- 6.04.05The typical (standard) vacuum chamber aperture shall be 80 x 36 mm.05/16/2025ApprovedFALSE
- 6.04.05Special aperture requirements and/or aperture file shall be provided by or approved by physics.05/16/2025ApprovedFALSE
- 6.04.05The dynamic pressure around the ESR shall be consistent with a beam gas lifetime of >10[hrs] with the design currents after an integrated beam current of 1000 [A.h].05/16/2025ApprovedFALSE
- 6.04.05There shall be no upper pressure limit as long as the average pressure is maintained.05/16/2025ApprovedFALSE
- 6.04.05The average vacuum level in the ESR Arc sections after conditioning (for 1000Ahrs) shall be <5x10-9 Torr.05/16/2025ApprovedFALSE
- 6.04.05On 15 m on each side (or one vacuum sector) of the SRF cavities shall be processed to class ISO 5.05/16/2025ApprovedFALSE
- 6.04.05There shall be no pressure bumps in the ESR exceeding (TBD)[Torr]05/16/2025In ProcessFALSE
- 6.04.05The ESR vacuum chamber and all its components shall be designed to withstand a total synchrotron radiation load of 10 MW, considering the uneven linear load particularly related to the super-bends.05/16/2025ApprovedFALSE
- 6.04.06.04The ESR shall have two synchrotron light monitors (SLM) and one X-ray pin hole monitor05/16/2025In ProcessFALSE
- 6.04.06.04The longitudinal bunch profile monitor shall have a turn-by-turn capability based on a single bunch in the fully filled bunch train.05/16/2025In ProcessFALSE
- 6.04.06.04TThe SLM systems shall measure the crabbing angle, longitudinal bunch parameters, H & V beam size and global coupling.05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure a crabbing angle of 12.5 mrad with accuracy of 10 %05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the Longitudinal bunch parameters with accuracy of TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the H & V beam size with accuracy of H=?? V=?? units05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the Global coupling with accuracy of TBD -05/16/2025In ProcessFALSE
- 6.04.06.04One SLM port shall be located downstream of a dipole in an appropriate location in the ESR, exact location not critical.05/16/2025In ProcessFALSE
- 6.04.06.04The second SLM port shall be located in a complimentary location in the lattice to ensure all the necessary SLM measurements can be made. TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The SLM light extraction port mirrors shall be good quality, having a surface finish better than 1/10 Lambda05/16/2025In ProcessFALSE
- 6.04.06.04The SLM light extraction port mirrors shall be water cooled to avoid image distortion.05/16/2025In ProcessFALSE
- 6.04.06.04There shall be an enclosed SL transport from the light extraction port to the SLM optical lab rooms. Length to be determined by the distance to optical lab room, should be minimized to reduce vibration problems.05/16/2025In ProcessFALSE
- 6.04.06.04The locations of the SLM optical lab rooms shall be TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The double-slit interferometer method shall be used to measure transverse beam size05/16/2025In ProcessFALSE
- 6.04.06.04The standard transverse resolution of an SLM using visible light shall be ~60 um05/16/2025In ProcessFALSE
- 6.04.06.04The resolution using the double-slit method shall equal to 10 um05/16/2025In ProcessFALSE
- 6.04.06.04A streak camera shall be used to measure the bunch longitudinal profiles05/16/2025In ProcessFALSE
- 6.04.06.04A position sensitive photo-diode will provide photon beam centroid information which shall supplement the orbit stability measurements by the BPMs05/16/2025In ProcessFALSE
- 6.04.06.04A GigE CCD/CMOS camera, externally triggerable with exposure times ranging from 10 nsec to 5 sec, shall be used to image the visible radiation05/16/2025In ProcessFALSE
- 6.04.06.04A commercially available gated camera with gate width of <2 nsec (compared to a minimum bunch spacing of 10 nsec) shall be used to detect injection oscillations and for beam studies.05/16/2025In ProcessFALSE
- 6.04.06.04The location of the X-ray pinhole monitoring system shall be TBD05/16/2025In ProcessFALSE
- 6.04.06.04The target resolution of the X-ray pin hole monitoring system shall be ~ 5 um (or as best that can be achieved with the machine parameters and commercial equipment) 5 um05/16/2025In ProcessFALSE
- 6.04.06.04The X-ray pin hole monitor shall provide independent measurement of the energy spread and horizontal/vertical emittance. H=V=15.4 nm05/16/2025In ProcessFALSE
- 6.04.06.04The X-ray pinhole photon beamline shall be equipped with gated cameras that will be employed to provide high resolution turn-by-turn profile measurements05/16/2025In ProcessFALSE
- 6.04.06.04Several different size pinholes sizes shall be incorporated to allow easy alignment and measurements at different beam currents and energies.05/16/2025In ProcessFALSE
- 6.04.06.04A pinhole assembly including tungsten slits shall provide sufficient resolution to precisely measure the beam size05/16/2025In ProcessFALSE
- 6.04.05The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.05/16/2025ApprovedFALSE
- 6.04.05The ESR vacuum chamber material shall be chosen such that the SR power can be intercepted by the arc chambers and in addition good radiation shielding will be provided to prevent damage to other components.05/16/2025ApprovedFALSE
- 6.04.05The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.05/16/2025ApprovedFALSE
- 6.04.05The impedance of the entire ESR vacuum system, including the interaction regions in IR06 and IR08, shall allow for the bunch intensities, beam currents, and bunch numbers contained in the Master Parameter Table (MPT). [Document#:EIC-SEG-RSI-005]05/16/2025ApprovedFALSE
- 6.04.05The vacuum system global impedance shall be less than the impedance budget as provided by accelerator physics.05/16/2025ApprovedFALSE
- 6.04The ESR lattice shall provide a minimum dynamic aperture of 10 sigma with respect to Gaussian electron beam distribution in all three dimensions (horizontal, vertical, and longitudinal) having a vertical emittance of half the horizontal design emittance.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04.05The maximum beam excursion orbit shall be TBD05/16/2025In ProcessFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.05The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.05/16/2025ApprovedFALSE
- 6.04The ESR alignment requirements are established by dynamic aperture and polarization tracking. The ESR RMS alignment tolerances shall be such that all the beam parameter listed in the MPT can be satisfied. [Document#:EIC-SEG-RSI-005]05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The minimum dynamic aperture shall be achieved in two optics configurations (60 and 90 degrees betatron phase advance per FODO cell) at all operational beam energies in the Master Parameter Table (MPT), and with one and with two low-beta insertions. [Document#:EIC-SEG-RSI-005]05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04.05The maximum beam excursion orbit shall be TBD05/16/2025In ProcessFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.05The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.05/16/2025ApprovedFALSE
- 6.04The ESR Lattice shall contain provisions for correctors such as skew quadrupoles, Dipole correctors etc. as needed.05/16/2025ApprovedFALSE
- 6.04The ESR shall have an average arc bending radius of approximately 380 meters05/16/2025ApprovedFALSE
- 6.04The ESR lattice arc magnet structure shall contain an array of regular FODO cells05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR lattice arc magnet structure shall consists of a quadrupole, a sextupole, a bending section, and a dipole corrector in each arc half-cell.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR lattice arc magnet structure shall accommodate slightly different average arc radii in the individual arcs by adjusting the drift spaces between individual elements in each FODO cell.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR beamline bending sections shall contain three individual dipole magnets, referred to as “super-bends”.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR magnets shall meet the requirements defined by the physics lattice.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR magnets shall have the required field quality to meet the operational needs.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The “super-bends” in the ESR ARC sections shall consist of two long dipoles on either end of a short dipole.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The good field region of the ESR dipoles shall extend over a horizontal range of at least 4 centimeters in the radial direction, for all operational beam energies from 5 to 18 GeV. This will take into account the orbit changes due to the reverse bends.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The aperture of all ESR magnets shall be large enough to accommodate the ESR vacuum chamber.05/16/2025ApprovedFALSE
- 6.04The ESR magnets shall be fed by a system of power supplies matched in voltage and maximum current to the specifications and requirements of the respective magnets05/16/2025ApprovedFALSE
- 6.04All dipoles in the ESR, including those in IRs 6 and 8, shall be connected in series to a single main power supply.05/16/2025ApprovedFALSE
- 6.04The ESR Lattice shall contain provisions for correctors such as skew quadrupoles, Dipole correctors etc. as needed.05/16/2025ApprovedFALSE
- 6.04The ESR electron beam shall orbit in the clockwise direction as seen from above.05/16/2025ApprovedFALSE
- 6.04The ESR lattice arc magnet structure shall contain an array of regular FODO cells05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR lattice arc magnet structure shall consists of a quadrupole, a sextupole, a bending section, and a dipole corrector in each arc half-cell.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR lattice arc magnet structure shall accommodate slightly different average arc radii in the individual arcs by adjusting the drift spaces between individual elements in each FODO cell.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR beamline bending sections shall contain three individual dipole magnets, referred to as “super-bends”.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR magnets shall meet the requirements defined by the physics lattice.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR magnets shall have the required field quality to meet the operational needs.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The “super-bends” in the ESR ARC sections shall consist of two long dipoles on either end of a short dipole.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The good field region of the ESR dipoles shall extend over a horizontal range of at least 4 centimeters in the radial direction, for all operational beam energies from 5 to 18 GeV. This will take into account the orbit changes due to the reverse bends.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04All dipoles in the ESR, including those in IRs 6 and 8, shall be connected in series to a single main power supply.05/16/2025ApprovedFALSE
- 6.04The aperture of all ESR magnets shall be large enough to accommodate the ESR vacuum chamber.05/16/2025ApprovedFALSE
- 6.04The ESR magnets shall be fed by a system of power supplies matched in voltage and maximum current to the specifications and requirements of the respective magnets05/16/2025ApprovedFALSE
- 6.04The ESR Lattice shall be tilted with respect to the plane of the HSR along the chord between IP6 and IP8 by 200 microradians to avoid interference with other components and such that the ESR is above the HSR at IP12.05/16/2025ApprovedFALSE
- 6.04The ESR shall have a circumference such that the revolution frequency of the stored electron beam matches the revolution frequency of 133 GeV protons stored in the HSR, with the proton beam orbit centered in the HSR beampipe.05/16/2025ApprovedFALSE
- 6.04The ESR lattice arc magnet structure shall contain an array of regular FODO cells05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR lattice arc magnet structure shall consists of a quadrupole, a sextupole, a bending section, and a dipole corrector in each arc half-cell.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR lattice arc magnet structure shall accommodate slightly different average arc radii in the individual arcs by adjusting the drift spaces between individual elements in each FODO cell.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR beamline bending sections shall contain three individual dipole magnets, referred to as “super-bends”.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR magnets shall meet the requirements defined by the physics lattice.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR magnets shall have the required field quality to meet the operational needs.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The “super-bends” in the ESR ARC sections shall consist of two long dipoles on either end of a short dipole.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The good field region of the ESR dipoles shall extend over a horizontal range of at least 4 centimeters in the radial direction, for all operational beam energies from 5 to 18 GeV. This will take into account the orbit changes due to the reverse bends.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04All dipoles in the ESR, including those in IRs 6 and 8, shall be connected in series to a single main power supply.05/16/2025ApprovedFALSE
- 6.04The aperture of all ESR magnets shall be large enough to accommodate the ESR vacuum chamber.05/16/2025ApprovedFALSE
- 6.04The ESR magnets shall be fed by a system of power supplies matched in voltage and maximum current to the specifications and requirements of the respective magnets05/16/2025ApprovedFALSE
- 6.04The ESR shall use the “inner” aisle (closest to the inner tunnel wall) of the tunnel from IR4 to IR6 and from IR8 to IR12, and the “outer” aisle (closest to the outer tunnel wall) from IR12 to IR4 and IR6 to IR805/16/2025ApprovedFALSE
- 6.04The ESR lattice arc magnet structure shall contain an array of regular FODO cells05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR lattice arc magnet structure shall consists of a quadrupole, a sextupole, a bending section, and a dipole corrector in each arc half-cell.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR lattice arc magnet structure shall accommodate slightly different average arc radii in the individual arcs by adjusting the drift spaces between individual elements in each FODO cell.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR beamline bending sections shall contain three individual dipole magnets, referred to as “super-bends”.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR Sextupole wiring scheme shall create the required sextupole families needed per arc to maximize dynamic aperture at the 90 degree per FODO cell phase advance at 18 GeV.05/16/2025ApprovedFALSE
- 6.04The ESR magnets shall meet the requirements defined by the physics lattice.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR magnets shall have the required field quality to meet the operational needs.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The “super-bends” in the ESR ARC sections shall consist of two long dipoles on either end of a short dipole.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The good field region of the ESR dipoles shall extend over a horizontal range of at least 4 centimeters in the radial direction, for all operational beam energies from 5 to 18 GeV. This will take into account the orbit changes due to the reverse bends.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04All dipoles in the ESR, including those in IRs 6 and 8, shall be connected in series to a single main power supply.05/16/2025ApprovedFALSE
- 6.04The aperture of all ESR magnets shall be large enough to accommodate the ESR vacuum chamber.05/16/2025ApprovedFALSE
- 6.04The ESR magnets shall be fed by a system of power supplies matched in voltage and maximum current to the specifications and requirements of the respective magnets05/16/2025ApprovedFALSE
- 6.04The ESR shall support collisions with the HSR in IR6, to accommodate colliding beam interaction regions and detectors for nuclear physics experiments.05/16/2025ApprovedFALSE
- 6.04The ESR main arc quadrupoles shall be powered to accommodate the Lattice requirements having the appropriate number of circuits to power the focusing and defocusing quadrupoles in each sextant of the ESR.05/16/2025ApprovedFALSE
- 6.04The maximum integrated field strength of the ESR FODO sextupoles needs to be sufficient to provide chromatic correction at all energies from 5 to 18 GeV with two low-beta interaction regions.05/16/2025ApprovedFALSE
- 6.07.02The BBA quad strength command output rate shall be 1 Hz05/16/2025In ProcessFALSE
- 6.04The ESR shall support two low-beta insertions (colliding beam interaction regions) at IRs 06 and 08.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04.05The maximum beam excursion orbit shall be TBD05/16/2025In ProcessFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.05The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.05/16/2025ApprovedFALSE
- 6.04The ESR beam dynamics shall incorporate the need for collision points with the HSR in IR6 and IR8.05/16/2025ApprovedFALSE
- 6.04The ESR shall have provisions made at IR8 to accommodate a future 2nd colliding beam interaction region with low-beta section, spin rotators and crab cavities.05/16/2025ApprovedFALSE
- 6.04The ESR main arc quadrupoles shall be powered to accommodate the Lattice requirements having the appropriate number of circuits to power the focusing and defocusing quadrupoles in each sextant of the ESR.05/16/2025ApprovedFALSE
- 6.04The maximum integrated field strength of the ESR FODO sextupoles needs to be sufficient to provide chromatic correction at all energies from 5 to 18 GeV with two low-beta interaction regions.05/16/2025ApprovedFALSE
- 6.07.02The BBA quad strength command output rate shall be 1 Hz05/16/2025In ProcessFALSE
- 6.04The ESR shall support two low-beta insertions (colliding beam interaction regions) at IRs 06 and 08.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04.05The maximum beam excursion orbit shall be TBD05/16/2025In ProcessFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.05The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.05/16/2025ApprovedFALSE
- 6.04The ESR shall have provisions made at IR12 to accommodate beam polarimetry measurements, damper systems, special instrumentation..05/16/2025ApprovedFALSE
- 6.04The ESR shall have provisions made to accommodate electron beam injection and extraction elements in IR4.05/16/2025ApprovedFALSE
- 6.04The ESR fast abort system shall be located in the IR2 straight section.05/16/2025ApprovedFALSE
- 6.04The ESR shall be designed to minimize unscheduled downtime, maintenance time and repair time to achieve EIC operational availability.05/16/2025ApprovedFALSE
- 6.06.03The EIS shall contain an Abort system to dump the beam and protect the system when required05/16/2025Not ApplicableFALSE
- 6.03.03.03Fast valve protection shall be provided at TBD05/16/2025On HoldFALSE
- 6.03.03.03Fast valve protection shall be provided at TBD05/16/2025On HoldFALSE
- 6.06.03The ESR shall have a collimation system capable of ensuring a sufficiently low background at the detector.05/16/2025ApprovedFALSE
- 6.06.03.02The ESR Injection absorber shall be placed in Sector 12 adjacent to the Momentum collimator.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR Injection absorber shall be vertical.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall be 17.5 mm half gap. +/- 17.5 mm05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall be fixed.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR injection absorber has dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 550 W. 550 W05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be steady-state.05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be negligible. ~0 W05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 275 J (1 bunch). 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The thermal duty cycle shall be 2 Hz. 2 Hz05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 0.89 m05/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Al-Ti05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 1.1 m05/16/2025In ProcessFALSE
- 6.06.03.02The ESR detector absorbers shall be placed at Sector 5.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall be fixed.05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall be fixed.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall be tbd mm half gap. tbd mm05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall be tbd.05/16/2025In ProcessFALSE
- 6.06.03.02The detector absorbers have dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be negligible. ~0 W05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be tbd kW. tbd kW05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02The beam failure energy deposition shall be 275 J (1 bunch). 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The failure thermal duty cycle shall be intermittent.05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 21 mm05/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Cu05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 560-720 mm05/16/2025In ProcessFALSE
- 6.06.03.02The ESR momentum collimators shall be placed in Sector 12 adjacent to the Injection absorber.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR momentum collimator shall be horizontal.05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall be tbd mm half gap. tbd mm05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall be range shall be tbd.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR momentum collimator has dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 550 W. 550 W05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be steady-state.05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be negligible. ~0 W05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02The beam failure energy deposition shall be 275 J (1 bunch). 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The failure thermal duty cycle shall be intermittent.05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 0.89 m05/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Al-Ti05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 1.1 m05/16/2025In ProcessFALSE
- 6.06.03.02The ESR primary vertical collimator shall be placed at Sector 4.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR primary horizontal collimator shall be placed at Sector 2.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall range from 5 to 10 mm (half gap, +/- 10 µm).05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall range from 8 to 23 mm (half gap, +/- 10 µm).05/16/2025In ProcessFALSE
- 6.06.03.02The ESR primary collimators have dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 300 W on the tip of the jaw. 300 W05/16/2025In ProcessFALSE
- 6.06.03.02The duty cycle shall be steady state.05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be 2.5 kW (horizontal only). 2.5 kW05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02Jaw angle in position relative to beam axshall be 1 mrad05/16/2025In ProcessFALSE
- 6.06.03.02The beam failure energy deposition shall be 275 J (1 bunch) on the tip of the jaw. 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The failure thermal duty cycle shall be intermittent.05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 180 mm05/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Mo-Gr05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 762-995 mm05/16/2025In ProcessFALSE
- 6.06.03.02The ESR secondary vertical collimators shall be placed at Sector 4.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR secondary horizontal collimators shall be placed at Sector 2.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall range from 6 to 11 mm (half gap, +/- tbd). tbd mm05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall range from 9 to 25 mm (half gap, +/- tbd).05/16/2025In ProcessFALSE
- 6.06.03.02The ESR collimators have dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 300 W. 300 W05/16/2025In ProcessFALSE
- 6.06.03.02The duty cycle shall be steady state.05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be 2.5 kW (horizontal only). 2.5 kW05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02Jaw angle in position relative to beam axshall be 1 mrad05/16/2025In ProcessFALSE
- 6.06.03.02The beam failure energy deposition shall be 275 J (1 bunch). 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The failure thermal duty cycle shall be intermittent.05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Mo-Gr05/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 180 mm05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 762-995 mm05/16/2025In ProcessFALSE
- 6.06.03The ESR shall have a collimation system capable protecting all machine elements in case of failure.05/16/2025ApprovedFALSE
- 6.06.03.02The ESR Injection absorber shall be placed in Sector 12 adjacent to the Momentum collimator.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR Injection absorber shall be vertical.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall be 17.5 mm half gap. +/- 17.5 mm05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall be fixed.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR injection absorber has dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 550 W. 550 W05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be steady-state.05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be negligible. ~0 W05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 275 J (1 bunch). 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The thermal duty cycle shall be 2 Hz. 2 Hz05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 0.89 m05/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Al-Ti05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 1.1 m05/16/2025In ProcessFALSE
- 6.06.03.02The ESR detector absorbers shall be placed at Sector 5.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall be fixed.05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall be fixed.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall be tbd mm half gap. tbd mm05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall be tbd.05/16/2025In ProcessFALSE
- 6.06.03.02The detector absorbers have dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be negligible. ~0 W05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be tbd kW. tbd kW05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02The beam failure energy deposition shall be 275 J (1 bunch). 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The failure thermal duty cycle shall be intermittent.05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 21 mm05/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Cu05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 560-720 mm05/16/2025In ProcessFALSE
- 6.06.03.02The ESR momentum collimators shall be placed in Sector 12 adjacent to the Injection absorber.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR momentum collimator shall be horizontal.05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall be tbd mm half gap. tbd mm05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall be range shall be tbd.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR momentum collimator has dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 550 W. 550 W05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be steady-state.05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be negligible. ~0 W05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02The beam failure energy deposition shall be 275 J (1 bunch). 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The failure thermal duty cycle shall be intermittent.05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 0.89 m05/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Al-Ti05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 1.1 m05/16/2025In ProcessFALSE
- 6.06.03.02The ESR primary vertical collimator shall be placed at Sector 4.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR primary horizontal collimator shall be placed at Sector 2.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall range from 5 to 10 mm (half gap, +/- 10 µm).05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall range from 8 to 23 mm (half gap, +/- 10 µm).05/16/2025In ProcessFALSE
- 6.06.03.02The ESR primary collimators have dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 300 W on the tip of the jaw. 300 W05/16/2025In ProcessFALSE
- 6.06.03.02The duty cycle shall be steady state.05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be 2.5 kW (horizontal only). 2.5 kW05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02Jaw angle in position relative to beam axshall be 1 mrad05/16/2025In ProcessFALSE
- 6.06.03.02The beam failure energy deposition shall be 275 J (1 bunch) on the tip of the jaw. 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The failure thermal duty cycle shall be intermittent.05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 180 mm05/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Mo-Gr05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 762-995 mm05/16/2025In ProcessFALSE
- 6.06.03.02The ESR secondary vertical collimators shall be placed at Sector 4.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR secondary horizontal collimators shall be placed at Sector 2.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall range from 6 to 11 mm (half gap, +/- tbd). tbd mm05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall range from 9 to 25 mm (half gap, +/- tbd).05/16/2025In ProcessFALSE
- 6.06.03.02The ESR collimators have dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 300 W. 300 W05/16/2025In ProcessFALSE
- 6.06.03.02The duty cycle shall be steady state.05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be 2.5 kW (horizontal only). 2.5 kW05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02Jaw angle in position relative to beam axshall be 1 mrad05/16/2025In ProcessFALSE
- 6.06.03.02The beam failure energy deposition shall be 275 J (1 bunch). 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The failure thermal duty cycle shall be intermittent.05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Mo-Gr05/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 180 mm05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 762-995 mm05/16/2025In ProcessFALSE
- 6.06.03The ESR Abort system shall contain a beam dump to safely absorb the energy of the stored beam in a controlled fashion.05/16/2025ApprovedFALSE
- 6.06.03.01The diameter shall be 90 mm05/16/2025In ProcessFALSE
- 6.06.03.01The length shall be 2 m05/16/2025In ProcessFALSE
- 6.06.03.01The materials shall be C / Al / Cu05/16/2025In ProcessFALSE
- 6.06.03.01The energy deposited during abort shall be 320 kJ05/16/2025In ProcessFALSE
- 6.06.03.01The window thickness shall be tbd mm05/16/2025In ProcessFALSE
- 6.06.03.01The frequency of thermal cycle shall be 1 hour05/16/2025In ProcessFALSE
- 6.06.03.01The window material shall be tbd05/16/2025In ProcessFALSE
- 6.06.03The ESR shall contain an Abort system to dump the beam.05/16/2025ApprovedFALSE
- 6.06.03.01The diameter shall be 90 mm05/16/2025In ProcessFALSE
- 6.06.03.01The length shall be 2 m05/16/2025In ProcessFALSE
- 6.06.03.01The materials shall be C / Al / Cu05/16/2025In ProcessFALSE
- 6.06.03.01The energy deposited during abort shall be 320 kJ05/16/2025In ProcessFALSE
- 6.06.03.01The frequency of thermal cycle shall be 1 hour05/16/2025In ProcessFALSE
- 6.06.03.01The window thickness shall be tbd mm05/16/2025In ProcessFALSE
- 6.06.03.01The window material shall be tbd05/16/2025In ProcessFALSE
- 6.06.03.01The Length shall be 50 m05/16/2025In ProcessFALSE
- 6.06.03.01The Internal diameter shall be 90 mm05/16/2025In ProcessFALSE
- 6.06.03.01The Temperature sensors shall be yes05/16/2025In ProcessFALSE
- 6.06.03.01The BPMs shall be 405/16/2025In ProcessFALSE
- 6.06.03.01The Correctors shall be 405/16/2025In ProcessFALSE
- 6.06.03.01The Corrector PS shall be tbd05/16/2025In ProcessFALSE
- 6.06.03.01The power supply accuracy shall be tbd05/16/2025In ProcessFALSE
- 6.06.03.01The Cooling / pumping shall be yes05/16/2025In ProcessFALSE
- 6.06.03.01The deflection shall be 2 mrad05/16/2025In ProcessFALSE
- 6.06.03.01The length shall be 1.2 m05/16/2025In ProcessFALSE
- 6.06.03.01The power supply shall be 1600 A05/16/2025In ProcessFALSE
- 6.06.03.01The power supply accuracy shall be TBD05/16/2025In ProcessFALSE
- 6.06.03.01The Y-chamber aperture shall be 36 mm05/16/2025In ProcessFALSE
- 6.06.03.01May need to add additional window requirements for other leg of Lambertson magnet TBD05/16/2025In ProcessFALSE
- 6.06.03.01The gradient shall be 17 T/m05/16/2025In ProcessFALSE
- 6.06.03.01The power supply shall be 1600 A05/16/2025In ProcessFALSE
- 6.06.03.01The power supply accuracy shall be TBD05/16/2025In ProcessFALSE
- 6.06.03.01The length shall be 70 cm05/16/2025In ProcessFALSE
- 6.06.03.01The aperture radius shall be 50 mm05/16/2025In ProcessFALSE
- 6.06.03.01The number of kickers shall be 605/16/2025In ProcessFALSE
- 6.06.03.01The Rise time shall be 900 ns05/16/2025In ProcessFALSE
- 6.06.03.01The Fall time shall be NA sec05/16/2025In ProcessFALSE
- 6.06.03.01The flat top time shall be 13 us05/16/2025In ProcessFALSE
- 6.06.03.01The waveshape shall be trap05/16/2025In ProcessFALSE
- 6.06.03.01The painting shall be vertical05/16/2025In ProcessFALSE
- 6.06.03.01The maximum field shall be 0.12 T05/16/2025In ProcessFALSE
- 6.06.03.01The total deflection shall be 16 mrad05/16/2025In ProcessFALSE
- 6.06.03.01The maximum current shall be TBD05/16/2025In ProcessFALSE
- 6.06.03.01The maximum voltage shall be TBD05/16/2025In ProcessFALSE
- 6.06.03.01The inductance with cable shall be TBD (uH)05/16/2025In ProcessFALSE
- 6.06.03.01The Max rep rate shall be 100 kV/pC05/16/2025In ProcessFALSE
- 6.06.03.01The flat top repeatability shall be NA Hz05/16/2025In ProcessFALSE
- 6.06.03.01The beam abort kicker shall be tbd %05/16/2025In ProcessFALSE
- 6.06.03.01The flatness of flat top/pulse form shall be 1 %05/16/2025In ProcessFALSE
- 6.06.03.01The cooling type shall be w (W,A)05/16/2025In ProcessFALSE
- 6.04The ESR shall reach an availability consistent with the overall availability of the entire EIC as specified in the GRD. [Document#:EIC-SEG-RSI-010]05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04All ESR components and systems shall be designed and installed in line with all relevant regulatory codes and in full compliance with BNL SBMS.05/16/2025ApprovedFALSE
- 6.07.02The ESR shall have provisions made to accommodate a control system which can operate the ESR consistent will the overall control of the EIC and other EIC systems and to ensure the ESR meets all the Physics requirements needed to deliver the physics goals of the EIC.05/16/2025ApprovedFALSE
- 6.07.02The ESR control system shall facilitate all ESR global control requirements.05/16/2025ApprovedFALSE
- 6.07.02The BBA quad strength command output rate shall be 1 Hz05/16/2025In ProcessFALSE
- 6.07.02The tune feedback measurement sample rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02The tune feedback correction rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.07.02The ESR control system shall facilitate all network, relational database and data archiving required.05/16/2025ApprovedFALSE
- 6.07.02The tune feedback measurement sample rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02The BBA quad strength command output rate shall be 1 Hz05/16/2025In ProcessFALSE
- 6.07.02The tune feedback correction rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02The control system shall facilitate all machine protection systems required05/16/2025ApprovedFALSE
- 6.07.02The tune feedback measurement sample rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02The BBA quad strength command output rate shall be 1 Hz05/16/2025In ProcessFALSE
- 6.07.02The tune feedback correction rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02The ESR control system shall facilitate all EIC machine timing required.05/16/2025ApprovedFALSE
- 6.07.02The tune feedback measurement sample rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02The BBA quad strength command output rate shall be 1 Hz05/16/2025In ProcessFALSE
- 6.07.02The tune feedback correction rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02The ESR control system shall facilitate fast orbit feedback integration systems as required.05/16/2025ApprovedFALSE
- 6.07.02The BBA quad strength command output rate shall be 1 Hz05/16/2025In ProcessFALSE
- 6.07.02Placeholder for fast orbit feedback requirements05/16/2025In ProcessFALSE
- 6.07.02Placeholder for fast orbit feedback requirements05/16/2025In ProcessFALSE
- 6.07.02The tune feedback measurement sample rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02Placeholder for fast orbit feedback requirements05/16/2025In ProcessFALSE
- 6.07.02The tune feedback correction rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02The ESR control system shall facilitate all physics application support required.05/16/2025ApprovedFALSE
- 6.07.02The BBA quad strength command output rate shall be 1 Hz05/16/2025In ProcessFALSE
- 6.07.02The tune feedback measurement sample rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02The tune feedback correction rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02The ESR controls system shall be capable of producing arbitrary spin pattern at injection05/16/2025In ProcessFALSE
- 6.07.02The number of bunches @ 18GeV shall be 290 cnt05/16/2025In ProcessFALSE
- 6.07.02The Spin pattern control granularity shall be 1 bunch05/16/2025In ProcessFALSE
- 6.07.02The number of bunches @ 10GeV and below shall be 1160 cnt05/16/2025In ProcessFALSE
- 6.04.06The ESR instrumentation system shall include dual-plane Beam Position Monitors (BPMs) adjacent to each vertically focusing quadrupole. Provisions shall be made in the vacuum chamber design to install additional dual-plane BPMs at the horizontally focusing quadrupoles, if needed.05/16/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall provide dual plane (horizontal and vertical) beam positional measurements.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor (BPM) Pick-Ups (PU) shall be positioned in the following locations approved by physics as defined in the lattice:07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor (BPM) Pick-Ups (PU) mechanical and electrical center in the locations identified shall be:07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups housing shall have a +/- 10 (mrad) corresponding to +/- 0.6 (degree) roll tolerance with regards to BPM measurements in respect to the vacuum chamber.07/25/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups design shall be less than or equal to the allocated impedance and is within the accepted overall ESR impedance budget approved by physics. (replace with loss factor)07/25/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall fulfill resolution requirements over the horizontal and vertical beam position range with respect to its fiducials of +/- 3 (mm).07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall be designed to ensure the maximum temperatures of the components (due to heating by the beam) are acceptable for reliability and operations.07/30/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall be designed to be baked to 250 °C for UHV processing.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall be designed to operate reliability with capability to withstand a lifetime radiation dose of TBD MGy.07/25/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Button configuration will be mirror symmetric with respect to the mid-and center planes. Deviation from symmetry shall be such that corresponding BPM reading errors are less then 20 microns.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR BPM Pickup shall be designed to operate in an ambient temperature degree from X (C) to X (C).07/30/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups symmetrical configuration (postion between the four buttons and the relative to the fiducials on top of the button) shall be stable under the inference of the expected operational thermal changes to the extent that corresponding changes in the bpm reading deviate less than 20 µm.07/25/2025ApprovedFALSE
- 6.04.06The ESR BPMs shall have turn-by-turn orbit measurement capability based on a single, remotely selectable bunch out of the fully filled bunch train to enable injection optimization.05/16/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor (BPM) Electronics shall have the following capabilities defined for the low intensity pilot injection energies and high intensity collision energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]07/25/2025ReviewedFALSE
- 6.04.06.01The ESR Beam Position Monitor (BPM) Electronics shall have the following time resolutions for data refresh defined for the beam energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]:07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM Electronics shall have the following time resolutions for data logging defined for the beam energies:07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM Electronics shall have the following measurement resolutions defined for beam energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]:07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM Electronics shall be designed to operate reliability with capability to withstand a lifetime radiation dose of TBD MGy.07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM Electronics shall be designed to operate in an ambient temperature degree from X (C) to X (C).07/25/2025ReviewedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall provide dual plane (horizontal and vertical) beam positional measurements.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor (BPM) Pick-Ups (PU) shall be positioned in the following locations approved by physics as defined in the lattice:07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor (BPM) Pick-Ups (PU) mechanical and electrical center in the locations identified shall be:07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups housing shall have a +/- 10 (mrad) corresponding to +/- 0.6 (degree) roll tolerance with regards to BPM measurements in respect to the vacuum chamber.07/25/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups design shall be less than or equal to the allocated impedance and is within the accepted overall ESR impedance budget approved by physics. (replace with loss factor)07/25/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall fulfill resolution requirements over the horizontal and vertical beam position range with respect to its fiducials of +/- 3 (mm).07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall be designed to ensure the maximum temperatures of the components (due to heating by the beam) are acceptable for reliability and operations.07/30/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall be designed to be baked to 250 °C for UHV processing.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall be designed to operate reliability with capability to withstand a lifetime radiation dose of TBD MGy.07/25/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Button configuration will be mirror symmetric with respect to the mid-and center planes. Deviation from symmetry shall be such that corresponding BPM reading errors are less then 20 microns.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR BPM Pickup shall be designed to operate in an ambient temperature degree from X (C) to X (C).07/30/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups symmetrical configuration (postion between the four buttons and the relative to the fiducials on top of the button) shall be stable under the inference of the expected operational thermal changes to the extent that corresponding changes in the bpm reading deviate less than 20 µm.07/25/2025ApprovedFALSE
- 6.04.06The ESR instrumentation system shall include a beam current monitor to measure average beam current.05/16/2025ApprovedFALSE
- 6.04.06.02A DCCT shall measure the average beam current in the ESR.05/16/2025In ProcessFALSE
- 6.04.06.02The measurement resolution averaged over 1 sec shall be < 5 uA05/16/2025In ProcessFALSE
- 6.04.06.02The DCCT beamline device impedance shall be approved by beam physics.05/16/2025In ProcessFALSE
- 6.04.06.02Measurement drift tolerance (thermal effects) shall be ≤ 1 uA/K05/16/2025In ProcessFALSE
- 6.04.06.02The DCCT sensor in the ring shall operate in the temperature range of 15 to 35 degrees C05/16/2025In ProcessFALSE
- 6.04.06.02The range of average beam current to be measured shall be 0.156x10-3 to 2.5 A05/16/2025In ProcessFALSE
- 6.04.06.02The DCCT system shall have a remote controlled self calibration system05/16/2025In ProcessFALSE
- 6.04.06.02The DCCT system shall provide measurements with absolute accuracy of better than 0.2 %05/16/2025In ProcessFALSE
- 6.04.06.02The measured average current shall be archived at a rate of 10 Hz Hz05/16/2025In ProcessFALSE
- 6.04.06.02The measured average current shall be provided to users at a rate of 10 Hz05/16/2025In ProcessFALSE
- 6.04.06.02The DCCT sensor assembly in the ring shall be radiation resistant05/16/2025In ProcessFALSE
- 6.04.06The ESR instrumentation system shall include a system to measure individual bunch charges and bunch pattern.05/16/2025ApprovedFALSE
- 6.04.06.02A bunch pattern monitor shall be installed in the ESR to measure indiviual bunch charge with an accuracy 1 %05/16/2025In ProcessFALSE
- 6.04.06.02The Bunch pattern monitor shall be capable of measuring Bunch patterns ranging from a single bunch, to a filled ring with 1,160 bunches05/16/2025In ProcessFALSE
- 6.04.06The ESR instrumentation system shall include a system to measure transverse beam profiles.05/16/2025ApprovedFALSE
- 6.04.06.03The transverse feedback systems shall be capable of counteracting single-bunch rise times of 1 ms05/16/2025In ProcessFALSE
- 6.04.06.03Placeholder, Input needed TBD05/16/2025In ProcessFALSE
- 6.04.06.03Placeholder, Input needed TBD05/16/2025In ProcessFALSE
- 6.04.06The ESR instrumentation system shall include a system to measure longitudinal beam profiles.05/16/2025ApprovedFALSE
- 6.04.06.03The requirements for longitudinal feedback are ??? TBD05/16/2025In ProcessFALSE
- 6.04.06.03The Longitudinal feedback systems shall be capable of counteracting single-bunch rise times of 1 ms05/16/2025In ProcessFALSE
- 6.04.06The ESR longitudinal bunch profile monitor needs turn-by-turn capability based on a single bunch in the fully filled bunch train to allow timing and energy adjustment for injection optimization.05/16/2025ApprovedFALSE
- 6.04.06.03The requirements for longitudinal feedback are ??? TBD05/16/2025In ProcessFALSE
- 6.04.06.03The Longitudinal feedback systems shall be capable of counteracting single-bunch rise times of 1 ms05/16/2025In ProcessFALSE
- 6.04.06The ESR instrumentation system shall include system to measure H & V betatron tunes.05/16/2025ApprovedFALSE
- 6.04.06.03Stripline kickers (H & V) shall be used to excite the beam so tunes can be measured using turn-by-turn BPM data.05/16/2025In ProcessFALSE
- 6.04.06.03The magnitude of the kick required for the horizontal kicker shall be TBD units05/16/2025In ProcessFALSE
- 6.04.06.03The magnitude of the kick required for the vertical kicker shall be TBD units05/16/2025In ProcessFALSE
- 6.04.06.03The location of the tune meter kicker striplines in the ESR shall be TBD units05/16/2025In ProcessFALSE
- 6.04.06.03The kicker waveform (risetime and shape) requirements shall be TBD units05/16/2025In ProcessFALSE
- 6.04.06.03The impedance of the kicker beamline device shall be approved by beam Physics.05/16/2025In ProcessFALSE
- 6.04.06The ESR instrumentation system shall facilitate all required feedback systems (slow transverse, longitudinal and transverse bunch-by-bunch)05/16/2025ApprovedFALSE
- 6.07.02The slow orbit feedback correction output rate shall be 10 Hz05/16/2025In ProcessFALSE
- 6.07.02The slow orbit feedback BPM data averaging period shall be tbd -05/16/2025In ProcessFALSE
- 6.04.06.03The transverse slow feedback system bandwidth shall bs 10 Hz05/16/2025In ProcessFALSE
- 6.08The ESR RF Systems within the tunnel shall operate within its yearly radiation exposure budget.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that cannot be maintained in-situ shall be designed with a minimum lifetime radiation tolerance of 1 MGy.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.04.06The ESR instrumentation system shall include beam loss monitor system with detectors located only at select regions of the ESR.05/16/2025ApprovedFALSE
- 6.04.06.05BLM shall be needed to needed to protect sensitive equipment.05/16/2025In ProcessFALSE
- 6.04.06.05The number of BLM installed in the ESR shall be TBD ea05/16/2025In ProcessFALSE
- 6.04.06.05BLM shall be installed at the following locations in the ESR TBD05/16/2025In ProcessFALSE
- 6.04.06.05The sensitivity of the BLM detectors shall be TBD units?05/16/2025In ProcessFALSE
- 6.04.06.05Where possible existing RHIC BLM's can be relocated to identify ESR & HSR losses05/16/2025In ProcessFALSE
- 6.04.06.05The response time from loss detection to abort shall be TBD us05/16/2025In ProcessFALSE
- 6.08The ESR RF System shall be designed to minimize unscheduled downtime, maintenance time and repair time to achieve ESR operational availability.05/16/2025ApprovedFALSE
- 6.07.02The ESR controls system shall be capable of producing arbitrary spin pattern at injection05/16/2025In ProcessFALSE
- 6.07.02The Spin pattern control granularity shall be 1 bunch05/16/2025In ProcessFALSE
- 6.07.02The number of bunches @ 18GeV shall be 290 cnt05/16/2025In ProcessFALSE
- 6.07.02The number of bunches @ 10GeV and below shall be 1160 cnt05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 300K to 150K shall be 10 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 150K to 50K shall be 30 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 50K to 4.5K shall be 10 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 4.5K to 2K shall be 0.5 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum warmup rate of the SRF cavity between 50K to 150K shall be 30 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall achieve steady state temperature with the cavity bath at 4K in a maximum of 2 days.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall achieve a full warm-up cycle from 4K to 295K in a maximum of 2 days.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall operate through a minimum of 200 thermal cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner 1% range tuning cycles shall be 100,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner full range tuning cycles shall be 1,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The manufactured SRF Cryomodule Cavity shall produce no field emission at 4 MV.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that cannot be maintained in-situ shall be designed with a minimum lifetime radiation tolerance of 1 MGy.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.08.04.01All critical monitoring and control instruments that cannot be maintained in-situ shall utilize a back-up instrument.05/16/2025ApprovedFALSE
- 6.08.04.01The active SRF cavity tuning mechanism components (motor/gearbox/drive mechanism) shall be replaceable and maintainable in-situ.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cavity slow tuner tuning rate shall be 800 Hz/s.05/16/2025ApprovedFALSE
- 6.09The ESR shall have provisions made to accommodate a cryogenic system to cool and operate all elements which need cryogenic cooling .05/16/2025ApprovedFALSE
- 6.08The ESR shall have provisions made to accommodate a RF system capable of operating at parameters defined in MPT. [Document#:EIC-SEG-RSI-005]05/16/2025ApprovedFALSE
ESR-PPD : EZSR Pulse Power Device System (WBS 6.03.03.05)
ESR-PPD-INJ_EXT_PULSE_STRIPLINE_KICK : EIS RCS Injection/Extraction Pulse Power Strip-line Kicker System (WBS 6.03.03.05.06)
- 6.03.03.05.06The location (Section) type shall be 12 o'clock05/16/2025In ProcessFALSE
- 6.03.03.05.06The dimension in W type shall be 5 (ft)05/16/2025In ProcessFALSE
- 6.03.03.05.06The dimension in L type shall be 5 (ft)05/16/2025In ProcessFALSE
- 6.03.03.05.06The dimension in H type shall be 7 (ft)05/16/2025In ProcessFALSE
- 6.03.03.05.06The num magnets type shall be 1005/16/2025In ProcessFALSE
- 6.03.03.05.06The mag gap type shall be 3 (cm)05/16/2025In ProcessFALSE
- 6.03.03.05.06The rise time type shall be 0.000000002 (sec)05/16/2025In ProcessFALSE
- 6.03.03.05.06The fall time type shall be 0.0000000025 (sec)05/16/2025In ProcessFALSE
- 6.03.03.05.06The flat top time type shall be 0.000000013 (sec)05/16/2025In ProcessFALSE
- 6.03.03.05.06The waveshape type shall be Trap05/16/2025In ProcessFALSE
- 6.03.03.05.06The flat top repeatability type shall be tbd %05/16/2025In ProcessFALSE
- 6.03.03.05.06The uniformity of the flattop type shall be tbd (V)05/16/2025In ProcessFALSE
- 6.03.03.05.06The deflecting Angle type shall be 1.3 (mRad)05/16/2025In ProcessFALSE
- 6.03.03.05.06The rep rate spec type shall be 1 (Hz)05/16/2025In ProcessFALSE
- 6.03.03.05.06The output voltage Spec type shall be 20000 (Volts)05/16/2025In ProcessFALSE
- 6.03.03.05.06The output current spec type shall be 400 (Amps)05/16/2025In ProcessFALSE
- 6.03.03.05.06The inductance with cable type shall be 50 ohm (TBD) (uH)05/16/2025In ProcessFALSE
- 6.03.03.05.06The cooling type shall be water05/16/2025In ProcessFALSE
ESR-PPD-INJ_EXT_PULSE_KICK : EIS RCS Injection/Extraction Pulsed Bump IM&HW System (WBS 6.03.03.05.07)
- 6.03.03.05.07The location (Section) shall be 12 o'clock05/16/2025In ProcessFALSE
- 6.03.03.05.07The dimension in W shall be 4 (ft)05/16/2025In ProcessFALSE
- 6.03.03.05.07The dimension in L shall be 10 (ft)05/16/2025In ProcessFALSE
- 6.03.03.05.07The dimension in H shall be 7 (ft)05/16/2025In ProcessFALSE
- 6.03.03.05.07The num magnets shall be 305/16/2025In ProcessFALSE
- 6.03.03.05.07The mag gap shall be tbd (cm)05/16/2025In ProcessFALSE
- 6.03.03.05.07The rise time shall be 0.001 (sec)05/16/2025In ProcessFALSE
- 6.03.03.05.07The fall time shall be 0.002 (sec)05/16/2025In ProcessFALSE
- 6.03.03.05.07The flat top time shall be 0.0015 (sec)05/16/2025In ProcessFALSE
- 6.03.03.05.07The waveshape shall be trap05/16/2025In ProcessFALSE
- 6.03.03.05.07The flat top repeatability shall be tbd %05/16/2025In ProcessFALSE
- 6.03.03.05.07The uniformity of the flattop shall be tbd (V)05/16/2025In ProcessFALSE
- 6.03.03.05.07The deflecting Angle shall be 1 (mRad)05/16/2025In ProcessFALSE
- 6.03.03.05.07The rep rate spec shall be 1 (Hz)05/16/2025In ProcessFALSE
- 6.03.03.05.07The output voltage Spec shall be 60 (Volts)05/16/2025In ProcessFALSE
- 6.03.03.05.07The output current spec shall be 1000 (Amps)05/16/2025In ProcessFALSE
- 6.03.03.05.07The inductance with cable shall be 11 (uH)05/16/2025In ProcessFALSE
- 6.03.03.05.07The cooling type shall be water05/16/2025In ProcessFALSE
ESR-PPD-INJ_EXT_PULSE_SEPTUM : EIS RCS Injection/Extraction Pulsed Septum System (WBS 6.03.03.05.08)
- 6.03.03.05.08The location (Section) shall be 12 o'clock05/16/2025In ProcessFALSE
- 6.03.03.05.08The dimension in W shall be 4 (ft)05/16/2025In ProcessFALSE
- 6.03.03.05.08The dimension in L shall be 10 (ft)05/16/2025In ProcessFALSE
- 6.03.03.05.08The dimension in H shall be 7 (ft)05/16/2025In ProcessFALSE
- 6.03.03.05.08The num magnets shall be 2 ea05/16/2025In ProcessFALSE
- 6.03.03.05.08The mag gap shall be tbd05/16/2025In ProcessFALSE
- 6.03.03.05.08The rise time shall be 0.001 (sec)05/16/2025In ProcessFALSE
- 6.03.03.05.08The fall time shall be 0.0015 (sec)05/16/2025In ProcessFALSE
- 6.03.03.05.08The flat top time shall be 0.002 (sec)05/16/2025In ProcessFALSE
- 6.03.03.05.08The waveshape shall be Trap05/16/2025In ProcessFALSE
- 6.03.03.05.08The flat top repeatability shall be tbd %05/16/2025In ProcessFALSE
- 6.03.03.05.08The uniformity of the flattop shall be tbd (V)05/16/2025In ProcessFALSE
- 6.03.03.05.08The deflecting Angle shall be 15 (mRad)05/16/2025In ProcessFALSE
- 6.03.03.05.08The rep rate spec shall be 1 (Hz)05/16/2025In ProcessFALSE
- 6.03.03.05.08The output voltage Spec shall be 80 (Volts)05/16/2025In ProcessFALSE
- 6.03.03.05.08The output current spec shall be 1000 (Amps)05/16/2025In ProcessFALSE
- 6.03.03.05.08The inductance with cable shall be 25 (uH)05/16/2025In ProcessFALSE
- 6.03.03.05.08The cooling type shall be water05/16/2025In ProcessFALSE
ESR-MAG : ESR Magnet (WBS 6.04.02/6.04.03)
- ESR-MAG EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04The ESR magnets shall meet the requirements defined by the physics lattice.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR magnets shall have the required field quality to meet the operational needs.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The “super-bends” in the ESR ARC sections shall consist of two long dipoles on either end of a short dipole.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The good field region of the ESR dipoles shall extend over a horizontal range of at least 4 centimeters in the radial direction, for all operational beam energies from 5 to 18 GeV. This will take into account the orbit changes due to the reverse bends.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04All ESR quadrupoles shall be designed to facilitate beam based alignment.05/16/2025ApprovedFALSE
- 6.04The maximum integrated field strength of the ESR FODO sextupoles needs to be sufficient to provide chromatic correction at all energies from 5 to 18 GeV with two low-beta interaction regions.05/16/2025ApprovedFALSE
- 6.07.02The BBA quad strength command output rate shall be 1 Hz05/16/2025In ProcessFALSE
- 6.04The aperture of all ESR magnets shall be large enough to accommodate the ESR vacuum chamber.05/16/2025ApprovedFALSE
- 6.04The ESR Shall have a conventional orbit corrector scheme, with single-plane correctors located at the respective quadrupoles. The strength of these correctors needs to be chosen to correct for any source of orbit distortion and should have enough margin for beam based diagnostic purposes, Harmonic Spin bumps and emittance generating bumps.05/16/2025ApprovedFALSE
- 6.04All dipoles in the ESR, including those in IRs 6 and 8, shall be connected in series to a single main power supply.05/16/2025ApprovedFALSE
- 6.04The ESR main arc quadrupoles shall be powered to accommodate the Lattice requirements having the appropriate number of circuits to power the focusing and defocusing quadrupoles in each sextant of the ESR.05/16/2025ApprovedFALSE
- 6.04The ESR quadrupoles in the straight sections IR02, IR04, IR10 and IR12 and in the transition from the arc to the straight section structure shall be wired to provide the optimized betatron phase advance across each straight section, as required for dynamic aperture optimization.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR quadrupoles shall have provisions to vary individual strengths by approximately 1% for beam-based alignment purposes.05/16/2025ApprovedFALSE
- 6.04The ESR sextupole power supply scheme shall be laid out such that the sextupole family structure can be configured for both the 60 and the 90 degree lattice along with a small number of individually powered sextupoles in the transition regions between arcs and straight sections with minimal effort, cost and minimizing any risk of error.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
ESR-MAG-D13 : ESR Magnet D13 (WBS 6.04.02.01)
ESR-MAG-D2 : ESR Magnet D2 (WBS 6.04.02.01)
ESR-MAG-D_SR : ESR Dipole (D_SR) Magnet (WBS 6.04.02.01)
ESR-MAG-SXT : ESR Magnet SXT (WBS 6.04.02.02)
ESR-MAG-SXT_LONG : ESR Sextupole (Long_SXT) Magnet (WBS 6.04.02.02)
ESR-MAG-Q50 : ESR Magnet Q50 (WBS 6.04.03.01)
ESR-MAG-Q60 : ESR Magnet Q60 (WBS 6.04.03.01)
ESR-MAG-Q60x2 : ESR Quadrupole (Q60x2) Magnet (WBS 6.04.03.01)
ESR-MAG-Q80 : ESR Magnet Q80 (WBS 6.04.03.01)
ESR-MAG-Q_LA : ESR Quadrupole (Q_LA) Magnet (WBS 6.04.03.01.02)
ESR-MAG-Q_NARROW : ESR Quadrupole (Q_NARROW) Magnet (WBS 6.04.03.01.02)
ESR-MAG-CORR_FFB_H : Fast Feed back correctors (WBS 6.04.03.02)
- 6.04.03.02The magnet shall be a single function dipole with a vertical field.08/04/2025On HoldFALSE
- 6.04.03.02The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation TBD08/04/2025On HoldFALSE
- 6.04.03.02The physical magnet length shall be <TBD m.08/04/2025On HoldFALSE
- 6.04.03.02The magnet bore gap and Width shall be 48 mm.08/04/2025On HoldFALSE
- 6.04.03.02The magnet shall be designed to fit within the following envelope:08/04/2025On HoldFALSE
- 6.04.03.02Magnet installation volume tolerances TBD08/04/2025On HoldFALSE
- 6.04.03.02The magnet install center and install alignment must be within a translational value of +/-TBD (um) and a rotational alignment value of +/- TBD (mrad).08/04/2025On HoldFALSE
- 6.04.03.02The magnet integrated dipole field (B) shall be TBD T.m.08/04/2025On HoldFALSE
- 6.04.03.02The magnet good field aperture dAx required shall be TBD mm.08/04/2025On HoldFALSE
- 6.04.03.02The magnet good field aperture dAy required shall be TBD mm.08/04/2025On HoldFALSE
- 6.04.03.02The magnet to magnet field variability between magnets shall be 5 %.08/04/2025On HoldFALSE
- 6.04.03.02The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).08/04/2025On HoldFALSE
- 6.04.03.02The harmonic reference radius at the design energy of 18 GeV shall be TBD (mm) .08/04/2025On HoldFALSE
- 6.04.03.02The Field at the reference radius at the design energy of 18 GeV shall be TBD (T) .08/04/2025On HoldFALSE
- 6.04.03.02The magnet bore field shall require the following multipole content:08/04/2025On HoldFALSE
- 6.04.03.02b1 = 10000 (10^-4)08/04/2025On HoldFALSE
- 6.04.03.02b2 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.03.02b3 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.03.02b4 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.03.02b5 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.03.02b6 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.03.02b7 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.03.02b8 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.03.02b9 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.03.02b10 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.03.02b11 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.03.02b12 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.03.02b13 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.03.02b14 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.03.02b15 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.03.02b16 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.03.02The magnet shall not be designed to limit CrossTalk requirements.08/04/2025On HoldFALSE
- 6.04.03.02The magnet shall be designed to specifically constrain the external fringe field TBD (Yes or No)08/04/2025On HoldFALSE
- 6.04.03.02The magnet shall be designed to meet the following fringe field requirements TBD08/04/2025On HoldFALSE
- 6.04.03.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025On HoldFALSE
- 6.04.03.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025On HoldFALSE
ESR-MAG-CORR_H : ESR Magnet HCOR (WBS 6.04.03.02)
ESR-MAG-CORR_LA_H : IR10 LA Quads horizontal corrector (WBS 6.04.03.02)
ESR-MAG-CORR_LA_V : IR10 LA Quads vertical corrector (WBS 6.04.03.02)
ESR-MAG-CORR_SPNQ_H : ESR Horizontal Corrector (SPNQ_H) Magnet (WBS 6.04.03.02)
- 6.04.03.02The magnet shall be a single function dipole with a vertical field.05/16/2025On HoldFALSE
- 6.04.03.02The magnet shall require trim coils capable of trimming the field within +/- TBD (%) of the Peak field.05/16/2025On HoldFALSE
- 6.04.03.02The magnet shall require current taps for operation TBD ( Y or N)05/16/2025On HoldFALSE
- 6.04.03.02The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation TBD05/16/2025On HoldFALSE
- 6.04.03.02The physical magnet length shall be <TBD m.05/16/2025On HoldFALSE
- 6.04.03.02The magnet bore gap and Width shall be 48 mm.05/16/2025On HoldFALSE
- 6.04.03.02The magnet shall be designed to fit within the following envelope. TBD05/16/2025On HoldFALSE
- 6.04.03.02Magnet installation tolerances TBD05/16/2025On HoldFALSE
- 6.04.03.02The magnet install center and install alignment must be within a translational value of +/-TBD (um) and a rotational alignment value of +/- TBD (mrad).05/16/2025On HoldFALSE
- 6.04.03.02The magnet integrated dipole field (B) shall be TBD.05/16/2025On HoldFALSE
- 6.04.03.02The magnet good field aperture dAx required shall be TBD mm.05/16/2025On HoldFALSE
- 6.04.03.02The magnet good field aperture dAy required shall be TBD mm.05/16/2025On HoldFALSE
- 6.04.03.02The magnet to magnet field variability between magnets shall be 0.5 %.05/16/2025On HoldFALSE
- 6.04.03.02The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).05/16/2025On HoldFALSE
- 6.04.03.02The harmonic reference radius at the design energy of 18 GeV shall be TBD (mm) .05/16/2025On HoldFALSE
- 6.04.03.02The Field at the reference radius at the design energy of 18 GeV shall be 29e-3 (T) .05/16/2025On HoldFALSE
- 6.04.03.02The magnet bore field shall require the following multipole content:05/16/2025On HoldFALSE
- 6.04.03.02b1 < 1 (10^-4)05/16/2025On HoldFALSE
- 6.04.03.02b2 = 10000 (10^-4)05/16/2025On HoldFALSE
- 6.04.03.02b3 < 1 (10^-4)05/16/2025On HoldFALSE
- 6.04.03.02b4 < 1 (10^-4)05/16/2025On HoldFALSE
- 6.04.03.02b5 < 1 (10^-4)05/16/2025On HoldFALSE
- 6.04.03.02b6 < 1 (10^-4)05/16/2025On HoldFALSE
- 6.04.03.02b7 < 1 (10^-4)05/16/2025On HoldFALSE
- 6.04.03.02b8 < 1 (10^-4)05/16/2025On HoldFALSE
- 6.04.03.02b9 < 1 (10^-4)05/16/2025On HoldFALSE
- 6.04.03.02b10 < 1 (10^-4)05/16/2025On HoldFALSE
- 6.04.03.02b11 < 1 (10^-4)05/16/2025On HoldFALSE
- 6.04.03.02b12 < 1 (10^-4)05/16/2025On HoldFALSE
- 6.04.03.02b13 < 1 (10^-4)05/16/2025On HoldFALSE
- 6.04.03.02b14 < 1 (10^-4)05/16/2025On HoldFALSE
- 6.04.03.02b15 < 1 (10^-4)05/16/2025On HoldFALSE
- 6.04.03.02b16 < 1 (10^-4)05/16/2025On HoldFALSE
- 6.04.03.02The magnet shall not be designed to limit CrossTalk requirements.05/16/2025On HoldFALSE
- 6.04.03.02The magnet shall be designed to specifically constrain the external fringe field TBD (Yes or No)05/16/2025On HoldFALSE
- 6.04.03.02The magnet shall be designed to meet the following fringe field requirements TBD05/16/2025On HoldFALSE
- 6.04.03.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.05/16/2025On HoldFALSE
- 6.04.03.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.05/16/2025On HoldFALSE
ESR-MAG-CORR_SPNQ_V : ESR Vertical Corrector (SPNQ_V) Magnet (WBS 6.04.03.02)
ESR-MAG-CORR_V : ESR Vertical Corrector (CORR_V) Magnet (WBS 6.04.03.02)
ESR-MAG-Q120 : ESR 1.2m Quadrupole (WBS 6.04.03.02)
ESR-MAG-Q_SKEW : ESR Quadrupole (Q_SKEW) Magnet (WBS 6.04.03.02)
ESR-MAG-QLS1 : ESR Magnet QLS1 (WBS 6.06.02.02)
ESR-MAG-QLS2 : ESR Magnet QLS2 (WBS 6.06.02.02)
ESR-MAG-QLS3 : ESR Magnet QLS3 (WBS 6.06.02.02)
ESR-MAG-QSS1 : ESR Magnet QSS1 (WBS 6.06.02.02)
ESR-MAG-QSS2 : ESR Magnet QSS2 (WBS 6.06.02.02)
ESR-MAG-QSS3 : ESR Magnet QSS3 (WBS 6.06.02.02)
ESR-MAG-QSS4 : ESR Magnet QSS4 (WBS 6.06.02.02)
ESR-MAG-QSS5 : ESR Magnet QSS5 (WBS 6.06.02.02)
ESR-MAG-B2ER
ESR-MAG-Q:120
- 6.04.03.01The magnet shall be single function quadrupole with a normal field rotation.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation.08/04/2025In ProcessFALSE
- 6.04.03.01The physical magnet length shall be <1.2 m.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet pole tip radius shall be 40 mm.08/04/2025In ProcessFALSE
- 6.04.03.01The magnet shall be designed to fit within the following envelope. TBD08/04/2025In ProcessFALSE
- 6.04.03.01Magnet installation tolerances, Max X = 42 cm May Y = 42 cm08/04/2025In ProcessFALSE
- 6.04.03.01The magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025In ProcessFALSE
- 6.04.03.01The magnet integrated grad field G shall be 18.9 T/m.08/04/2025In ProcessFALSE
- 6.04.03.01The magnet to magnet field variability between magnets shall be less than 0.1%.08/04/2025ApprovedFALSE
- 6.04.03.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).08/04/2025In ProcessFALSE
- 6.04.03.01The field harmonic measurements shall be measured at Rref=25mm.08/04/2025ApprovedFALSE
- 6.04.03.01The reference field for the measurement shall be TBD (T/m).08/04/2025In ProcessFALSE
- 6.04.03.01The magnet bore field shall have a field homogeneity in the region of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in the region.owing multipole content:08/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01b2=1000008/04/2025ApprovedFALSE
- 6.04.03.01-2.71<b3<0.72, -2.13<a3<2.1108/04/2025ApprovedFALSE
- 6.04.03.01-3.58<b4<1.2, -0.47<a4<0.4608/04/2025ApprovedFALSE
- 6.04.03.01-0.53<b5<0.23, -0.29<a5<0.3508/04/2025ApprovedFALSE
- 6.04.03.01-1.75<b6<-1.12, -0.07<a6<0.0808/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-1.06<b10<-0.66, 0<a10<008/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-0.12<b14<-0.08, 0<a14<008/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025In ProcessFALSE
- 6.04.03.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025In ProcessFALSE
- 6.04.03.01The magnet shall be designed to meet the following fringe field requirements The magnet shall be designed to specifically constrain the external fringe field to 10 Gauss at TBD mm from the magnet center.08/04/2025In ProcessFALSE
- 6.04.03.01The magnet shall be designed to be cooled and sustained at an operational temperature range of +X (C) to +X (C).08/04/2025In ProcessFALSE
- 6.04.03.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
ESR-MAG-Q:50
- 6.04.03.01.01The magnet shall be single function quadrupole with a normal field rotation.08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall require shunt resistors for beam-based alignment, 5A at 5 GeV.08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall have a splitable pole to facilitate the vacuum beam pipe installation.08/04/2025ApprovedFALSE
- 6.04.03.01.01The physical magnet length shall be <0.5 m.08/04/2025ApprovedFALSE
- 6.04.03.01.01The effective magnet length shall be 0.5 m.08/04/2025ApprovedFALSE
- 6.04.03.01.01The pole tip radius of the magnet shall be 40 mm.08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet integrated grad field G shall be 9.4 T.08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.08/04/2025ApprovedFALSE
- 6.04.03.01.01The harmonic reference radius and current at 18 GeV shall be 25 (mm) and 412 (A).08/04/2025ApprovedFALSE
- 6.04.03.01.01The Field at the reference radius and current at 18 GeV shall be 18.9 (T/m).08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet bore field shall require the following multipole content:08/04/2025ApprovedFALSE
- 6.04.03.01.01b2 = 10000 , a2 = N/A08/04/2025ApprovedFALSE
- 6.04.03.01.01b3 = HV +/- 2.2 , a3 = +/- 208/04/2025ApprovedFALSE
- 6.04.03.01.01b4 = HV +/- 2.4 , a4 = +/- 0.708/04/2025ApprovedFALSE
- 6.04.03.01.01b5 = HV +/- 1.0 , a5 = +/- 0.508/04/2025ApprovedFALSE
- 6.04.03.01.01b6 = HV +/- 1.0 , a6 = +/- 0.208/04/2025ApprovedFALSE
- 6.04.03.01.01b7 = HV +/- 1.0 , a7 = +/- 0.508/04/2025ApprovedFALSE
- 6.04.03.01.01b8 = HV +/- 1.0 , a8 = +/- 0.508/04/2025ApprovedFALSE
- 6.04.03.01.01b9 = HV +/- 1.0 , a9 = +/- 0.508/04/2025ApprovedFALSE
- 6.04.03.01.01b10 = HV +/- 1.0 , a10 = +/- 0.508/04/2025ApprovedFALSE
- 6.04.03.01.01b11 = HV +/- 1.0 , a11 = +/- 0.408/04/2025ApprovedFALSE
- 6.04.03.01.01b12 = HV +/- 1.0 , a12 = +/- 0.308/04/2025ApprovedFALSE
- 6.04.03.01.01b13 = HV +/- 1.0 , a13 = +/- 0.208/04/2025ApprovedFALSE
- 6.04.03.01.01b14 = HV +/- 1.0 , a14 = +/- 0.1508/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field to 10 Gauss at 40mm from the RCS beamline.08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to be cooled and sustained at an operational temperature range of +X (C) to +X (C).08/04/2025In ProcessFALSE
- 6.04.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose of TBD Rads it will experience over the lifetime of the EIC of >20 Years.08/04/2025In ProcessFALSE
- ESR-MAG-Q:50 EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
ESR-MAG-Q:60
- 6.04.03.01.01The magnet shall be single function quadrupole with a normal field rotation.08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall require shunt resistors for beam-based alignment, 5A at 5 GeV.08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall have a splitable pole to facilitate the vacuum beam pipe installation.08/04/2025ApprovedFALSE
- 6.04.03.01.01The physical magnet length shall be <0.6 m.08/04/2025ApprovedFALSE
- 6.04.03.01.01The effective magnet length shall be 0.6 m.08/04/2025ApprovedFALSE
- 6.04.03.01.01The pole tip radius of the magnet shall be 40 mm.08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet integrated grad field G shall be 11.0 T.08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.08/04/2025ApprovedFALSE
- 6.04.03.01.01The harmonic reference radius and current at 18 GeV shall be 25 (mm) and 412 (A).08/04/2025ApprovedFALSE
- 6.04.03.01.01The Field at the reference radius and current at 18 GeV shall be 18.9 (T/m).08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet bore field shall require the following multipole content:08/04/2025ApprovedFALSE
- 6.04.03.01.01b2 = 10000 , a2 = N/A08/04/2025ApprovedFALSE
- 6.04.03.01.01b3 = HV +/- 2.2 , a3 = +/- 208/04/2025ApprovedFALSE
- 6.04.03.01.01b4 = HV +/- 2.4 , a4 = +/- 0.708/04/2025ApprovedFALSE
- 6.04.03.01.01b5 = HV +/- 1.0 , a5 = +/- 0.508/04/2025ApprovedFALSE
- 6.04.03.01.01b6 = HV +/- 1.0 , a6 = +/- 0.208/04/2025ApprovedFALSE
- 6.04.03.01.01b7 = HV +/- 1.0 , a7 = +/- 0.508/04/2025ApprovedFALSE
- 6.04.03.01.01b8 = HV +/- 1.0 , a8 = +/- 0.508/04/2025ApprovedFALSE
- 6.04.03.01.01b9 = HV +/- 1.0 , a9 = +/- 0.508/04/2025ApprovedFALSE
- 6.04.03.01.01b10 = HV +/- 1.0 , a10 = +/- 0.508/04/2025ApprovedFALSE
- 6.04.03.01.01b11 = HV +/- 1.0 , a11 = +/- 0.408/04/2025ApprovedFALSE
- 6.04.03.01.01b12 = HV +/- 1.0 , a12 = +/- 0.308/04/2025ApprovedFALSE
- 6.04.03.01.01b13 = HV +/- 1.0 , a13 = +/- 0.208/04/2025ApprovedFALSE
- 6.04.03.01.01b14 = HV +/- 1.0 , a14 = +/- 0.1508/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field to 10 Gauss at 40mm from the RCS beamline.08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to be cooled and sustained at an operational temperature range of +X (C) to +X (C).08/04/2025In ProcessFALSE
- 6.04.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose of TBD Rads it will experience over the lifetime of the EIC of >20 Years.08/04/2025In ProcessFALSE
- ESR-MAG-Q:60 EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
ESR-MAG-Q:80
- 6.04.03.01.01The magnet shall be single function quadrupole with a normal field rotation.08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall require shunt resistors for beam-based alignment, 5A at 5 GeV.08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall have a splitable pole to facilitate the vacuum beam pipe installation.08/04/2025ApprovedFALSE
- 6.04.03.01.01The physical magnet length shall be <0.8 m.08/04/2025ApprovedFALSE
- 6.04.03.01.01The effective magnet length shall be 0.8 m.08/04/2025ApprovedFALSE
- 6.04.03.01.01The pole tip radius of the magnet shall be 40 mm.08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet integrated grad field G shall be 15.1 T.08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.08/04/2025ApprovedFALSE
- 6.04.03.01.01The harmonic reference radius and current at 18 GeV shall be 25 (mm) and 412 (A).08/04/2025ApprovedFALSE
- 6.04.03.01.01The Field at the reference radius and current at 18 GeV shall be 18.9 (T/m).08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet bore field shall require the following multipole content:08/04/2025ApprovedFALSE
- 6.04.03.01.01b2 = 10000 , a2 = N/A08/04/2025ApprovedFALSE
- 6.04.03.01.01b3 = HV +/- 2.2 , a3 = +/- 208/04/2025ApprovedFALSE
- 6.04.03.01.01b4 = HV +/- 2.4 , a4 = +/- 0.708/04/2025ApprovedFALSE
- 6.04.03.01.01b5 = HV +/- 1.0 , a5 = +/- 0.508/04/2025ApprovedFALSE
- 6.04.03.01.01b6 = HV +/- 1.0 , a6 = +/- 0.208/04/2025ApprovedFALSE
- 6.04.03.01.01b7 = HV +/- 1.0 , a7 = +/- 0.508/04/2025ApprovedFALSE
- 6.04.03.01.01b8 = HV +/- 1.0 , a8 = +/- 0.508/04/2025ApprovedFALSE
- 6.04.03.01.01b9 = HV +/- 1.0 , a9 = +/- 0.508/04/2025ApprovedFALSE
- 6.04.03.01.01b10 = HV +/- 1.0 , a10 = +/- 0.508/04/2025ApprovedFALSE
- 6.04.03.01.01b11 = HV +/- 1.0 , a11 = +/- 0.408/04/2025ApprovedFALSE
- 6.04.03.01.01b12 = HV +/- 1.0 , a12 = +/- 0.308/04/2025ApprovedFALSE
- 6.04.03.01.01b13 = HV +/- 1.0 , a13 = +/- 0.208/04/2025ApprovedFALSE
- 6.04.03.01.01b14 = HV +/- 1.0 , a14 = +/- 0.1508/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field to 10 Gauss at 40mm from the RCS beamline.08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to be cooled and sustained at an operational temperature range of +X (C) to +X (C).08/04/2025In ProcessFALSE
- 6.04.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose of TBD Rads it will experience over the lifetime of the EIC of >20 Years.08/04/2025In ProcessFALSE
- ESR-MAG-Q:80 EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
ESR-MAG-QLA:135
- 6.04.03.01.02The magnet shall be single function quadrupole with a normal field rotation.07/28/2025ApprovedFALSE
- 6.04.03.01.02The magnet shall be designed to have a splitable yoke to accommodate the Vacuum beam pipe installation.07/28/2025ApprovedFALSE
- 6.04.03.01.02The maximum physical magnet length shall be 1.35(m).07/28/2025ApprovedFALSE
- 6.04.03.01.02The magnet pole tip radius shall be 104 (mm).07/28/2025ApprovedFALSE
- 6.04.03.01.02The magnet shall be designed to fit within the following envelope:07/28/2025ApprovedFALSE
- 6.04.03.01.02The maximum magnet axial dimensions shall be X = 90 (cm) and Y = 80 (cm).07/28/2025ApprovedFALSE
- 6.04.03.01.02The magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).07/28/2025ApprovedFALSE
- 6.04.03.01.02The magnet integrated grad field G shall be 9.7 (T).07/28/2025ApprovedFALSE
- 6.04.03.01.02The magnet to magnet field variability between magnets shall be less than 0.25%.07/28/2025ApprovedFALSE
- 6.04.03.01.02The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).07/28/2025ApprovedFALSE
- 6.04.03.01.02The field harmonic measurements shall be measured at the reference radius of 25mm.07/28/2025ApprovedFALSE
- 6.04.03.01.02The reference field for the measurement shall be 9.7 (T).07/28/2025ApprovedFALSE
- 6.04.03.01.02The magnet bore field shall have a field homogeneity in the region of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in the region.owing multipole content:07/28/2025ApprovedFALSE
- 6.04.03.01.02b2=1000007/28/2025ApprovedFALSE
- 6.04.03.01.02-2.00 < b3 < 2.00, -1.00 < a3 < 1.0007/28/2025ApprovedFALSE
- 6.04.03.01.02-1.75 < b4 < 1.75, -0.47 < a4 < 0.4607/28/2025ApprovedFALSE
- 6.04.03.01.02-0.50 < b5 < 0.50, -0.30 < a5 < 0.3007/28/2025ApprovedFALSE
- 6.04.03.01.02-1.75 < b6 < 1.75, -0.20 < a6 < 0.2007/28/2025ApprovedFALSE
- 6.04.03.01.02-1.00 < b7 < 1.00, -0.50 < a7 < 0.5007/28/2025ApprovedFALSE
- 6.04.03.01.02-1.00 < b8 < 1.00, -0.50 < a8 < 0.5007/28/2025ApprovedFALSE
- 6.04.03.01.02-1.00 < b9 < 1.00, -0.50 < a9 < 0.5007/28/2025ApprovedFALSE
- 6.04.03.01.02-1.00 < b10 < 1.00, -0.20 < a10 < 0.2007/28/2025ApprovedFALSE
- 6.04.03.01.02-1.00 < b11 < 1.00, -0.40 < a11 < 0.4007/28/2025ApprovedFALSE
- 6.04.03.01.02-1.00 < b12 < 1.00, -0.30 < a12 < 0.3007/28/2025ApprovedFALSE
- 6.04.03.01.02-1.00 < b13 < 1.00, -0.20 < a13 < 0.2007/28/2025ApprovedFALSE
- 6.04.03.01.02-0.30 < b14 < 0.30, -0.20 < a14 < 0.2007/28/2025ApprovedFALSE
- 6.04.03.01.02-1.00 < b15 < 1.00, -0.20 < a15 < 0.2007/28/2025ApprovedFALSE
- 6.04.03.01.02-1.00 < b16 < 1.00, -0.20 < a16 < 0.2007/28/2025ApprovedFALSE
- 6.04.03.01.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +15 (C) to +50 (C).07/28/2025ApprovedFALSE
- 6.04.03.01.02The magnet coils shall have a maximum current leak of 10 uA during Hi-Pot test at nominal operating conditions corresponding to 1 (kV).07/28/2025ApprovedFALSE
- 6.04.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.07/28/2025ApprovedFALSE
- 6.04.03.01.02The magnet shall be designed with components capable to withstand a lifetime radiation dose of 1 MGy.07/28/2025ApprovedFALSE
ESR-MAG-QN:80
- 6.04.03.01.02The magnet shall be single function quadrupole with a normal field rotation.06/02/2025ApprovedFALSE
- 6.04.03.01.02The magnet shall be designed to have a splitable yoke.06/02/2025ApprovedFALSE
- 6.04.03.01.02The maximum physical magnet length shall be 0.88 m.06/03/2025ApprovedFALSE
- 6.04.03.01.02The magnet pole tip radius shall be 40 mm.06/02/2025ApprovedFALSE
- 6.04.03.01.02The magnet shall be designed to fit within the following envelope:06/02/2025ApprovedFALSE
- 6.04.03.01.02The maximum magnet axial dimensions shall be X = 45 cm and Y = 45 cm.06/03/2025ApprovedFALSE
- 6.04.03.01.02The magnet install center and install alignment must be within a translational value of +/- 150 (um) and a rotational alignment value of +/- 0.3 (mrad).06/02/2025ApprovedFALSE
- 6.04.03.01.02The magnet integrated gradient field, G, shall be 11.3 T.06/02/2025ApprovedFALSE
- 6.04.03.01.02The magnet-to-magnet field variability between magnets shall be less than 0.25%.07/29/2025ApprovedFALSE
- 6.04.03.01.02The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- 50 (um) and a rotational alignment value of +/-0.3 (mrad).06/02/2025ApprovedFALSE
- 6.04.03.01.02The field harmonic measurements shall be measured at the reference radius of 25mm.06/02/2025ApprovedFALSE
- 6.04.03.01.02The reference integrated field for the measurement shall be 11.3 T.06/02/2025ApprovedFALSE
- 6.04.03.01.02The integrated field over the length of the magnet at the reference radius shall meet the following harmonic multipole content:06/02/2025ApprovedFALSE
- 6.04.03.01.02b2=10000, a2 = N/A06/02/2025ApprovedFALSE
- 6.04.03.01.02-2.00 < b3 < 2.00, -1.00 < a3 < 1.0006/02/2025ApprovedFALSE
- 6.04.03.01.02-1.75 < b4 < 1.75, -0.47 < a4 < 0.4606/02/2025ApprovedFALSE
- 6.04.03.01.02-0.50 < b5 < 0.50, -0.30 < a5 < 0.3006/02/2025ApprovedFALSE
- 6.04.03.01.02-1.75 < b6 < 1.75, -0.20 < a6 < 0.2006/02/2025ApprovedFALSE
- 6.04.03.01.02-1.00 < b7 < 1.00, -0.50 < a7 < 0.5006/02/2025ApprovedFALSE
- 6.04.03.01.02-1.00 < b8 < 1.00, -0.50 < a8 < 0.5006/02/2025ApprovedFALSE
- 6.04.03.01.02-1.00 < b9 < 1.00, -0.50 < a9 < 0.5006/02/2025ApprovedFALSE
- 6.04.03.01.02-1.00 < b10 < 1.00, -0.20 < a10 < 0.2006/02/2025ApprovedFALSE
- 6.04.03.01.02-1.00 < b11 < 1.00, -0.40 < a11 < 0.4006/02/2025ApprovedFALSE
- 6.04.03.01.02-1.00 < b12 < 1.00, -0.30 < a12 < 0.3006/02/2025ApprovedFALSE
- 6.04.03.01.02-1.00 < b13 < 1.00, -0.20 < a13 < 0.2006/02/2025ApprovedFALSE
- 6.04.03.01.02-0.30 < b14 < 0.30, -0.02 < a14 < 0.2006/02/2025ApprovedFALSE
- 6.04.03.01.02-1.00 < b15 < 1.00, -0.20 < a15 < 0.2006/02/2025ApprovedFALSE
- 6.04.03.01.02-1.00 < b16 < 1.00, -0.20 < a16 < 0.2006/02/2025ApprovedFALSE
- 6.04.03.01.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +15 (C) to +50 (C).07/29/2025ApprovedFALSE
- 6.04.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.06/02/2025ApprovedFALSE
- 6.04.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.06/02/2025ApprovedFALSE
ESR-MAG-QROT:114
- 6.04.03.01The magnet shall be single function quadrupole with a normal field rotation.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation TBD08/04/2025In ProcessFALSE
- 6.04.03.01The physical magnet length shall be <1.14 m.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet pole tip radius shall be 67.9 mm.08/04/2025ReviewedFALSE
- 6.04.03.01The magnet shall be designed to fit within the following envelope. TBD08/04/2025In ProcessFALSE
- 6.04.03.01Magnet installation tolerances TBD08/04/2025In ProcessFALSE
- 6.04.03.01The magnet install center and install alignment must be within a translational value of +/-TBD (um) and a rotational alignment value of +/- TBD (mrad).08/04/2025In ProcessFALSE
- 6.04.03.01The magnet integrated grad field G shall be 24 T/m.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet to magnet field variability between magnets shall be less than 0.1%.08/04/2025ApprovedFALSE
- 6.04.03.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).08/04/2025In ProcessFALSE
- 6.04.03.01The field harmonic measurements shall be measured at Rref=25mm.08/04/2025ApprovedFALSE
- 6.04.03.01The reference field for the measurement shall be TBD (T/m).08/04/2025In ProcessFALSE
- 6.04.03.01The magnet bore field shall have a field homogeneity in the region of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in the region.owing multipole content:08/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01b2=1000008/04/2025ApprovedFALSE
- 6.04.03.01-2.71<b3<0.72, -2.13<a3<2.1108/04/2025ApprovedFALSE
- 6.04.03.01-3.58<b4<1.2, -0.47<a4<0.4608/04/2025ApprovedFALSE
- 6.04.03.01-0.53<b5<0.23, -0.29<a5<0.3508/04/2025ApprovedFALSE
- 6.04.03.01-1.75<b6<-1.12, -0.07<a6<0.0808/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-1.06<b10<-0.66, 0<a10<008/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-0.12<b14<-0.08, 0<a14<008/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025In ProcessFALSE
- 6.04.03.01The magnet shall be designed to specifically constrain the external fringe field TBD (Yes or No)08/04/2025In ProcessFALSE
- 6.04.03.01The magnet shall be designed to meet the following fringe field requirements TBD08/04/2025In ProcessFALSE
- 6.04.03.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
ESR-MAG-QROT:122
- 6.04.03.01The magnet shall be single function quadrupole with a normal field rotation.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation TBD08/04/2025In ProcessFALSE
- 6.04.03.01The physical magnet length shall be <1.22 m.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet pole tip radius shall be 67.9 mm.08/04/2025ReviewedFALSE
- 6.04.03.01The magnet shall be designed to fit within the following envelope. TBD08/04/2025In ProcessFALSE
- 6.04.03.01Magnet installation tolerances TBD08/04/2025In ProcessFALSE
- 6.04.03.01The magnet install center and install alignment must be within a translational value of +/-TBD (um) and a rotational alignment value of +/- TBD (mrad).08/04/2025In ProcessFALSE
- 6.04.03.01The magnet integrated grad field G shall be 24 T/m.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet to magnet field variability between magnets shall be less than 0.1%.08/04/2025ApprovedFALSE
- 6.04.03.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).08/04/2025In ProcessFALSE
- 6.04.03.01The field harmonic measurements shall be measured at Rref=25mm.08/04/2025ApprovedFALSE
- 6.04.03.01The reference field for the measurement shall be TBD (T/m).08/04/2025In ProcessFALSE
- 6.04.03.01The magnet bore field shall have a field homogeneity in the region of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in the region.owing multipole content:08/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01b2=1000008/04/2025ApprovedFALSE
- 6.04.03.01-2.71<b3<0.72, -2.13<a3<2.1108/04/2025ApprovedFALSE
- 6.04.03.01-3.58<b4<1.2, -0.47<a4<0.4608/04/2025ApprovedFALSE
- 6.04.03.01-0.53<b5<0.23, -0.29<a5<0.3508/04/2025ApprovedFALSE
- 6.04.03.01-1.75<b6<-1.12, -0.07<a6<0.0808/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-1.06<b10<-0.66, 0<a10<008/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-0.12<b14<-0.08, 0<a14<008/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025In ProcessFALSE
- 6.04.03.01The magnet shall be designed to specifically constrain the external fringe field TBD (Yes or No)08/04/2025In ProcessFALSE
- 6.04.03.01The magnet shall be designed to meet the following fringe field requirements TBD08/04/2025In ProcessFALSE
- 6.04.03.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
ESR-MAG-QROT:138
- 6.04.03.01The magnet shall be single function quadrupole with a normal field rotation.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation TBD08/04/2025In ProcessFALSE
- 6.04.03.01The physical magnet length shall be <1.38 m.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet pole tip radius shall be 67.9 mm.08/04/2025ReviewedFALSE
- 6.04.03.01The magnet shall be designed to fit within the following envelope. TBD08/04/2025In ProcessFALSE
- 6.04.03.01Magnet installation tolerances TBD08/04/2025In ProcessFALSE
- 6.04.03.01The magnet install center and install alignment must be within a translational value of +/-TBD (um) and a rotational alignment value of +/- TBD (mrad).08/04/2025In ProcessFALSE
- 6.04.03.01The magnet integrated grad field G shall be 24 T/m.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet to magnet field variability between magnets shall be less than 0.1%.08/04/2025ApprovedFALSE
- 6.04.03.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).08/04/2025In ProcessFALSE
- 6.04.03.01The field harmonic measurements shall be measured at Rref=25mm.08/04/2025ApprovedFALSE
- 6.04.03.01The reference field for the measurement shall be TBD (T/m).08/04/2025In ProcessFALSE
- 6.04.03.01The magnet bore field shall have a field homogeneity in the region of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in the region.owing multipole content:08/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01b2=1000008/04/2025ApprovedFALSE
- 6.04.03.01-2.71<b3<0.72, -2.13<a3<2.1108/04/2025ApprovedFALSE
- 6.04.03.01-3.58<b4<1.2, -0.47<a4<0.4608/04/2025ApprovedFALSE
- 6.04.03.01-0.53<b5<0.23, -0.29<a5<0.3508/04/2025ApprovedFALSE
- 6.04.03.01-1.75<b6<-1.12, -0.07<a6<0.0808/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-1.06<b10<-0.66, 0<a10<008/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-0.12<b14<-0.08, 0<a14<008/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025In ProcessFALSE
- 6.04.03.01The magnet shall be designed to specifically constrain the external fringe field TBD (Yes or No)08/04/2025In ProcessFALSE
- 6.04.03.01The magnet shall be designed to meet the following fringe field requirements TBD08/04/2025In ProcessFALSE
- 6.04.03.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
ESR-MAG-QROT:188
- 6.04.03.01The magnet shall be single function quadrupole with a normal field rotation.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation TBD08/04/2025In ProcessFALSE
- 6.04.03.01The physical magnet length shall be <1.88 m.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet pole tip radius shall be 67.9 mm.08/04/2025ReviewedFALSE
- 6.04.03.01The magnet shall be designed to fit within the following envelope. TBD08/04/2025In ProcessFALSE
- 6.04.03.01Magnet installation tolerances TBD08/04/2025In ProcessFALSE
- 6.04.03.01The magnet install center and install alignment must be within a translational value of +/-TBD (um) and a rotational alignment value of +/- TBD (mrad).08/04/2025In ProcessFALSE
- 6.04.03.01The magnet integrated grad field G shall be 24 T/m.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet to magnet field variability between magnets shall be less than 0.1%.08/04/2025ApprovedFALSE
- 6.04.03.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).08/04/2025In ProcessFALSE
- 6.04.03.01The field harmonic measurements shall be measured at Rref=25mm.08/04/2025ApprovedFALSE
- 6.04.03.01The reference field for the measurement shall be TBD (T/m).08/04/2025In ProcessFALSE
- 6.04.03.01The magnet bore field shall have a field homogeneity in the region of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in the region.owing multipole content:08/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01b2=1000008/04/2025ApprovedFALSE
- 6.04.03.01-2.71<b3<0.72, -2.13<a3<2.1108/04/2025ApprovedFALSE
- 6.04.03.01-3.58<b4<1.2, -0.47<a4<0.4608/04/2025ApprovedFALSE
- 6.04.03.01-0.53<b5<0.23, -0.29<a5<0.3508/04/2025ApprovedFALSE
- 6.04.03.01-1.75<b6<-1.12, -0.07<a6<0.0808/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-1.06<b10<-0.66, 0<a10<008/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-0.12<b14<-0.08, 0<a14<008/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025In ProcessFALSE
- 6.04.03.01The magnet shall be designed to specifically constrain the external fringe field TBD (Yes or No)08/04/2025In ProcessFALSE
- 6.04.03.01The magnet shall be designed to meet the following fringe field requirements TBD08/04/2025In ProcessFALSE
- 6.04.03.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
ESR-MAG-QROT:197
- 6.04.03.01The magnet shall be single function quadrupole with a normal field rotation.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation TBD08/04/2025In ProcessFALSE
- 6.04.03.01The physical magnet length shall be <1.97 m.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet pole tip radius shall be 67.9 mm.08/04/2025ReviewedFALSE
- 6.04.03.01The magnet shall be designed to fit within the following envelope. TBD08/04/2025In ProcessFALSE
- 6.04.03.01Magnet installation tolerances TBD08/04/2025In ProcessFALSE
- 6.04.03.01The magnet install center and install alignment must be within a translational value of +/-TBD (um) and a rotational alignment value of +/- TBD (mrad).08/04/2025In ProcessFALSE
- 6.04.03.01The magnet integrated grad field G shall be 24 T/m.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet to magnet field variability between magnets shall be less than 0.1%.08/04/2025ApprovedFALSE
- 6.04.03.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).08/04/2025In ProcessFALSE
- 6.04.03.01The field harmonic measurements shall be measured at Rref=25mm.08/04/2025ApprovedFALSE
- 6.04.03.01The reference field for the measurement shall be TBD (T/m).08/04/2025In ProcessFALSE
- 6.04.03.01The magnet bore field shall have a field homogeneity in the region of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in the region.owing multipole content:08/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01b2=1000008/04/2025ApprovedFALSE
- 6.04.03.01-2.71<b3<0.72, -2.13<a3<2.1108/04/2025ApprovedFALSE
- 6.04.03.01-3.58<b4<1.2, -0.47<a4<0.4608/04/2025ApprovedFALSE
- 6.04.03.01-0.53<b5<0.23, -0.29<a5<0.3508/04/2025ApprovedFALSE
- 6.04.03.01-1.75<b6<-1.12, -0.07<a6<0.0808/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-1.06<b10<-0.66, 0<a10<008/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-0.12<b14<-0.08, 0<a14<008/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025In ProcessFALSE
- 6.04.03.01The magnet shall be designed to specifically constrain the external fringe field TBD (Yes or No)08/04/2025In ProcessFALSE
- 6.04.03.01The magnet shall be designed to meet the following fringe field requirements TBD08/04/2025In ProcessFALSE
- 6.04.03.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
ESR-MAG-QROT:87
- 6.04.03.01The magnet shall be single function quadrupole with a normal field rotation.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation TBD08/04/2025In ProcessFALSE
- 6.04.03.01The physical magnet length shall be <0.87 m.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet pole tip radius shall be 67.9 mm.08/04/2025ReviewedFALSE
- 6.04.03.01The magnet shall be designed to fit within the following envelope. TBD08/04/2025In ProcessFALSE
- 6.04.03.01Magnet installation tolerances TBD08/04/2025In ProcessFALSE
- 6.04.03.01The magnet install center and install alignment must be within a translational value of +/-TBD (um) and a rotational alignment value of +/- TBD (mrad).08/04/2025In ProcessFALSE
- 6.04.03.01The magnet integrated grad field G shall be 24 T/m.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet to magnet field variability between magnets shall be less than 0.1%.08/04/2025ApprovedFALSE
- 6.04.03.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).08/04/2025In ProcessFALSE
- 6.04.03.01The field harmonic measurements shall be measured at Rref=25mm.08/04/2025ApprovedFALSE
- 6.04.03.01The reference field for the measurement shall be TBD (T/m).08/04/2025In ProcessFALSE
- 6.04.03.01The magnet bore field shall have a field homogeneity in the region of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in the region.owing multipole content:08/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01b2=1000008/04/2025ApprovedFALSE
- 6.04.03.01-2.71<b3<0.72, -2.13<a3<2.1108/04/2025ApprovedFALSE
- 6.04.03.01-3.58<b4<1.2, -0.47<a4<0.4608/04/2025ApprovedFALSE
- 6.04.03.01-0.53<b5<0.23, -0.29<a5<0.3508/04/2025ApprovedFALSE
- 6.04.03.01-1.75<b6<-1.12, -0.07<a6<0.0808/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-1.06<b10<-0.66, 0<a10<008/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-0.12<b14<-0.08, 0<a14<008/04/2025ApprovedFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01-, -08/04/2025Not ApplicableFALSE
- 6.04.03.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025In ProcessFALSE
- 6.04.03.01The magnet shall be designed to specifically constrain the external fringe field TBD (Yes or No)08/04/2025In ProcessFALSE
- 6.04.03.01The magnet shall be designed to meet the following fringe field requirements TBD08/04/2025In ProcessFALSE
- 6.04.03.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.03.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
ESR-MAG-QS:25
- 6.04.03.02The magnet shall be a single function quadrupole with a skew field rotation.08/04/2025ApprovedFALSE
- 6.04.03.02The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation TBD08/04/2025In ProcessFALSE
- 6.04.03.02The physical magnet length shall be <0.25 m.08/04/2025ApprovedFALSE
- 6.04.03.02The magnet model length shall be 0.25 m.08/04/2025ApprovedFALSE
- 6.04.03.02The magnet pole tip radius shall be 67.9 mm.08/04/2025ReviewedFALSE
- 6.04.03.02The magnet shall be designed to fit within the following envelope. TBD08/04/2025In ProcessFALSE
- 6.04.03.02Magnet installation tolerances TBD08/04/2025In ProcessFALSE
- 6.04.03.02The magnet install center and install alignment must be within a translational value of +/-TBD (um) and a rotational alignment value of +/- TBD (mrad).08/04/2025In ProcessFALSE
- 6.04.03.02The magnet integrated grad field G shall be 1.5 T/m.08/04/2025ReviewedFALSE
- 6.04.03.02The magnet to magnet field variability between magnets shall be less than 0.1%.08/04/2025ApprovedFALSE
- 6.04.03.02The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).08/04/2025In ProcessFALSE
- 6.04.03.02The harmonic reference radius at the design energy of 18 GeV shall be TBD (mm) .08/04/2025In ProcessFALSE
- 6.04.03.02The field at the reference radius at the design energy of 18 GeV shall be TBD (T/m) .08/04/2025In ProcessFALSE
- 6.04.03.02The magnet bore field shall require the following multipole content:08/04/2025In ProcessFALSE
- 6.04.03.02b1 < 1 (10^-4)08/04/2025In ProcessFALSE
- 6.04.03.02b2 = 10000 (10^-4)08/04/2025In ProcessFALSE
- 6.04.03.02b3 < 1 (10^-4)08/04/2025In ProcessFALSE
- 6.04.03.02b4 < 1 (10^-4)08/04/2025In ProcessFALSE
- 6.04.03.02b5 < 1 (10^-4)08/04/2025In ProcessFALSE
- 6.04.03.02b6 < 1 (10^-4)08/04/2025In ProcessFALSE
- 6.04.03.02b7 < 1 (10^-4)08/04/2025In ProcessFALSE
- 6.04.03.02b8 < 1 (10^-4)08/04/2025In ProcessFALSE
- 6.04.03.02b9 < 1 (10^-4)08/04/2025In ProcessFALSE
- 6.04.03.02b10 < 1 (10^-4)08/04/2025In ProcessFALSE
- 6.04.03.02b11 < 1 (10^-4)08/04/2025In ProcessFALSE
- 6.04.03.02b12 < 1 (10^-4)08/04/2025In ProcessFALSE
- 6.04.03.02b13 < 1 (10^-4)08/04/2025In ProcessFALSE
- 6.04.03.02b14 < 1 (10^-4)08/04/2025In ProcessFALSE
- 6.04.03.02b15 < 1 (10^-4)08/04/2025In ProcessFALSE
- 6.04.03.02b16 < 1 (10^-4)08/04/2025In ProcessFALSE
- 6.04.03.02The magnet shall not be designed to limit CrossTalk requirements.08/04/2025In ProcessFALSE
- 6.04.03.02The magnet shall be designed to specifically constrain the external fringe field TBD (Yes or No)08/04/2025In ProcessFALSE
- 6.04.03.02The magnet shall be designed to meet the following fringe field requirements TBD08/04/2025In ProcessFALSE
- 6.04.03.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.03.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
ESR-MAG-SX:24
- 6.04.02.02The magnet shall be a single function sextupole with a normal field rotation.08/04/2025ApprovedFALSE
- 6.04.02.02The magnet shall be designed to have a splitable pole toaccommodate the Vacuum beam pipe installation.08/04/2025ApprovedFALSE
- 6.04.02.02The physical magnet length shall be <0.32 m.08/04/2025ApprovedFALSE
- 6.04.02.02The effective magnet length shall be 0.24 m08/04/2025ApprovedFALSE
- 6.04.02.02The magnet install center and install alignment must be within atranslational value of +/-150(um) and a rotational alignment valueof +/-0.5 (mrad).08/04/2025ApprovedFALSE
- 6.04.02.02The magnet integrated grad field G shall be 97.2 T/m.08/04/2025ApprovedFALSE
- 6.04.02.02The magnetic field, center and alignment, within the magnet mustbe known to within a translational value of +/-50 (um) and arotational alignment value of +/-0.5 (mrad).08/04/2025ApprovedFALSE
- 6.04.02.02The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.08/04/2025ApprovedFALSE
- 6.04.02.02The harmonic reference radius and current shall be 25 (mm) and 161 (A).08/04/2025ApprovedFALSE
- 6.04.02.02The Field at the reference radius and current shall be 405 (T/m^2).08/04/2025ApprovedFALSE
- 6.04.02.02The magnet bore field shall require the following multipole content:08/04/2025ApprovedFALSE
- 6.04.02.02b3 = 10000 a3 = N/A08/04/2025ApprovedFALSE
- 6.04.02.02b4 = HV +/- 5.3 a4 = HV +/- 7.108/04/2025ApprovedFALSE
- 6.04.02.02b5 = HV +/- 1.6 a5 = HV +/- 1.908/04/2025ApprovedFALSE
- 6.04.02.02b6 = HV +/- 1.0 a6 = +/- 2.008/04/2025ApprovedFALSE
- 6.04.02.02b7 = HV +/- 1.0 a7 = +/- 0.808/04/2025ApprovedFALSE
- 6.04.02.02b8 = HV +/- 1.0 a8 = +/- 0.508/04/2025ApprovedFALSE
- 6.04.02.02b9 = HV +/- 1.0 a9 = +/- 0.508/04/2025ApprovedFALSE
- 6.04.02.02b10 = HV +/- 1.0 a10 = +/- 0.308/04/2025ApprovedFALSE
- 6.04.02.02b11 = HV +/- 1.0 a11 = +/- 0.2808/04/2025ApprovedFALSE
- 6.04.02.02b12 = HV +/- 1.0 a12 = +/- 0.2608/04/2025ApprovedFALSE
- 6.04.02.02b13 = HV +/- 1.0 a13 = +/- 0.2408/04/2025ApprovedFALSE
- 6.04.02.02b14 = HV +/- 1.0 a14 = +/- 0.2208/04/2025ApprovedFALSE
- 6.04.02.02b15 = HV +/- 1.0 a15 = +/- 0.2108/04/2025ApprovedFALSE
- 6.04.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.02The magnet shall be designed to specifically constrain the external fringe field to 10 Gauss at 40mm from the RCS beamline.08/04/2025ApprovedFALSE
- 6.04.02.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +X (C) to +X (C).08/04/2025In ProcessFALSE
- 6.04.02.02The magnet design and verification process shall ensure the finalmagnet will meet the reliability needs of the EIC over it plannedoperational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.02The magnet shall be designed to operate reliably given thecumulative radiation dose of TBD Rads it will experience over thelifetime of the EIC of >20 Years.08/04/2025In ProcessFALSE
ESR-MAG-SXT:57
- 6.04.02.02The magnet shall be a single function sextupole with a normal field rotation.06/02/2025ApprovedFALSE
- 6.04.02.02The magnet shall be designed to have a splitable yoke.06/02/2025ApprovedFALSE
- 6.04.02.02The maximum physical magnet length shall be 0.63 m.06/03/2025ApprovedFALSE
- 6.04.02.02The magnet pole tip radius shall be 49 mm.06/02/2025ApprovedFALSE
- 6.04.02.02The magnet shall be designed to fit within the following envelope.06/02/2025ApprovedFALSE
- 6.04.02.02The magnet maximum axial dimensions shall be X = 71.1 cm and Y = 92.3 cm.06/03/2025In ProcessFALSE
- 6.04.02.02The magnet install center and install alignment must be within a translational value of +/- 150 (um) and a rotational alignment value of +/- 0.3 (mrad).06/02/2025ApprovedFALSE
- 6.04.02.02The magnet integrated gradient field, G, shall be 230.9 T/m.06/02/2025ApprovedFALSE
- 6.04.02.02The magnet-to-magnet field variability between magnets shall be less than 0.1%.06/02/2025ReviewedFALSE
- 6.04.02.02The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- 50 (um) and a rotational alignment value of +/- 0.3 (mrad).06/02/2025ApprovedFALSE
- 6.04.02.02The magnet reference radius and current shall be 25 mm and 161 A.06/02/2025ApprovedFALSE
- 6.04.02.02The magnetic field at the reference radius and current shall be 405 T/m^2.06/02/2025ApprovedFALSE
- 6.04.02.02The integrated field over the length of the magnet at the reference radius shall meet the following harmonic multipole content:06/02/2025ApprovedFALSE
- 6.04.02.02b3 = 1000006/02/2025ApprovedFALSE
- 6.04.02.02-1.83 < b4 < 3.46 -7.10 < a4 < 7.1006/02/2025ApprovedFALSE
- 6.04.02.02-1.48 < b5 < 0.140, -1.90 < a5 < 1.9006/02/2025ApprovedFALSE
- 6.04.02.020.00 < b6 < 2.00, -2.00 < a6 < 2.0006/02/2025ApprovedFALSE
- 6.04.02.020.058 < b7 < 0.512, -0.80 < a7 < 0.8006/02/2025ApprovedFALSE
- 6.04.02.020.20 < b8 < 0.8, -0.5 < a8 < 0.506/02/2025ApprovedFALSE
- 6.04.02.02-2.50 < b9 < 2.50, -0.50 < a9 < 0.5006/02/2025ApprovedFALSE
- 6.04.02.020.40 < b10 < 0.60, -0.30 < a10 < 0.3006/02/2025ApprovedFALSE
- 6.04.02.020.42 < b11 < 0.58, -0.30 < a11 < 0.3006/02/2025ApprovedFALSE
- 6.04.02.020.44 < b12 < 0.56, -0.30 < a12 < 0.3006/02/2025ApprovedFALSE
- 6.04.02.020.46 < b13 < 0.54, -0.25 < a13 < 0.2506/02/2025ApprovedFALSE
- 6.04.02.020.48 < b14 < 0.52, -0.25 < a14 < 0.2506/02/2025ApprovedFALSE
- 6.04.02.02-1.00 < b15 < 1.00, -0.25 < a15 < 0.2506/02/2025ApprovedFALSE
- 6.04.02.02-0.50 < b16 < 0.50, -0.25 < a16 < 0.2506/02/2025ApprovedFALSE
- 6.04.02.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +X (C) to +X (C).07/02/2025In ProcessFALSE
- 6.04.02.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.06/02/2025ApprovedFALSE
- 6.04.02.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.06/02/2025ApprovedFALSE
ESR-MAG-TD:273
- 6.04.02.01nan08/04/2025ApprovedFALSE
- 6.04.02.01nan08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to fit within the following envelope:08/04/2025ApprovedFALSE
- 6.04.02.01nan08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be measured using the following multipole homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints:08/04/2025ApprovedFALSE
- 6.04.02.01nan08/04/2025ApprovedFALSE
- ESR-MAG-TD:273 EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
ESR-MAG-TD:380
- 6.04.02.01The magnet shall be a single function dipole with a vertical field.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall require trim coils capable of trimming the field within +/- TBD (%) of the Peak field.08/04/2025In ProcessFALSE
- 6.04.02.01The magnet shall require current taps for operation TBD ( Y or N)08/04/2025In ProcessFALSE
- 6.04.02.01The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation TBD08/04/2025In ProcessFALSE
- 6.04.02.01The physical magnet length shall be <3.8 m.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet model length shall be 3.8 m.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore gap and Width shall be 52 mm.08/04/2025ReviewedFALSE
- 6.04.02.01The magnet shall be designed to fit within the following envelope. TBD08/04/2025In ProcessFALSE
- 6.04.02.01Magnet installation tolerances TBD08/04/2025In ProcessFALSE
- 6.04.02.01The magnet install center and install alignment must be within a translational value of +/-TBD (um) and a rotational alignment value of +/- TBD (mrad).08/04/2025In ProcessFALSE
- 6.04.02.01The magnet integrated dipole field (B) shall be 1.2 T.m.08/04/2025ReviewedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 32.59 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAy required shall be 11.46 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet to magnet field variability between magnets shall be 1 %.08/04/2025ApprovedFALSE
- 6.04.02.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).08/04/2025In ProcessFALSE
- 6.04.02.01The field shall be measured at two locations as follows: Harmonic Measurements region 1; Rref1=TBD mm centered at (-TBD,TBD) mm, Harmonic Measurements region 2; Rref2=TBD mm centered at (TBD,TBD) mm.08/04/2025In ProcessFALSE
- 6.04.02.01The reference field for the different measurements shall be: Measurement 1; Bref1=TBD (T) in Region TBD, Region TBD , Measurement 2; Bref2=TBD (T) in Region TBD, Region TBD.08/04/2025In ProcessFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region TBD, of better than dB/B <10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1 & 2.08/04/2025ApprovedFALSE
- 6.04.02.01Region 1: b1 = 10000, Region 2: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01Region1: -4<b2<4, Region2: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025In ProcessFALSE
- 6.04.02.01The magnet shall be designed to specifically constrain the external fringe field TBD (Yes or No)08/04/2025In ProcessFALSE
- 6.04.02.01The magnet shall be designed to meet the following fringe field requirements TBD08/04/2025In ProcessFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
ESR-MAG-TD:550
- 6.04.02.01The magnet shall be a single function magnet with a vertical dipole field along the beam axis.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation TBD08/04/2025On HoldFALSE
- 6.04.02.01The physical magnet length shall be <TBD m.08/04/2025On HoldFALSE
- 6.04.02.01The magnet bore gap and Width shall be 48 mm.08/04/2025On HoldFALSE
- 6.04.02.01The magnet shall be designed to fit within the following envelope:08/04/2025On HoldFALSE
- 6.04.02.01Magnet installation volume tolerances TBD08/04/2025On HoldFALSE
- 6.04.02.01The magnet install center and install alignment must be within a translational value of +/-TBD (um) and a rotational alignment value of +/- TBD (mrad).08/04/2025On HoldFALSE
- 6.04.02.01The magnet integrated dipole field (B) shall be TBD T.m.08/04/2025On HoldFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be TBD mm.08/04/2025On HoldFALSE
- 6.04.02.01The magnet good field aperture dAy required shall be TBD mm.08/04/2025On HoldFALSE
- 6.04.02.01The magnet to magnet field variability between magnets shall be 5 %.08/04/2025On HoldFALSE
- 6.04.02.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).08/04/2025On HoldFALSE
- 6.04.02.01The harmonic reference radius at the design energy of 18 GeV shall be TBD (mm) .08/04/2025On HoldFALSE
- 6.04.02.01The Field at the reference radius at the design energy of 18 GeV shall be TBD (T) .08/04/2025On HoldFALSE
- 6.04.02.01The magnet bore field shall require the following multipole content:08/04/2025On HoldFALSE
- 6.04.02.01b1 = 10000 (10^-4)08/04/2025On HoldFALSE
- 6.04.02.01b2 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.02.01b3 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.02.01b4 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.02.01b5 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.02.01b6 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.02.01b7 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.02.01b8 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.02.01b9 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.02.01b10 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.02.01b11 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.02.01b12 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.02.01b13 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.02.01b14 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.02.01b15 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.02.01b16 < 100 (10^-4)08/04/2025On HoldFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025On HoldFALSE
- 6.04.02.01The magnet shall be designed to specifically constrain the external fringe field TBD (Yes or No)08/04/2025On HoldFALSE
- 6.04.02.01The magnet shall be designed to meet the following fringe field requirements TBD08/04/2025On HoldFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
ESR-MAG-TD:89
- 6.04.02.01nan08/04/2025ApprovedFALSE
- 6.04.02.01nan08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to fit within the following envelope:08/04/2025ApprovedFALSE
- 6.04.02.01nan08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be measured using the following multipole homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints:08/04/2025ApprovedFALSE
- 6.04.02.01nan08/04/2025ApprovedFALSE
- ESR-MAG-TD:89 EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
ESR-MAG-TH:20
- 6.04.03.02The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.05/16/2025ApprovedFALSE
- 6.04.03.02The maximum physical magnet length shall be 0.2 m.05/16/2025ApprovedFALSE
- 6.04.03.02The minimal magnet bore gap and width shall be 52 and 150 mm.05/16/2025ApprovedFALSE
- 6.04.03.02The magnet shall be designed to fit within the following envelope:05/16/2025ApprovedFALSE
- 6.04.03.02The maximum magnet axial dimensions shall be X = 43.2 cm and Y = 61 cm.05/16/2025ApprovedFALSE
- 6.04.03.02The magnet install center and install alignment must be within a translational value of +/-500 (um) and a rotational alignment value of +/-0.3 (mrad).05/16/2025ApprovedFALSE
- 6.04.03.02The magnet integrated dipole field (B) shall be 12 milli T-m.05/16/2025ApprovedFALSE
- 6.04.03.02The magnet good field aperture radius, dAx, shall be 24 mm.05/16/2025ApprovedFALSE
- 6.04.03.02The magnet good field aperture radius, dAy, shall be 15 mm.05/16/2025ApprovedFALSE
- 6.04.03.02The maximum magnet-to-magnet variability shall be 0.5%.05/16/2025ApprovedFALSE
- 6.04.03.02The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-500 (um) and a rotational alignment value of +/-0.3 (mrad).05/16/2025ApprovedFALSE
- 6.04.03.02The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.05/16/2025ApprovedFALSE
- 6.04.03.02The magnet field quality shall be measured within dAx and dAy radii at half and full field excitation.05/16/2025ApprovedFALSE
- 6.04.03.0205/16/2025Not ApplicableFALSE
- 6.04.03.02The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.05/16/2025ApprovedFALSE
- 6.04.03.02b1 = 1000005/16/2025ApprovedFALSE
- 6.04.03.02-5 < b2 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b3 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b4 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b5 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b6 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b7 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b8 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b9 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b10 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b11 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b12 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b13 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b14 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b15 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b16 < 505/16/2025ApprovedFALSE
- 6.04.03.02The magnet should not be designed to limit CrossTalk requirements.05/16/2025Not ApplicableFALSE
- 6.04.03.02The magnet shall be designed to specifically constrain the external fringe field to 10 Gauss at TBD mm from the magnet axis.05/16/2025In ProcessFALSE
- 6.04.03.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +X (C) to +X (C).07/02/2025In ProcessFALSE
- 6.04.03.02The magnet coils shall pass a Hi-Pot test at nominal operating conditions corresponding to TBD (V).06/30/2025In ProcessFALSE
- 6.04.03.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.05/16/2025ApprovedFALSE
- 6.04.03.02The magnet shall be designed with components capable to withstand a lifetime radiation dose of 1 MGy.05/16/2025ApprovedFALSE
ESR-MAG-THLA:60
- nan08/04/2025In ProcessFALSE
- 6.04.03.02The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.07/30/2025ApprovedFALSE
- 6.04.03.02The maximum physical magnet length shall be 0.6 m.07/28/2025ApprovedFALSE
- 6.04.03.02The minimal magnet bore gap and width shall be 208 and 208 (mm).07/28/2025ApprovedFALSE
- 6.04.03.02The magnet shall be designed to fit within the following envelope:07/28/2025ApprovedFALSE
- 6.04.03.02The maximum magnet axial dimensions shall be X = 45 (cm) and Y = 63 (cm).07/28/2025ApprovedFALSE
- 6.04.03.02The magnet install center and install alignment must be within a translational value of +/-500 (um) and a rotational alignment value of +/-0.3 (mrad).07/28/2025ApprovedFALSE
- 6.04.03.02The magnet integrated dipole field (B) shall be 12 (mT-m).07/28/2025ApprovedFALSE
- 6.04.03.02The magnet good field aperture radius, dAx, shall be 25 (mm).07/28/2025ApprovedFALSE
- 6.04.03.02The magnet good field aperture radius, dAy, shall be 25 (mm).07/28/2025ApprovedFALSE
- 6.04.03.02The maximum magnet-to-magnet variability shall be 0.5%.07/28/2025ApprovedFALSE
- 6.04.03.02The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-500 (um) and a rotational alignment value of +/-0.3 (mrad).07/28/2025ApprovedFALSE
- 6.04.03.02The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.07/28/2025ApprovedFALSE
- 6.04.03.02The magnet field quality shall be measured within dAx and dAy radii at half and full field excitation.07/28/2025ApprovedFALSE
- 6.04.03.0207/28/2025Not ApplicableFALSE
- 6.04.03.02The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.07/28/2025ApprovedFALSE
- 6.04.03.02b1 = 1000007/28/2025ApprovedFALSE
- 6.04.03.02-5 < b2 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b3 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b4 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b5 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b6 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b7 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b8 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b9 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b10 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b11 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b12 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b13 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b14 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b15 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b16 < 507/28/2025ApprovedFALSE
- 6.04.03.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +15 (C) to +50 (C).07/28/2025ApprovedFALSE
- 6.04.03.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.07/28/2025ApprovedFALSE
- 6.04.03.02The magnet shall be designed with components capable to withstand a lifetime radiation dose of 1 MGy.07/28/2025ApprovedFALSE
ESR-MAG-TV:20
- 6.04.03.02The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.05/16/2025ApprovedFALSE
- 6.04.03.02The maximum physical magnet length shall be 0.2 m.05/16/2025ApprovedFALSE
- 6.04.03.02The minimal magnet bore gap and width shall be 150 and 52 mm.05/16/2025ApprovedFALSE
- 6.04.03.02The magnet shall be designed to fit within the following envelope:05/16/2025ApprovedFALSE
- 6.04.03.02The maximum magnet axial dimensions shall be X = 61 cm and Y = 43.2 cm.05/16/2025ApprovedFALSE
- 6.04.03.02The magnet install center and install alignment must be within a translational value of +/- 500(um) and a rotational alignment value of +/-0.3 (mrad).05/16/2025ApprovedFALSE
- 6.04.03.02The magnet integrated dipole field (B) shall be 12 milli T-m.05/16/2025ApprovedFALSE
- 6.04.03.02The magnet good field aperture radius, dAx, shall be 24 mm.05/16/2025ApprovedFALSE
- 6.04.03.02The magnet good field aperture radius, dAy, shall be 15 mm.05/16/2025ApprovedFALSE
- 6.04.03.02The maximum magnet-to-magnet variability shall be 0.5%.05/16/2025ApprovedFALSE
- 6.04.03.02The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- 500 (um) and a rotational alignment value of +/-0.3 (mrad).05/16/2025ApprovedFALSE
- 6.04.03.02The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.05/16/2025ApprovedFALSE
- 6.04.03.02The magnet field quality shall be measured within dAx and dAy at half and full excitation.05/16/2025ApprovedFALSE
- 6.04.03.0205/16/2025Not ApplicableFALSE
- 6.04.03.02The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.05/16/2025ApprovedFALSE
- 6.04.03.02b1 = 1000005/16/2025ApprovedFALSE
- 6.04.03.02-5 < b2 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b16 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b3 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b4 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b5 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b6 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b7 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b8 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b9 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b10 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b11 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b12 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b13 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b14 < 505/16/2025ApprovedFALSE
- 6.04.03.02-5 < b15 < 505/16/2025ApprovedFALSE
- 6.04.03.02The magnet should not be designed to limit CrossTalk requirements.05/16/2025ApprovedFALSE
- 6.04.03.02The magnet shall be designed to specifically constrain the external fringe field to 10 Gauss at TBD mm from the magnet axis.05/16/2025In ProcessFALSE
- 6.04.03.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +X (C) to +X (C).07/02/2025In ProcessFALSE
- 6.04.03.02The magnet coils shall pass a Hi-Pot test at nominal operating conditions corresponding to TBD (V).06/30/2025In ProcessFALSE
- 6.04.03.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.05/16/2025ApprovedFALSE
- 6.04.03.02The magnet shall be designed with components capable to withstand a lifetime radiation dose of 1 MGy.05/16/2025ApprovedFALSE
ESR-MAG-TVLA:60
- 6.04.03.02The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.07/28/2025ApprovedFALSE
- 6.04.03.02The maximum physical magnet length shall be 0.6 m.07/28/2025ApprovedFALSE
- 6.04.03.02The minimal magnet bore gap and width shall be 208 and 208 (mm).07/28/2025ApprovedFALSE
- 6.04.03.02The magnet shall be designed to fit within the following envelope:07/28/2025ApprovedFALSE
- 6.04.03.02The maximum magnet axial dimensions shall be X = 63 (cm) and Y = 45 (cm).07/28/2025ApprovedFALSE
- 6.04.03.02The magnet install center and install alignment must be within a translational value of +/- 500(um) and a rotational alignment value of +/-0.3 (mrad).07/28/2025ApprovedFALSE
- 6.04.03.02The magnet integrated dipole field (B) shall be 12 (mT-m).07/28/2025ApprovedFALSE
- 6.04.03.02The magnet good field aperture radius, dAx, shall be 25 (mm).07/28/2025ApprovedFALSE
- 6.04.03.02The magnet good field aperture radius, dAy, shall be 25 (mm).07/28/2025ApprovedFALSE
- 6.04.03.02The maximum magnet-to-magnet variability shall be 0.5%.07/28/2025ApprovedFALSE
- 6.04.03.02The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- 500 (um) and a rotational alignment value of +/-0.3 (mrad).07/28/2025ApprovedFALSE
- 6.04.03.02The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.07/28/2025ApprovedFALSE
- 6.04.03.02The magnet field quality shall be measured within dAx and dAy at half and full excitation.07/28/2025ApprovedFALSE
- 6.04.03.0207/28/2025Not ApplicableFALSE
- 6.04.03.02The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.07/28/2025ApprovedFALSE
- 6.04.03.02b1 = 1000007/28/2025ApprovedFALSE
- 6.04.03.02-5 < b2 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b3 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b4 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b5 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b6 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b7 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b8 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b9 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b10 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b11 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b12 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b13 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b14 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b15 < 507/28/2025ApprovedFALSE
- 6.04.03.02-5 < b16 < 507/28/2025ApprovedFALSE
- 6.04.03.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +15 (C) to +50 (C).07/28/2025ApprovedFALSE
- 6.04.03.02The magnet shall be designed to specifically constrain the external fringe field to 10 Gauss at TBD mm from the magnet axis.07/28/2025ApprovedFALSE
- 6.04.03.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +X (C) to +X (C).07/28/2025ApprovedFALSE
- 6.04.03.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.07/28/2025ApprovedFALSE
- 6.04.03.02The magnet shall be designed with components capable to withstand a lifetime radiation dose of 1 MGy.07/28/2025ApprovedFALSE
ESR-PS : ESR Magnet Power Supply (WBS 6.04.04)
- ESR-PS EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04The ESR magnets shall be fed by a system of power supplies matched in voltage and maximum current to the specifications and requirements of the respective magnets05/16/2025ApprovedFALSE
- 6.04The ESR magnet power supplies shall be capable of providing the stability the ESR needs to operate05/16/2025ApprovedFALSE
ESR-PS-CORR_H : ESR Magnet Power Supply HCOR (WBS 6.04.04)
ESR-PS-CORR_SPNQ_H : ESR Horizontal Corrector (SPNQ_H) Power Supply (WBS 6.04.04)
ESR-PS-CORR_SPNQ_V : ESR Vertical Corrector (SPNQ_V) Power Supply (WBS 6.04.04)
ESR-PS-CORR_V : ESR Vertical Corrector (CORR_V) Power Supply (WBS 6.04.04)
ESR-PS-D13 : ESR Magnet Power Supply D13 (WBS 6.04.04)
ESR-PS-D2 : ESR Magnet Power Supply D2 (WBS 6.04.04)
ESR-PS-D_SR : ESR Dipole (D_SR) Power Supply (WBS 6.04.04)
ESR-PS-Q50 : ESR Magnet Power Supply Q50 (WBS 6.04.04)
ESR-PS-Q60 : ESR Magnet Power Supply Q60 (WBS 6.04.04)
ESR-PS-Q60x2 : ESR Quadrupole (Q60x2) Power Supply (WBS 6.04.04)
ESR-PS-Q80 : ESR Magnet Power Supply Q80 (WBS 6.04.04)
ESR-PS-Q_LA : ESR Quadrupole (Q_LA) Power Supply (WBS 6.04.04)
ESR-PS-Q_NARROW : ESR Quadrupole (Q_NARROW) Power Supply (WBS 6.04.04)
ESR-PS-Q_SKEW : ESR Quadrupole (Q_SKEW) Power Supply (WBS 6.04.04)
ESR-PS-QLS1 : ESR Magnet Power Supply QLS1 (WBS 6.04.04)
ESR-PS-QLS2 : ESR Magnet Power Supply QLS2 (WBS 6.04.04)
ESR-PS-QLS3 : ESR Magnet Power Supply QLS3 (WBS 6.04.04)
ESR-PS-QSS1 : ESR Magnet Power Supply QSS1 (WBS 6.04.04)
ESR-PS-QSS2 : ESR Magnet Power Supply QSS2 (WBS 6.04.04)
ESR-PS-QSS3 : ESR Magnet Power Supply QSS3 (WBS 6.04.04)
ESR-PS-QSS4 : ESR Magnet Power Supply QSS4 (WBS 6.04.04)
ESR-PS-QSS5 : ESR Magnet Power Supply QSS5 (WBS 6.04.04)
ESR-PS-SXT : ESR Magnet Power Supply SXT (WBS 6.04.04)
ESR-PS-SXT_LONG : ESR Sextupole (Long_SXT) Power Supply (WBS 6.04.04)
ESR-PS-D:550
- 6.04.04The magnet model being powered is esr-d:550.05/20/2025ReviewedFALSE
- 6.04.04The D:550 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]05/20/2025ReviewedFALSE
- 6.04.04The D:550 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 1600 V.05/20/2025ReviewedFALSE
- 6.04.04The D:550 power supply shall provide a DC current.05/20/2025ReviewedFALSE
- 6.04.04The D:550 power supply shall maintain a full-scale current stability of 10 ppm (RMS) over multiple hours.08/06/2025ReviewedFALSE
- 6.04.04The D:550 power supply shall maintain a long-term stability (1 second to 10 hours) of 10 A/s.05/20/2025ReviewedFALSE
- 6.04.04The D:550 power supply shall provide a minimal current setpoint resolution of 18 bits.05/20/2025ReviewedFALSE
- 6.04.04The D:550 power supply synchronization required between power supplies shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The D:550 power supply synchronization timing of synchronization shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The D:550 power supply shall limit current ripple (RMS) to 10 ppm of full-scale current in the 0–1 kHz range.05/20/2025ReviewedFALSE
- 6.04.04The D:550 power supply shall limit ripple to 200 ppm in the 1 kHz–8 kHz range.05/20/2025ReviewedFALSE
- 6.04.04The D:550 power supply shall limit ripple in the 8 kHz–40 kHz range per the specified by figure in P-ESR-PS-D:550.13.01.08/07/2025In ProcessFALSE
- 6.04.04nan08/07/2025In ProcessFALSE
- 6.04.04The D:550 power supply shall avoid ripple at resonant frequencies of TBD Hz.05/20/2025In ProcessFALSE
ESR-PS-ESRMainDipole
ESR-PS-FAST_CORR
ESR-PS-Q:120
- 6.04.04The magnet model being powered is esr-q:120.05/20/2025ReviewedFALSE
- 6.04.04The Q:120 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]05/20/2025ReviewedFALSE
- 6.04.04The Q:120 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 300 V.05/20/2025ReviewedFALSE
- 6.04.04The Q:120 power supply shall provide a DC current.05/20/2025ReviewedFALSE
- 6.04.04The Q:120 power supply shall maintain a full-scale current stability of 10 ppm (RMS) over multiple hours.08/06/2025ReviewedFALSE
- 6.04.04The Q:120 power supply shall maintain a long-term stability (1 second to 10 hours) of 10 A/s.05/20/2025ReviewedFALSE
- 6.04.04The Q:120 power supply shall provide a minimal current setpoint resolution of 18 bits.05/20/2025ReviewedFALSE
- 6.04.04The Q:120 power supply synchronization required between power supplies shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The Q:120 power supply synchronization timing of synchronization shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The Q:120 power supply shall limit current ripple (RMS) to 15 ppm of full-scale current in the 0–1 kHz range.08/06/2025ReviewedFALSE
- 6.04.04The Q:120 power supply shall limit current ripple (RMS) to 50 ppm of full scale current greater than 1kHz.05/20/2025ReviewedFALSE
- 6.04.04The Q:120 power supply shall avoid ripple at resonant frequencies of TBD Hz.05/20/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-Q:140
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-Q:161
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-Q:180
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-Q:50
- 6.04.04The magnet model being powered is esr-q:50.05/20/2025ReviewedFALSE
- 6.04.04The Q:50 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]05/20/2025ReviewedFALSE
- 6.04.04The Q:50 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 300 V.05/20/2025ReviewedFALSE
- 6.04.04The Q:50 power supply shall provide a DC current.05/20/2025ReviewedFALSE
- 6.04.04The Q:50 power supply shall maintain a full-scale current stability of 10 ppm (RMS) over multiple hours.08/06/2025ReviewedFALSE
- 6.04.04The Q:50 power supply shall maintain a long-term stability (1 second to 10 hours) of 10 A/s.05/20/2025ReviewedFALSE
- 6.04.04The Q:50 power supply shall provide a minimal current setpoint resolution of 18 bits.05/20/2025ReviewedFALSE
- 6.04.04The Q:50 power supply synchronization required between power supplies shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The Q:50 power supply synchronization timing of synchronization shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The Q:50 power supply shall limit current ripple (RMS) to 15 ppm of full-scale current in the 0–1 kHz range.08/06/2025ReviewedFALSE
- 6.04.04The Q:50 power supply shall limit current ripple (RMS) to 50 ppm of full scale current greater than 1kHz.05/20/2025ReviewedFALSE
- 6.04.04The Q:50 power supply shall avoid ripple at resonant frequencies of TBD Hz.05/20/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-Q:60
- 6.04.04The magnet model being powered is esr-q:60.05/20/2025ReviewedFALSE
- 6.04.04The Q:60 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]05/20/2025ReviewedFALSE
- 6.04.04The Q:60 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 300 V.05/20/2025ReviewedFALSE
- 6.04.04The Q:60 power supply shall provide a DC current.05/20/2025ReviewedFALSE
- 6.04.04The Q:60 power supply shall maintain a full-scale current stability of 10 ppm (RMS) over multiple hours.08/06/2025ReviewedFALSE
- 6.04.04The Q:60 power supply shall maintain a long-term stability (1 second to 10 hours) of 10 A/s.05/20/2025ReviewedFALSE
- 6.04.04The Q:60 power supply shall provide a minimal current setpoint resolution of 18 bits.05/20/2025ReviewedFALSE
- 6.04.04The Q:60 power supply synchronization required between power supplies shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The Q:60 power supply synchronization timing of synchronization shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The Q:60 power supply shall limit current ripple (RMS) to 15 ppm of full-scale current in the 0–1 kHz range.08/06/2025ReviewedFALSE
- 6.04.04The Q:60 power supply shall limit current ripple (RMS) to 50 ppm of full scale current greater than 1kHz.05/20/2025ReviewedFALSE
- 6.04.04The Q:60 power supply shall avoid ripple at resonant frequencies of TBD Hz.05/20/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-Q:80
- 6.04.04The magnet model being powered is esr-q:80.05/20/2025ReviewedFALSE
- 6.04.04The Q:80 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]05/20/2025ReviewedFALSE
- 6.04.04The Q:80 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 300 V.05/20/2025ReviewedFALSE
- 6.04.04The Q:80 power supply shall provide a DC current.05/20/2025ReviewedFALSE
- 6.04.04The Q:80 power supply shall maintain a full-scale current stability of 10 ppm (RMS) over multiple hours.08/06/2025ReviewedFALSE
- 6.04.04The Q:80 power supply shall maintain a long-term stability (1 second to 10 hours) of 10 A/s.05/20/2025ReviewedFALSE
- 6.04.04The Q:80 power supply shall provide a minimal current setpoint resolution of 18 bits.05/20/2025ReviewedFALSE
- 6.04.04The Q:80 power supply synchronization required between power supplies shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The Q:80 power supply synchronization timing of synchronization shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The Q:80 power supply shall limit current ripple (RMS) to 15 ppm of full-scale current in the 0–1 kHz range.08/06/2025ReviewedFALSE
- 6.04.04The Q:80 power supply shall limit current ripple (RMS) to 50 ppm of full scale current greater than 1kHz.05/20/2025ReviewedFALSE
- 6.04.04The Q:80 power supply shall avoid ripple at resonant frequencies of TBD Hz.05/20/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-QLA:120
- 6.04.04The magnet model being powered is esr-qla:120.05/20/2025ReviewedFALSE
- 6.04.04The QLA:120 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]05/20/2025ReviewedFALSE
- 6.04.04The QLA:120 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than TBD V.05/20/2025In ProcessFALSE
- 6.04.04The QLA:120 power supply shall provide a DC current.05/20/2025ReviewedFALSE
- 6.04.04The QLA:120 power supply shall maintain a full-scale current stability of 10 ppm (RMS) over multiple hours.08/06/2025ReviewedFALSE
- 6.04.04The QLA:120 power supply shall maintain a long-term stability (1 second to 10 hours) of 10 A/s.05/20/2025ReviewedFALSE
- 6.04.04The QLA:120 power supply shall provide a minimal current setpoint resolution of 18 bits.05/20/2025ReviewedFALSE
- 6.04.04The QLA:120 power supply synchronization required between power supplies shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The QLA:120 power supply synchronization timing of synchronization shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The QLA:120 power supply shall limit current ripple (RMS) to 15 ppm of full-scale current in the 0–1 kHz range.08/06/2025ReviewedFALSE
- 6.04.04The QLA:120 power supply shall limit current ripple (RMS) to 50 ppm of full scale current greater than 1kHz.05/20/2025ReviewedFALSE
- 6.04.04The QLA:120 power supply shall avoid ripple at resonant frequencies of TBD Hz.05/20/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-QROT:114
- 6.04.04The magnet model being powered is esr-qrot:114.05/20/2025ReviewedFALSE
- 6.04.04The QROT:114 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]05/20/2025ReviewedFALSE
- 6.04.04The QROT:114 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than TBD V.05/20/2025In ProcessFALSE
- 6.04.04The QROT:114 power supply shall provide a DC current.05/20/2025ReviewedFALSE
- 6.04.04The QROT:114 power supply shall maintain a full-scale current stability of 10 ppm (RMS) over multiple hours.08/06/2025ReviewedFALSE
- 6.04.04The QROT:114 power supply shall maintain a long-term stability (1 second to 10 hours) of 10 A/s.05/20/2025ReviewedFALSE
- 6.04.04The QROT:114 power supply shall provide a minimal current setpoint resolution of 18 bits.05/20/2025ReviewedFALSE
- 6.04.04The QROT:114 power supply synchronization required between power supplies shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The QROT:114 power supply synchronization timing of synchronization shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The QROT:114 power supply shall limit current ripple (RMS) to 15 ppm of full-scale current in the 0–1 kHz range.08/06/2025ReviewedFALSE
- 6.04.04The QROT:114 power supply shall limit current ripple (RMS) to 50 ppm of full scale current greater than 1kHz.05/20/2025ReviewedFALSE
- 6.04.04The QROT:114 power supply shall avoid ripple at resonant frequencies of TBD Hz.05/20/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-QROT:122
- 6.04.04The magnet model being powered is esr-qrot:122.05/20/2025ReviewedFALSE
- 6.04.04The QROT:122 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]05/20/2025ReviewedFALSE
- 6.04.04The QROT:122 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than TBD V.05/20/2025In ProcessFALSE
- 6.04.04The QROT:122 power supply shall provide a DC current.05/20/2025ReviewedFALSE
- 6.04.04The QROT:122 power supply shall maintain a full-scale current stability of 10 ppm (RMS) over multiple hours.08/06/2025ReviewedFALSE
- 6.04.04The QROT:122 power supply shall maintain a long-term stability (1 second to 10 hours) of 10 A/s.05/20/2025ReviewedFALSE
- 6.04.04The QROT:122 power supply shall provide a minimal current setpoint resolution of 18 bits.05/20/2025ReviewedFALSE
- 6.04.04The QROT:122 power supply synchronization required between power supplies shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The QROT:122 power supply synchronization timing of synchronization shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The QROT:122 power supply shall limit current ripple (RMS) to 15 ppm of full-scale current in the 0–1 kHz range.08/06/2025ReviewedFALSE
- 6.04.04The QROT:122 power supply shall limit current ripple (RMS) to 50 ppm of full scale current greater than 1kHz.05/20/2025ReviewedFALSE
- 6.04.04The QROT:122 power supply shall avoid ripple at resonant frequencies of TBD Hz.05/20/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-QROT:138
- 6.04.04The magnet model being powered is esr-qrot:138.05/20/2025ReviewedFALSE
- 6.04.04The QROT:138 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]05/20/2025ReviewedFALSE
- 6.04.04The QROT:138 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than TBD V.05/20/2025In ProcessFALSE
- 6.04.04The QROT:138 power supply shall provide a DC current.05/20/2025ReviewedFALSE
- 6.04.04The QROT:138 power supply shall maintain a full-scale current stability of 10 ppm (RMS) over multiple hours.08/06/2025ReviewedFALSE
- 6.04.04The QROT:138 power supply shall maintain a long-term stability (1 second to 10 hours) of 10 A/s.05/20/2025ReviewedFALSE
- 6.04.04The QROT:138 power supply shall provide a minimal current setpoint resolution of 18 bits.05/20/2025ReviewedFALSE
- 6.04.04The QROT:138 power supply synchronization required between power supplies shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The QROT:138 power supply synchronization timing of synchronization shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The QROT:138 power supply shall limit current ripple (RMS) to 15 ppm of full-scale current in the 0–1 kHz range.08/06/2025ReviewedFALSE
- 6.04.04The QROT:138 power supply shall limit current ripple (RMS) to 50 ppm of full scale current greater than 1kHz.05/20/2025ReviewedFALSE
- 6.04.04The QROT:138 power supply shall avoid ripple at resonant frequencies of TBD Hz.05/20/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-QROT:188
- 6.04.04The magnet model being powered is esr-qrot:188.05/20/2025ReviewedFALSE
- 6.04.04The QROT:188 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]05/20/2025ReviewedFALSE
- 6.04.04The QROT:188 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than TBD V.05/20/2025In ProcessFALSE
- 6.04.04The QROT:188 power supply shall provide a DC current.05/20/2025ReviewedFALSE
- 6.04.04The QROT:188 power supply shall maintain a full-scale current stability of 10 ppm (RMS) over multiple hours.08/06/2025ReviewedFALSE
- 6.04.04The QROT:188 power supply shall maintain a long-term stability (1 second to 10 hours) of 10 A/s.05/20/2025ReviewedFALSE
- 6.04.04The QROT:188 power supply shall provide a minimal current setpoint resolution of 18 bits.05/20/2025ReviewedFALSE
- 6.04.04The QROT:188 power supply synchronization required between power supplies shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The QROT:188 power supply synchronization timing of synchronization shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The QROT:188 power supply shall limit current ripple (RMS) to 15 ppm of full-scale current in the 0–1 kHz range.08/06/2025ReviewedFALSE
- 6.04.04The QROT:188 power supply shall limit current ripple (RMS) to 50 ppm of full scale current greater than 1kHz.05/20/2025ReviewedFALSE
- 6.04.04The QROT:188 power supply shall avoid ripple at resonant frequencies of TBD Hz.05/20/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-QROT:197
- 6.04.04The magnet model being powered is esr-qrot:197.05/20/2025ReviewedFALSE
- 6.04.04The QROT:197 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]05/20/2025ReviewedFALSE
- 6.04.04The QROT:197 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than TBD V.05/20/2025In ProcessFALSE
- 6.04.04The QROT:197 power supply shall provide a DC current.05/20/2025ReviewedFALSE
- 6.04.04The QROT:197 power supply shall maintain a full-scale current stability of 10 ppm (RMS) over multiple hours.08/06/2025ReviewedFALSE
- 6.04.04The QROT:197 power supply shall maintain a long-term stability (1 second to 10 hours) of 10 A/s.05/20/2025ReviewedFALSE
- 6.04.04The QROT:197 power supply shall provide a minimal current setpoint resolution of 18 bits.05/20/2025ReviewedFALSE
- 6.04.04The QROT:197 power supply synchronization required between power supplies shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The QROT:197 power supply synchronization timing of synchronization shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The QROT:197 power supply shall limit current ripple (RMS) to 15 ppm of full-scale current in the 0–1 kHz range.08/06/2025ReviewedFALSE
- 6.04.04The QROT:197 power supply shall limit current ripple (RMS) to 50 ppm of full scale current greater than 1kHz.05/20/2025ReviewedFALSE
- 6.04.04The QROT:197 power supply shall avoid ripple at resonant frequencies of TBD Hz.05/20/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-QROT:87
- 6.04.04The magnet model being powered is esr-qrot:87.05/20/2025ReviewedFALSE
- 6.04.04The QROT:87 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]05/20/2025ReviewedFALSE
- 6.04.04The QROT:87 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than TBD V.05/20/2025In ProcessFALSE
- 6.04.04The QROT:87 power supply shall provide a DC current.05/20/2025ReviewedFALSE
- 6.04.04The QROT:87 power supply shall maintain a full-scale current stability of 10 ppm (RMS) over multiple hours.08/06/2025ReviewedFALSE
- 6.04.04The QROT:87 power supply shall maintain a long-term stability (1 second to 10 hours) of 10 A/s.05/20/2025ReviewedFALSE
- 6.04.04The QROT:87 power supply shall provide a minimal current setpoint resolution of 18 bits.05/20/2025ReviewedFALSE
- 6.04.04The QROT:87 power supply synchronization required between power supplies shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The QROT:87 power supply synchronization timing of synchronization shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The QROT:87 power supply shall limit current ripple (RMS) to 15 ppm of full-scale current in the 0–1 kHz range.08/06/2025ReviewedFALSE
- 6.04.04The QROT:87 power supply shall limit current ripple (RMS) to 50 ppm of full scale current greater than 1kHz.05/20/2025ReviewedFALSE
- 6.04.04The QROT:87 power supply shall avoid ripple at resonant frequencies of TBD Hz.05/20/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-QS:25
- 6.04.04The magnet model being powered is esr-qs:25.05/20/2025ReviewedFALSE
- 6.04.04The QS:25 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]05/20/2025ReviewedFALSE
- 6.04.04The QS:25 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than TBD V.05/20/2025In ProcessFALSE
- 6.04.04The QS:25 power supply shall provide a DC current.05/20/2025ReviewedFALSE
- 6.04.04The QS:25 power supply shall maintain a full-scale current stability of 10 ppm (RMS) over multiple hours.08/06/2025ReviewedFALSE
- 6.04.04The QS:25 power supply shall maintain a long-term stability (1 second to 10 hours) of 10 A/s.05/20/2025ReviewedFALSE
- 6.04.04The QS:25 power supply shall provide a minimal current setpoint resolution of 18 bits.05/20/2025ReviewedFALSE
- 6.04.04The QS:25 power supply synchronization required between power supplies shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The QS:25 power supply synchronization timing of synchronization shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The QS:25 power supply shall limit current ripple (RMS) to 15 ppm of full-scale current in the 0–1 kHz range.08/06/2025ReviewedFALSE
- 6.04.04The QS:25 power supply shall limit current ripple (RMS) to 50 ppm of full scale current greater than 1kHz.05/20/2025ReviewedFALSE
- 6.04.04The QS:25 power supply shall avoid ripple at resonant frequencies of TBD Hz.05/20/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-SX:114
- 6.04.04The magnet model being powered is esr-sx:114.05/20/2025ReviewedFALSE
- 6.04.04The SX:114 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]05/20/2025ReviewedFALSE
- 6.04.04The SX:114 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 300 V.07/25/2025In ProcessFALSE
- 6.04.04The SX:114 power supply shall provide a DC current.05/20/2025ReviewedFALSE
- 6.04.04The SX:114 power supply shall maintain a full-scale current stability of 100 ppm (RMS) over multiple hours.05/20/2025ReviewedFALSE
- 6.04.04The SX:114 power supply shall maintain a long-term stability (1 second to 10 hours) of 100 A/s.05/20/2025ReviewedFALSE
- 6.04.04The SX:114 power supply shall provide a minimal current setpoint resolution of 18 bits.05/20/2025ReviewedFALSE
- 6.04.04The SX:114 power supply synchronization required between power supplies shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The SX:114 power supply synchronization timing of synchronization shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The SX:114 power supply shall limit current ripple (RMS) to 40 ppm of full-scale current in the 0–1 kHz range.08/06/2025ReviewedFALSE
- 6.04.04The SX:114 power supply shall limit current ripple (RMS) to 1000 ppm of full scale current greater than 1kHz.05/20/2025ReviewedFALSE
- 6.04.04The SX:114 power supply shall avoid ripple at resonant frequencies of TBD Hz.05/20/2025In ProcessFALSE
ESR-PS-SX:24
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-SX:57
- 6.04.04The magnet model being powered is esr-sx:57.05/20/2025ReviewedFALSE
- 6.04.04The SX:57 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]05/20/2025ReviewedFALSE
- 6.04.04The SX:57 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 300 V.07/25/2025In ProcessFALSE
- 6.04.04The SX:57 power supply shall provide a DC current.05/20/2025ReviewedFALSE
- 6.04.04The SX:57 power supply shall maintain a full-scale current stability of 100 ppm (RMS) over multiple hours.05/20/2025ReviewedFALSE
- 6.04.04The SX:57 power supply shall maintain a long-term stability (1 second to 10 hours) of 100 A/s.05/20/2025ReviewedFALSE
- 6.04.04The SX:57 power supply shall provide a minimal current setpoint resolution of 18 bits.05/20/2025ReviewedFALSE
- 6.04.04The SX:57 power supply synchronization required between power supplies shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The SX:57 power supply synchronization timing of synchronization shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The SX:57 power supply shall limit current ripple (RMS) to 40 ppm of full-scale current in the 0–1 kHz range.08/06/2025ReviewedFALSE
- 6.04.04The SX:57 power supply shall limit current ripple (RMS) to 1000 ppm of full scale current greater than 1kHz.05/20/2025ReviewedFALSE
- 6.04.04The SX:57 power supply shall avoid ripple at resonant frequencies of TBD Hz.05/20/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-TD:273
- 6.04.04The magnet model being powered is esr-td:273.05/20/2025ReviewedFALSE
- 6.04.04The TD:273 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]05/20/2025ReviewedFALSE
- 6.04.04The TD:273 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 1600 V.05/20/2025ReviewedFALSE
- 6.04.04The TD:273 power supply shall provide a DC current.05/20/2025ReviewedFALSE
- 6.04.04The TD:273 power supply shall maintain a full-scale current stability of 50 ppm (RMS) over multiple hours.08/06/2025ReviewedFALSE
- 6.04.04The TD:273 power supply shall maintain a long-term stability (1 second to 10 hours) of 50 A/s.05/20/2025ReviewedFALSE
- 6.04.04The TD:273 power supply shall provide a minimal current setpoint resolution of 18 bits.05/20/2025ReviewedFALSE
- 6.04.04The TD:273 power supply synchronization required between power supplies shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The TD:273 power supply synchronization timing of synchronization shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The TD:273 power supply shall limit current ripple (RMS) to 10 ppm of full-scale current in the 0–1 kHz range.05/20/2025ReviewedFALSE
- 6.04.04The TD:273 power supply shall limit ripple to 200 ppm in the 1 kHz–8 kHz range.05/20/2025ReviewedFALSE
- 6.04.04The TD:273 power supply shall limit ripple in the 8 kHz–40 kHz range per the specified by figure in P-ESR-PS-TD:273.13.01.08/07/2025In ProcessFALSE
- 6.04.04nan08/07/2025In ProcessFALSE
- 6.04.04The TD:273 power supply shall avoid ripple at resonant frequencies of TBD Hz.05/20/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-TD:380
- 6.04.04The magnet model being powered is esr-td:380.05/20/2025ReviewedFALSE
- 6.04.04The TD:380 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]05/20/2025ReviewedFALSE
- 6.04.04The TD:380 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 1600 V.05/20/2025ReviewedFALSE
- 6.04.04The TD:380 power supply shall provide a DC current.05/20/2025ReviewedFALSE
- 6.04.04The TD:380 power supply shall maintain a full-scale current stability of 50 ppm (RMS) over multiple hours.08/06/2025ReviewedFALSE
- 6.04.04The TD:380 power supply shall maintain a long-term stability (1 second to 10 hours) of 50 A/s.05/20/2025ReviewedFALSE
- 6.04.04The TD:380 power supply shall provide a minimal current setpoint resolution of 18 bits.05/20/2025ReviewedFALSE
- 6.04.04The TD:380 power supply synchronization timing of synchronization shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The TD:380 power supply shall limit current ripple (RMS) to 10 ppm of full-scale current in the 0–1 kHz range.05/20/2025ReviewedFALSE
- 6.04.04The TD:380 power supply shall limit ripple to 200 ppm in the 1 kHz–8 kHz range.05/20/2025ReviewedFALSE
- 6.04.04The TD:380 power supply shall limit ripple in the 8 kHz–40 kHz range per the specified by figure in P-ESR-PS-TD:380.13.01.08/07/2025In ProcessFALSE
- 6.04.04nan08/07/2025In ProcessFALSE
- 6.04.04The TD:380 power supply shall avoid ripple at resonant frequencies of TBD Hz.05/20/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-TD:550
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-TD:89
- 6.04.04The magnet model being powered is esr-td:89.05/20/2025ReviewedFALSE
- 6.04.04The TD:89 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]05/20/2025ReviewedFALSE
- 6.04.04The TD:89 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 1600 V.05/20/2025ReviewedFALSE
- 6.04.04The TD:89 power supply shall provide a DC current.05/20/2025ReviewedFALSE
- 6.04.04The TD:89 power supply shall maintain a full-scale current stability of 50 ppm (RMS) over multiple hours.08/06/2025ReviewedFALSE
- 6.04.04The TD:89 power supply shall maintain a long-term stability (1 second to 10 hours) of 50 A/s.05/20/2025ReviewedFALSE
- 6.04.04The TD:89 power supply shall provide a minimal current setpoint resolution of 18 bits.05/20/2025ReviewedFALSE
- 6.04.04The TD:89 power supply synchronization required between power supplies shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The TD:89 power supply synchronization timing of synchronization shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The TD:89 power supply shall limit current ripple (RMS) to 10 ppm of full-scale current in the 0–1 kHz range.05/20/2025ReviewedFALSE
- 6.04.04The TD:89 power supply shall limit ripple to 200 ppm in the 1 kHz–8 kHz range.05/20/2025ReviewedFALSE
- 6.04.04The TD:89 power supply shall limit ripple in the 8 kHz–40 kHz range per the specified by figure in P-ESR-PS-TD:89.13.01.08/07/2025In ProcessFALSE
- 6.04.04nan08/07/2025In ProcessFALSE
- 6.04.04The TD:89 power supply shall avoid ripple at resonant frequencies of TBD Hz.05/20/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-TH:20
- 6.04.04The magnet model being powered is esr-th:20.05/20/2025ReviewedFALSE
- 6.04.04The TH:20 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]05/20/2025ReviewedFALSE
- 6.04.04The TH:20 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than TBD V.05/20/2025In ProcessFALSE
- 6.04.04The TH:20 power supply shall provide a DC current.05/20/2025ReviewedFALSE
- 6.04.04The TH:20 power supply shall maintain a full-scale current stability of 100 ppm (RMS) over multiple hours.05/20/2025ReviewedFALSE
- 6.04.04The TH:20 power supply shall maintain a long-term stability (1 second to 10 hours) of TBD A/s.05/20/2025In ProcessFALSE
- 6.04.04The TH:20 power supply shall provide a minimal current setpoint resolution of 18 bits.05/20/2025ReviewedFALSE
- 6.04.04The TH:20 power supply synchronization required between power supplies shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The TH:20 power supply synchronization timing of synchronization shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The TH:20 power supply shall limit current ripple (RMS) to 100 ppm of full-scale current in the 0–1 kHz range.05/20/2025ReviewedFALSE
- 6.04.04The TH:20 power supply shall limit current ripple (RMS) to 1000 ppm of full scale current greater than 1kHz.05/20/2025ReviewedFALSE
- 6.04.04The TH:20 power supply shall avoid ripple at resonant frequencies of TBD Hz.05/20/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-PS-TV:20
- 6.04.04The magnet model being powered is esr-tv:20.05/20/2025ReviewedFALSE
- 6.04.04The TV:20 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]05/20/2025ReviewedFALSE
- 6.04.04The TV:20 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than TBD V.05/20/2025In ProcessFALSE
- 6.04.04The TV:20 power supply shall provide a DC current.05/20/2025ReviewedFALSE
- 6.04.04The TV:20 power supply shall maintain a full-scale current stability of 100 ppm (RMS) over multiple hours.05/20/2025ReviewedFALSE
- 6.04.04The TV:20 power supply shall maintain a long-term stability (1 second to 10 hours) of TBD A/s.05/20/2025In ProcessFALSE
- 6.04.04The TV:20 power supply shall provide a minimal current setpoint resolution of 18 bits.05/20/2025ReviewedFALSE
- 6.04.04The TV:20 power supply synchronization required between power supplies shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The TV:20 power supply synchronization timing of synchronization shall be TBD s.05/20/2025In ProcessFALSE
- 6.04.04The TV:20 power supply shall limit current ripple (RMS) to 100 ppm of full-scale current in the 0–1 kHz range.05/20/2025ReviewedFALSE
- 6.04.04The TV:20 power supply shall limit current ripple (RMS) to 1000 ppm of full scale current greater than 1kHz.05/20/2025ReviewedFALSE
- 6.04.04The TV:20 power supply shall avoid ripple at resonant frequencies of TBD Hz.05/20/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utilities for power supplies and its associated subsystems.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure Group shall provide reliable air conditioning and humidity control in the power supply buildings which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spacial location, thermal and weight details.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Infustructure Group shall provide design and funding for AC cable tray to contain the AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each power supply rack by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Water Group shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Support Group shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the power supply group design into each power supply rack.07/29/2025In ProcessFALSE
- 6.04.04additional workload to cover UPS distrubution panel?07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.07/29/2025In ProcessFALSE
- 6.04.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-XXX.02)07/29/2025In ProcessFALSE
- 6.04.04Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Power Supply status.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide output from the MPS interface the data which satisfies MPS design.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).07/29/2025In ProcessFALSE
- 6.04.04Reference related magnet interface document for Protection interface details inside of tunnel. (I-ESR-MAG-XXX.03)07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall define the design details including input connections and interlocks.07/29/2025In ProcessFALSE
- 6.04.04PASS Group shall provide dry set of contacts for pass interlocks to trip Power Supply when required.07/29/2025In ProcessFALSE
- 6.04.04Accelerator Installation Group shall install PASS interlock cables.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock interface and connection pinouts.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide PASS Interlock cable.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the zPSCs for all EIC Power Supplys.07/29/2025In ProcessFALSE
- 6.04.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC warm magnets.07/29/2025In ProcessFALSE
- 6.04.04Reference related controls interface document for Controls interface details inside of tunnel. (I-ESR-CNTRL-XXX.XX)07/29/2025In ProcessFALSE
ESR-VAC : ESR Vacuum (WBS 6.04.05)
- 6.04.05The stray field From any Vacuum equipment on the ESR beam shall have no adverse effect on the beam.05/16/2025ApprovedFALSE
- 6.04.05The magnetic permeability for vacuum equipment shall be approved by beam physics.05/16/2025ApprovedFALSE
- 6.04.05All hardware in vacuum shall be UHV compatible.05/16/2025ApprovedFALSE
- ESR-VAC EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.05The ESR vacuum chamber shall provide sufficient horizontal and vertical aperture to accommodate; a +/-15 sigma beam, where the vertical RMS beam size is based on the emittance of a fully coupled beam, plus an additional 10 mm horizontal and 5 mm vertical margin to account for expected orbit errors.05/16/2025ApprovedFALSE
- 6.04.05The typical (standard) vacuum chamber aperture shall be 80 x 36 mm.05/16/2025ApprovedFALSE
- 6.04.05Special aperture requirements and/or aperture file shall be provided by or approved by physics.05/16/2025ApprovedFALSE
- 6.04.05The dynamic pressure around the ESR shall be consistent with a beam gas lifetime of >10[hrs] with the design currents after an integrated beam current of 1000 [A.h].05/16/2025ApprovedFALSE
- 6.04.05There shall be no upper pressure limit as long as the average pressure is maintained.05/16/2025ApprovedFALSE
- 6.04.05The average vacuum level in the ESR Arc sections after conditioning (for 1000Ahrs) shall be <5x10-9 Torr.05/16/2025ApprovedFALSE
- 6.04.05On 15 m on each side (or one vacuum sector) of the SRF cavities shall be processed to class ISO 5.05/16/2025ApprovedFALSE
- 6.04.05There shall be no pressure bumps in the ESR exceeding (TBD)[Torr]05/16/2025In ProcessFALSE
- 6.04.05The ESR vacuum chamber and all its components shall be designed to withstand a total synchrotron radiation load of 10 MW, considering the uneven linear load particularly related to the super-bends.05/16/2025ApprovedFALSE
- 6.04.06.04The ESR shall have two synchrotron light monitors (SLM) and one X-ray pin hole monitor05/16/2025In ProcessFALSE
- 6.04.06.04The longitudinal bunch profile monitor shall have a turn-by-turn capability based on a single bunch in the fully filled bunch train.05/16/2025In ProcessFALSE
- 6.04.06.04TThe SLM systems shall measure the crabbing angle, longitudinal bunch parameters, H & V beam size and global coupling.05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure a crabbing angle of 12.5 mrad with accuracy of 10 %05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the Longitudinal bunch parameters with accuracy of TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the H & V beam size with accuracy of H=?? V=?? units05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the Global coupling with accuracy of TBD -05/16/2025In ProcessFALSE
- 6.04.06.04One SLM port shall be located downstream of a dipole in an appropriate location in the ESR, exact location not critical.05/16/2025In ProcessFALSE
- 6.04.06.04The second SLM port shall be located in a complimentary location in the lattice to ensure all the necessary SLM measurements can be made. TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The SLM light extraction port mirrors shall be good quality, having a surface finish better than 1/10 Lambda05/16/2025In ProcessFALSE
- 6.04.06.04The SLM light extraction port mirrors shall be water cooled to avoid image distortion.05/16/2025In ProcessFALSE
- 6.04.06.04There shall be an enclosed SL transport from the light extraction port to the SLM optical lab rooms. Length to be determined by the distance to optical lab room, should be minimized to reduce vibration problems.05/16/2025In ProcessFALSE
- 6.04.06.04The locations of the SLM optical lab rooms shall be TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The double-slit interferometer method shall be used to measure transverse beam size05/16/2025In ProcessFALSE
- 6.04.06.04The standard transverse resolution of an SLM using visible light shall be ~60 um05/16/2025In ProcessFALSE
- 6.04.06.04The resolution using the double-slit method shall equal to 10 um05/16/2025In ProcessFALSE
- 6.04.06.04A streak camera shall be used to measure the bunch longitudinal profiles05/16/2025In ProcessFALSE
- 6.04.06.04A position sensitive photo-diode will provide photon beam centroid information which shall supplement the orbit stability measurements by the BPMs05/16/2025In ProcessFALSE
- 6.04.06.04A GigE CCD/CMOS camera, externally triggerable with exposure times ranging from 10 nsec to 5 sec, shall be used to image the visible radiation05/16/2025In ProcessFALSE
- 6.04.06.04A commercially available gated camera with gate width of <2 nsec (compared to a minimum bunch spacing of 10 nsec) shall be used to detect injection oscillations and for beam studies.05/16/2025In ProcessFALSE
- 6.04.06.04The location of the X-ray pinhole monitoring system shall be TBD05/16/2025In ProcessFALSE
- 6.04.06.04The target resolution of the X-ray pin hole monitoring system shall be ~ 5 um (or as best that can be achieved with the machine parameters and commercial equipment) 5 um05/16/2025In ProcessFALSE
- 6.04.06.04The X-ray pin hole monitor shall provide independent measurement of the energy spread and horizontal/vertical emittance. H=V=15.4 nm05/16/2025In ProcessFALSE
- 6.04.06.04The X-ray pinhole photon beamline shall be equipped with gated cameras that will be employed to provide high resolution turn-by-turn profile measurements05/16/2025In ProcessFALSE
- 6.04.06.04Several different size pinholes sizes shall be incorporated to allow easy alignment and measurements at different beam currents and energies.05/16/2025In ProcessFALSE
- 6.04.06.04A pinhole assembly including tungsten slits shall provide sufficient resolution to precisely measure the beam size05/16/2025In ProcessFALSE
- 6.04.05The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.05/16/2025ApprovedFALSE
- 6.04.05The ESR vacuum chamber material shall be chosen such that the SR power can be intercepted by the arc chambers and in addition good radiation shielding will be provided to prevent damage to other components.05/16/2025ApprovedFALSE
- 6.04.05The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.05/16/2025ApprovedFALSE
- 6.04.05The impedance of the entire ESR vacuum system, including the interaction regions in IR06 and IR08, shall allow for the bunch intensities, beam currents, and bunch numbers contained in the Master Parameter Table (MPT). [Document#:EIC-SEG-RSI-005]05/16/2025ApprovedFALSE
- 6.04.05The vacuum system global impedance shall be less than the impedance budget as provided by accelerator physics.05/16/2025ApprovedFALSE
- 6.04.05The maximum beam excursion orbit shall be TBD05/16/2025In ProcessFALSE
ESR-INST : ESR Instrumentation System (WBS 6.04.06)
- ESR-INST EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.06The ESR instrumentation system shall include dual-plane Beam Position Monitors (BPMs) adjacent to each vertically focusing quadrupole. Provisions shall be made in the vacuum chamber design to install additional dual-plane BPMs at the horizontally focusing quadrupoles, if needed.05/16/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall provide dual plane (horizontal and vertical) beam positional measurements.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor (BPM) Pick-Ups (PU) shall be positioned in the following locations approved by physics as defined in the lattice:07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor (BPM) Pick-Ups (PU) mechanical and electrical center in the locations identified shall be:07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups housing shall have a +/- 10 (mrad) corresponding to +/- 0.6 (degree) roll tolerance with regards to BPM measurements in respect to the vacuum chamber.07/25/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups design shall be less than or equal to the allocated impedance and is within the accepted overall ESR impedance budget approved by physics. (replace with loss factor)07/25/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall fulfill resolution requirements over the horizontal and vertical beam position range with respect to its fiducials of +/- 3 (mm).07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall be designed to ensure the maximum temperatures of the components (due to heating by the beam) are acceptable for reliability and operations.07/30/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall be designed to be baked to 250 °C for UHV processing.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall be designed to operate reliability with capability to withstand a lifetime radiation dose of TBD MGy.07/25/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Button configuration will be mirror symmetric with respect to the mid-and center planes. Deviation from symmetry shall be such that corresponding BPM reading errors are less then 20 microns.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR BPM Pickup shall be designed to operate in an ambient temperature degree from X (C) to X (C).07/30/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups symmetrical configuration (postion between the four buttons and the relative to the fiducials on top of the button) shall be stable under the inference of the expected operational thermal changes to the extent that corresponding changes in the bpm reading deviate less than 20 µm.07/25/2025ApprovedFALSE
- 6.04.06The ESR BPMs shall have turn-by-turn orbit measurement capability based on a single, remotely selectable bunch out of the fully filled bunch train to enable injection optimization.05/16/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor (BPM) Electronics shall have the following capabilities defined for the low intensity pilot injection energies and high intensity collision energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]07/25/2025ReviewedFALSE
- 6.04.06.01The ESR Beam Position Monitor (BPM) Electronics shall have the following time resolutions for data refresh defined for the beam energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]:07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM Electronics shall have the following time resolutions for data logging defined for the beam energies:07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM Electronics shall have the following measurement resolutions defined for beam energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]:07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM Electronics shall be designed to operate reliability with capability to withstand a lifetime radiation dose of TBD MGy.07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM Electronics shall be designed to operate in an ambient temperature degree from X (C) to X (C).07/25/2025ReviewedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall provide dual plane (horizontal and vertical) beam positional measurements.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor (BPM) Pick-Ups (PU) shall be positioned in the following locations approved by physics as defined in the lattice:07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor (BPM) Pick-Ups (PU) mechanical and electrical center in the locations identified shall be:07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups housing shall have a +/- 10 (mrad) corresponding to +/- 0.6 (degree) roll tolerance with regards to BPM measurements in respect to the vacuum chamber.07/25/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups design shall be less than or equal to the allocated impedance and is within the accepted overall ESR impedance budget approved by physics. (replace with loss factor)07/25/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall fulfill resolution requirements over the horizontal and vertical beam position range with respect to its fiducials of +/- 3 (mm).07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall be designed to ensure the maximum temperatures of the components (due to heating by the beam) are acceptable for reliability and operations.07/30/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall be designed to be baked to 250 °C for UHV processing.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall be designed to operate reliability with capability to withstand a lifetime radiation dose of TBD MGy.07/25/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Button configuration will be mirror symmetric with respect to the mid-and center planes. Deviation from symmetry shall be such that corresponding BPM reading errors are less then 20 microns.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR BPM Pickup shall be designed to operate in an ambient temperature degree from X (C) to X (C).07/30/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups symmetrical configuration (postion between the four buttons and the relative to the fiducials on top of the button) shall be stable under the inference of the expected operational thermal changes to the extent that corresponding changes in the bpm reading deviate less than 20 µm.07/25/2025ApprovedFALSE
- 6.04.06The ESR instrumentation system shall include a beam current monitor to measure average beam current.05/16/2025ApprovedFALSE
- 6.04.06.02A DCCT shall measure the average beam current in the ESR.05/16/2025In ProcessFALSE
- 6.04.06.02The measurement resolution averaged over 1 sec shall be < 5 uA05/16/2025In ProcessFALSE
- 6.04.06.02The DCCT beamline device impedance shall be approved by beam physics.05/16/2025In ProcessFALSE
- 6.04.06.02Measurement drift tolerance (thermal effects) shall be ≤ 1 uA/K05/16/2025In ProcessFALSE
- 6.04.06.02The DCCT sensor in the ring shall operate in the temperature range of 15 to 35 degrees C05/16/2025In ProcessFALSE
- 6.04.06.02The range of average beam current to be measured shall be 0.156x10-3 to 2.5 A05/16/2025In ProcessFALSE
- 6.04.06.02The DCCT system shall have a remote controlled self calibration system05/16/2025In ProcessFALSE
- 6.04.06.02The DCCT system shall provide measurements with absolute accuracy of better than 0.2 %05/16/2025In ProcessFALSE
- 6.04.06.02The measured average current shall be archived at a rate of 10 Hz Hz05/16/2025In ProcessFALSE
- 6.04.06.02The measured average current shall be provided to users at a rate of 10 Hz05/16/2025In ProcessFALSE
- 6.04.06.02The DCCT sensor assembly in the ring shall be radiation resistant05/16/2025In ProcessFALSE
- 6.04.06The ESR instrumentation system shall include a system to measure individual bunch charges and bunch pattern.05/16/2025ApprovedFALSE
- 6.04.06.02A bunch pattern monitor shall be installed in the ESR to measure indiviual bunch charge with an accuracy 1 %05/16/2025In ProcessFALSE
- 6.04.06.02The Bunch pattern monitor shall be capable of measuring Bunch patterns ranging from a single bunch, to a filled ring with 1,160 bunches05/16/2025In ProcessFALSE
- 6.04.06The ESR instrumentation system shall include a system to measure transverse beam profiles.05/16/2025ApprovedFALSE
- 6.04.06.03The transverse feedback systems shall be capable of counteracting single-bunch rise times of 1 ms05/16/2025In ProcessFALSE
- 6.04.06.03Placeholder, Input needed TBD05/16/2025In ProcessFALSE
- 6.04.06.03Placeholder, Input needed TBD05/16/2025In ProcessFALSE
- 6.04.06The ESR instrumentation system shall include a system to measure longitudinal beam profiles.05/16/2025ApprovedFALSE
- 6.04.06.03The requirements for longitudinal feedback are ??? TBD05/16/2025In ProcessFALSE
- 6.04.06.03The Longitudinal feedback systems shall be capable of counteracting single-bunch rise times of 1 ms05/16/2025In ProcessFALSE
- 6.04.06The ESR longitudinal bunch profile monitor needs turn-by-turn capability based on a single bunch in the fully filled bunch train to allow timing and energy adjustment for injection optimization.05/16/2025ApprovedFALSE
- 6.04.06.03The requirements for longitudinal feedback are ??? TBD05/16/2025In ProcessFALSE
- 6.04.06.03The Longitudinal feedback systems shall be capable of counteracting single-bunch rise times of 1 ms05/16/2025In ProcessFALSE
- 6.04.06The ESR instrumentation system shall include system to measure H & V betatron tunes.05/16/2025ApprovedFALSE
- 6.04.06.03Stripline kickers (H & V) shall be used to excite the beam so tunes can be measured using turn-by-turn BPM data.05/16/2025In ProcessFALSE
- 6.04.06.03The magnitude of the kick required for the horizontal kicker shall be TBD units05/16/2025In ProcessFALSE
- 6.04.06.03The magnitude of the kick required for the vertical kicker shall be TBD units05/16/2025In ProcessFALSE
- 6.04.06.03The location of the tune meter kicker striplines in the ESR shall be TBD units05/16/2025In ProcessFALSE
- 6.04.06.03The kicker waveform (risetime and shape) requirements shall be TBD units05/16/2025In ProcessFALSE
- 6.04.06.03The impedance of the kicker beamline device shall be approved by beam Physics.05/16/2025In ProcessFALSE
- 6.04.06The ESR instrumentation system shall facilitate all required feedback systems (slow transverse, longitudinal and transverse bunch-by-bunch)05/16/2025ApprovedFALSE
- 6.07.02The slow orbit feedback correction output rate shall be 10 Hz05/16/2025In ProcessFALSE
- 6.07.02The slow orbit feedback BPM data averaging period shall be tbd -05/16/2025In ProcessFALSE
- 6.04.06.03The transverse slow feedback system bandwidth shall bs 10 Hz05/16/2025In ProcessFALSE
- 6.04.06The ESR instrumentation system shall include beam loss monitor system with detectors located only at select regions of the ESR.05/16/2025ApprovedFALSE
- 6.04.06.05BLM shall be needed to needed to protect sensitive equipment.05/16/2025In ProcessFALSE
- 6.04.06.05The number of BLM installed in the ESR shall be TBD ea05/16/2025In ProcessFALSE
- 6.04.06.05BLM shall be installed at the following locations in the ESR TBD05/16/2025In ProcessFALSE
- 6.04.06.05The sensitivity of the BLM detectors shall be TBD units?05/16/2025In ProcessFALSE
- 6.04.06.05Where possible existing RHIC BLM's can be relocated to identify ESR & HSR losses05/16/2025In ProcessFALSE
- 6.04.06.05The response time from loss detection to abort shall be TBD us05/16/2025In ProcessFALSE
ESR-INST-BCM : ESR Instrumentation Bunch Charge and Bunch Pattern Monitor (WBS 6.04.06)
- ESR-INST-BCM EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.06.02A bunch pattern monitor shall be installed in the ESR to measure indiviual bunch charge with an accuracy 1 %05/16/2025In ProcessFALSE
- 6.04.06.02The Bunch pattern monitor shall be capable of measuring Bunch patterns ranging from a single bunch, to a filled ring with 1,160 bunches05/16/2025In ProcessFALSE
ESR-INST-BLM : ESR Instrumentation Beam Loss Monitor (WBS 6.04.06)
- ESR-INST-BLM EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.06.05BLM shall be needed to needed to protect sensitive equipment.05/16/2025In ProcessFALSE
- 6.04.06.05The number of BLM installed in the ESR shall be TBD ea05/16/2025In ProcessFALSE
- 6.04.06.05BLM shall be installed at the following locations in the ESR TBD05/16/2025In ProcessFALSE
- 6.04.06.05The sensitivity of the BLM detectors shall be TBD units?05/16/2025In ProcessFALSE
- 6.04.06.05Where possible existing RHIC BLM's can be relocated to identify ESR & HSR losses05/16/2025In ProcessFALSE
- 6.04.06.05The response time from loss detection to abort shall be TBD us05/16/2025In ProcessFALSE
ESR-INST-BPM : ESR Instrumentation Beam Postion Monitor System (WBS 6.04.06)
ESR-INST-BPM-ELEC : ESR Instrumentation Beam Postion Monitor (WBS 6.04.06)
- 6.04.06.01The ESR BPM Electronics shall provide a turn-by-turn measurement which is defined as a range of 1 (us) to the revolution period of bunches combined.07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM Electronics for the first 20 BPMs after injection shall be capable of measuring individual bunch positions to minimize betatron oscillations of the newly injected bunches.07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM electronics shall be capable of delivering an array of at least 1024 consecutive single-turn position measurements at a continuous rate of 1 (Hz).07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM electronics shall be capable of delivering average beam orbit measurements at a continuous rate of 1 (Hz).07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM electronics shall be capable of delivering bunch-by-bunch beam orbit measurements at a continuous rate of 1 (Hz).07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM electronics shall be capable of bunch lifetime (1/e) measurements for the 2 non-colliding bunches during the 2.5 minute bunch duration.07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM electronics shall be capable of delivering fast orbit feedback measurements at a continuous rate of 1 (kHz).07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM electronics shall be capable of delivering slow orbit feedback measurements at a continuous rate of 1 (Hz).07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM electronics shall be capable of logging an array of at least TBD consecutive single-turn position measurements at a continuous rate of TBD Hz.07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM electronics shall be capable of logging average beam orbit measurements at a continuous rate of TBD Hz.07/25/2025In ProcessFALSE
- 6.04.06.01The ESR BPM electronics shall be capable of logging bunch-by-bunch beam orbit measurements at a continuous rate of TBD Hz.07/25/2025In ProcessFALSE
- 6.04.06.01The ESR BPM electronics shall be capable of logging bunch lifetime (1/e) measurements during the XXX minute bunch duration.07/25/2025In ProcessFALSE
- 6.04.06.01The ESR BPM electronics shall be capable of logging fast orbit feedback measurements at a continuous rate of TBD Hz.07/25/2025In ProcessFALSE
- 6.04.06.01The ESR BPM electronics shall be capable of logging slow orbit feedback measurements at a continuous rate of TBD Hz.07/25/2025In ProcessFALSE
- 6.04.06.01For pilot bunches the ESR BPM electronics shall have the following measurement resolutions defined for beam energies:07/25/2025ReviewedFALSE
- 6.04.06.01The BPM Electronics shall have a measurement range grater than or equal to 2 (nC).07/25/2025ReviewedFALSE
- 6.04.06.01The BPM Electronics shall have a single turn measurement horizontal and vertical resolution greater than or equal to (100um) TBD (RMS).07/25/2025In ProcessFALSE
- 6.04.06.01The BPM Electronics shall have an average orbit measurement resolution over 1 second greater than or equal to (30um) TBD (RMS).07/25/2025In ProcessFALSE
- 6.04.06.01The BPM Electronics shall have an reproducibility from run to run greater than or equal to (30um) TBD (RMS).07/25/2025In ProcessFALSE
- 6.04.06.01The BPM electronics measurement drift due to thermal variations (0.5hrs) shall be no greater than 50 (µm).07/25/2025ReviewedFALSE
- 6.04.06.01For newly injected low charge refill bunches the ESR BPM electronics shall have the following measurement resolutions defined for beam energies:07/25/2025ReviewedFALSE
- 6.04.06.01The BPM Electronics shall have a measurement range grater than or equal to 2 (nC).07/25/2025ReviewedFALSE
- 6.04.06.01The BPM Electronics shall have a single turn measurement horizontal and vertical resolution resolution greater than or equal to (H=50 V=10 um) TBD (RMS).07/25/2025In ProcessFALSE
- 6.04.06.01The BPM Electronics shall have an average orbit measurement resolution over 1 second greater than or equal to TBD (RMS).07/25/2025In ProcessFALSE
- 6.04.06.01The BPM Electronics shall have an reproducibility from run to run greater than or equal to TBD (RMS).07/25/2025In ProcessFALSE
- 6.04.06.01The BPM electronics measurement drift due to thermal variations (0.5hrs) shall be no greater than 10 (µm).07/25/2025ReviewedFALSE
- 6.04.06.01For newly injected high charge refill bunches the ESR BPM electronics shall have the following measurement resolutions defined for beam energies:07/25/2025ReviewedFALSE
- 6.04.06.01The BPM Electronics shall have a measurement range between 7 to 28 (nC).07/25/2025ReviewedFALSE
- 6.04.06.01The BPM Electronics shall have a single turn measurement horizontal and vertical resolution resolution greater than or equal to (H=50 V=10 um) TBD (RMS).07/25/2025In ProcessFALSE
- 6.04.06.01The BPM Electronics shall have an average orbit measurement resolution over 1 second greater than or equal to TBD (RMS).07/25/2025In ProcessFALSE
- 6.04.06.01The BPM Electronics shall have an reproducibility from run to run greater than or equal to TBD (RMS).07/25/2025In ProcessFALSE
- 6.04.06.01The BPM electronics measurement drift due to thermal variations (0.5hrs) shall be no greater than 5 (µm).07/25/2025ReviewedFALSE
- 6.04.06.01For stored beam low charge refill bunches the ESR BPM electronics shall have the following measurement resolutions defined for beam energies:07/25/2025ReviewedFALSE
- 6.04.06.01The BPM Electronics shall have a measurement range grater than or equal to 2 (nC).07/25/2025ReviewedFALSE
- 6.04.06.01The BPM Electronics shall have a single turn measurement horizontal and vertical resolution resolution greater than or equal to (30um) TBD (RMS).07/25/2025In ProcessFALSE
- 6.04.06.01The BPM Electronics shall have an average orbit measurement resolution over 1 second greater than or equal to TBD (RMS).07/25/2025In ProcessFALSE
- 6.04.06.01The BPM Electronics shall have an reproducibility from run to run greater than or equal to TBD (RMS).07/25/2025In ProcessFALSE
- 6.04.06.01The BPM electronics measurement drift due to thermal variations (0.5hrs) shall be no greater than 30 (µm).07/25/2025ReviewedFALSE
- 6.04.06.01For stored beam high charge refill bunches the ESR BPM electronics shall have the following measurement resolutions defined for beam energies:07/25/2025ReviewedFALSE
- 6.04.06.01The BPM Electronics shall have a measurement range between 7 to 28 (nC).07/25/2025ReviewedFALSE
- 6.04.06.01The BPM Electronics shall have a single turn measurement horizontal and vertical resolution resolution greater than or equal to (10 um) TBD (RMS).07/25/2025In ProcessFALSE
- 6.04.06.01The BPM Electronics shall have an average orbit measurement resolution over 1 second greater than or equal to (5um) TBD (RMS).07/25/2025In ProcessFALSE
- 6.04.06.01The BPM Electronics shall have an reproducibility from run to run greater than or equal to (5um) TBD (RMS).07/25/2025In ProcessFALSE
- 6.04.06.01The BPM electronics measurement drift due to thermal variations (0.5hrs) shall be no greater than 10 (µm).07/25/2025ReviewedFALSE
- ESR-INST-BPM-ELEC EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.06.01The ESR Beam Position Monitor (BPM) Electronics shall have the following capabilities defined for the low intensity pilot injection energies and high intensity collision energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]07/25/2025ReviewedFALSE
- 6.04.06.01The ESR Beam Position Monitor (BPM) Electronics shall have the following time resolutions for data refresh defined for the beam energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]:07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM Electronics shall have the following time resolutions for data logging defined for the beam energies:07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM Electronics shall have the following measurement resolutions defined for beam energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]:07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM Electronics shall be designed to operate reliability with capability to withstand a lifetime radiation dose of TBD MGy.07/25/2025ReviewedFALSE
- 6.04.06.01The ESR BPM Electronics shall be designed to operate in an ambient temperature degree from X (C) to X (C).07/25/2025ReviewedFALSE
ESR-INST-BPM-PU : ESR Instrumentation Beam Postion Monitor Pick-up (WBS 6.04.06)
- 6.04.06.01The ESR BPM PU shall be located at all vertically focusing quads, and at all quadrupoles within about +/- 130 meters around IP6.07/25/2025In ProcessFALSE
- 6.04.06.01The ESR BPM PU shall have dummy locations at all horizontal focusing quads.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR BPM PU mechanical center horizontal and vertical position alignment tolerances with respect to its fiducials shall be known to a certainty within +/- 100 (um).07/25/2025ApprovedFALSE
- 6.04.06.01The ESR BPM PU mechanical center change with respect to its fiducials shall be within +/- 20 (um) due to the expected thermal and vacuum variances.07/25/2025In ProcessFALSE
- ESR-INST-BPM-PU EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall provide dual plane (horizontal and vertical) beam positional measurements.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor (BPM) Pick-Ups (PU) shall be positioned in the following locations approved by physics as defined in the lattice:07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor (BPM) Pick-Ups (PU) mechanical and electrical center in the locations identified shall be:07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups housing shall have a +/- 10 (mrad) corresponding to +/- 0.6 (degree) roll tolerance with regards to BPM measurements in respect to the vacuum chamber.07/25/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups design shall be less than or equal to the allocated impedance and is within the accepted overall ESR impedance budget approved by physics. (replace with loss factor)07/25/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall fulfill resolution requirements over the horizontal and vertical beam position range with respect to its fiducials of +/- 3 (mm).07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall be designed to ensure the maximum temperatures of the components (due to heating by the beam) are acceptable for reliability and operations.07/30/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall be designed to be baked to 250 °C for UHV processing.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups shall be designed to operate reliability with capability to withstand a lifetime radiation dose of TBD MGy.07/25/2025In ProcessFALSE
- 6.04.06.01The ESR BPM Pickup shall be designed to operate in an ambient temperature degree from X (C) to X (C).07/30/2025In ProcessFALSE
- 6.04.06.01The ESR Beam Position Monitor Button configuration will be mirror symmetric with respect to the mid-and center planes. Deviation from symmetry shall be such that corresponding BPM reading errors are less then 20 microns.07/25/2025ApprovedFALSE
- 6.04.06.01The ESR Beam Position Monitor Pick-Ups symmetrical configuration (postion between the four buttons and the relative to the fiducials on top of the button) shall be stable under the inference of the expected operational thermal changes to the extent that corresponding changes in the bpm reading deviate less than 20 µm.07/25/2025ApprovedFALSE
ESR-INST-DCCT : ESR Instrumentation Current and Charge Monitor (WBS 6.04.06)
- ESR-INST-DCCT EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.06.02A DCCT shall measure the average beam current in the ESR.05/16/2025In ProcessFALSE
- 6.04.06.02The measurement resolution averaged over 1 sec shall be < 5 uA05/16/2025In ProcessFALSE
- 6.04.06.02The DCCT beamline device impedance shall be approved by beam physics.05/16/2025In ProcessFALSE
- 6.04.06.02Measurement drift tolerance (thermal effects) shall be ≤ 1 uA/K05/16/2025In ProcessFALSE
- 6.04.06.02The DCCT sensor in the ring shall operate in the temperature range of 15 to 35 degrees C05/16/2025In ProcessFALSE
- 6.04.06.02The range of average beam current to be measured shall be 0.156x10-3 to 2.5 A05/16/2025In ProcessFALSE
- 6.04.06.02The DCCT system shall have a remote controlled self calibration system05/16/2025In ProcessFALSE
- 6.04.06.02The DCCT system shall provide measurements with absolute accuracy of better than 0.2 %05/16/2025In ProcessFALSE
- 6.04.06.02The measured average current shall be provided to users at a rate of 10 Hz05/16/2025In ProcessFALSE
- 6.04.06.02The measured average current shall be archived at a rate of 10 Hz Hz05/16/2025In ProcessFALSE
- 6.04.06.02The DCCT sensor assembly in the ring shall be radiation resistant05/16/2025In ProcessFALSE
ESR-INST-LONGIFB : ESR Instrumentation Longitudinal Bunch-by-Bunch Feedback (WBS 6.04.06)
- ESR-INST-LONGIFB EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.06.03The requirements for longitudinal feedback are ??? TBD05/16/2025In ProcessFALSE
- 6.04.06.03The Longitudinal feedback systems shall be capable of counteracting single-bunch rise times of 1 ms05/16/2025In ProcessFALSE
ESR-INST-SLM : ESR Instrumentation Synchrotron Light Monitors (WBS 6.04.06)
- ESR-INST-SLM EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.06.04The ESR shall have two synchrotron light monitors (SLM) and one X-ray pin hole monitor05/16/2025In ProcessFALSE
- 6.04.06.04The longitudinal bunch profile monitor shall have a turn-by-turn capability based on a single bunch in the fully filled bunch train.05/16/2025In ProcessFALSE
- 6.04.06.04TThe SLM systems shall measure the crabbing angle, longitudinal bunch parameters, H & V beam size and global coupling.05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure a crabbing angle of 12.5 mrad with accuracy of 10 %05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the Longitudinal bunch parameters with accuracy of TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the H & V beam size with accuracy of H=?? V=?? units05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the Global coupling with accuracy of TBD -05/16/2025In ProcessFALSE
- 6.04.06.04One SLM port shall be located downstream of a dipole in an appropriate location in the ESR, exact location not critical.05/16/2025In ProcessFALSE
- 6.04.06.04The second SLM port shall be located in a complimentary location in the lattice to ensure all the necessary SLM measurements can be made. TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The SLM light extraction port mirrors shall be good quality, having a surface finish better than 1/10 Lambda05/16/2025In ProcessFALSE
- 6.04.06.04The SLM light extraction port mirrors shall be water cooled to avoid image distortion.05/16/2025In ProcessFALSE
- 6.04.06.04There shall be an enclosed SL transport from the light extraction port to the SLM optical lab rooms. Length to be determined by the distance to optical lab room, should be minimized to reduce vibration problems.05/16/2025In ProcessFALSE
- 6.04.06.04The locations of the SLM optical lab rooms shall be TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The double-slit interferometer method shall be used to measure transverse beam size05/16/2025In ProcessFALSE
- 6.04.06.04The standard transverse resolution of an SLM using visible light shall be ~60 um05/16/2025In ProcessFALSE
- 6.04.06.04The resolution using the double-slit method shall equal to 10 um05/16/2025In ProcessFALSE
- 6.04.06.04A streak camera shall be used to measure the bunch longitudinal profiles05/16/2025In ProcessFALSE
- 6.04.06.04A position sensitive photo-diode will provide photon beam centroid information which shall supplement the orbit stability measurements by the BPMs05/16/2025In ProcessFALSE
- 6.04.06.04A GigE CCD/CMOS camera, externally triggerable with exposure times ranging from 10 nsec to 5 sec, shall be used to image the visible radiation05/16/2025In ProcessFALSE
- 6.04.06.04A commercially available gated camera with gate width of <2 nsec (compared to a minimum bunch spacing of 10 nsec) shall be used to detect injection oscillations and for beam studies.05/16/2025In ProcessFALSE
- 6.04.06.04The location of the X-ray pinhole monitoring system shall be TBD05/16/2025In ProcessFALSE
- 6.04.06.04The target resolution of the X-ray pin hole monitoring system shall be ~ 5 um (or as best that can be achieved with the machine parameters and commercial equipment) 5 um05/16/2025In ProcessFALSE
- 6.04.06.04The X-ray pin hole monitor shall provide independent measurement of the energy spread and horizontal/vertical emittance. H=V=15.4 nm05/16/2025In ProcessFALSE
- 6.04.06.04The X-ray pinhole photon beamline shall be equipped with gated cameras that will be employed to provide high resolution turn-by-turn profile measurements05/16/2025In ProcessFALSE
- 6.04.06.04A pinhole assembly including tungsten slits shall provide sufficient resolution to precisely measure the beam size05/16/2025In ProcessFALSE
- 6.04.06.04Several different size pinholes sizes shall be incorporated to allow easy alignment and measurements at different beam currents and energies.05/16/2025In ProcessFALSE
ESR-INST-TMK : ESR Instrumentation Horizontal and Vertical Tune Meter Kicker (WBS 6.04.06)
- ESR-INST-TMK EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.06.03Stripline kickers (H & V) shall be used to excite the beam so tunes can be measured using turn-by-turn BPM data.05/16/2025In ProcessFALSE
- 6.04.06.03The magnitude of the kick required for the horizontal kicker shall be TBD units05/16/2025In ProcessFALSE
- 6.04.06.03The magnitude of the kick required for the vertical kicker shall be TBD units05/16/2025In ProcessFALSE
- 6.04.06.03The kicker waveform (risetime and shape) requirements shall be TBD units05/16/2025In ProcessFALSE
- 6.04.06.03The location of the tune meter kicker striplines in the ESR shall be TBD units05/16/2025In ProcessFALSE
- 6.04.06.03The impedance of the kicker beamline device shall be approved by beam Physics.05/16/2025In ProcessFALSE
ESR-INST-TRANSFB : ESR Instrumentation Transverse Bunch-by-Bunch Feedback (WBS 6.04.06)
- ESR-INST-TRANSFB EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.06.03Placeholder, Input needed TBD05/16/2025In ProcessFALSE
- 6.04.06.03The transverse feedback systems shall be capable of counteracting single-bunch rise times of 1 ms05/16/2025In ProcessFALSE
- 6.04.06.03Placeholder, Input needed TBD05/16/2025In ProcessFALSE
ESR-INST-TRANSSLFB : ESR Instrumentation Transverse Slow Feedback (WBS 6.04.06)
- ESR-INST-TRANSSLFB EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.06.03The transverse slow feedback system bandwidth shall bs 10 Hz05/16/2025In ProcessFALSE
ESR-MPS : ESR Machine Protection System (WBS 6.06.03.01)
- 6.06.03The ESR machine protection system (MPS) shall protect the detector and accelerator from permanent beam-induced or synchrotron radiation induced damage.05/16/2025ReviewedFALSE
- 6.06.03The ESR MPS shall consist of a set of inputs (beam loss monitors, detector background signals, manual operator input, quench protection system, ...), a electronic trigger and a fast abort system.05/16/2025ReviewedFALSE
- 6.06.03The ESR MPS thresholds at the input devices shall be set such that a sufficient safety margin remains until permanent damage occurs to machine or detector component.05/16/2025ReviewedFALSE
- 6.06.03The ESR electronic triggers shall be fast enough such that for any realistic failure scenario the beam loss or detector background occurring between loss or background detection and actual beam abort does not result in permanent damage.05/16/2025ReviewedFALSE
- 6.06.03The ESR electronic triggers shall be synchronized with the beam abort gap in the ESR bunch train such that the rising edge of the fast abort kicker pulse falls into the abort gap and all ESR bunches receive a sufficiently large kick to detect them safely past the extraction septum and into the fast beam dump.05/16/2025ReviewedFALSE
ESR-MPS-EXT_KICK : ESR Machine Protection System Single Turn Extraction Kicker (WBS 6.06.03.01)
- ESR-MPS-EXT_KICK EXTERNALSRequirements who's parents are in other sub-systems.
- 6.06.03.01The number of kickers shall be 605/16/2025In ProcessFALSE
- 6.06.03.01The Rise time shall be 900 ns05/16/2025In ProcessFALSE
- 6.06.03.01The Fall time shall be NA sec05/16/2025In ProcessFALSE
- 6.06.03.01The flat top time shall be 13 us05/16/2025In ProcessFALSE
- 6.06.03.01The waveshape shall be trap05/16/2025In ProcessFALSE
- 6.06.03.01The painting shall be vertical05/16/2025In ProcessFALSE
- 6.06.03.01The maximum field shall be 0.12 T05/16/2025In ProcessFALSE
- 6.06.03.01The total deflection shall be 16 mrad05/16/2025In ProcessFALSE
- 6.06.03.01The maximum current shall be TBD05/16/2025In ProcessFALSE
- 6.06.03.01The maximum voltage shall be TBD05/16/2025In ProcessFALSE
- 6.06.03.01The inductance with cable shall be TBD (uH)05/16/2025In ProcessFALSE
- 6.06.03.01The Max rep rate shall be 100 kV/pC05/16/2025In ProcessFALSE
- 6.06.03.01The flat top repeatability shall be NA Hz05/16/2025In ProcessFALSE
- 6.06.03.01The flatness of flat top/pulse form shall be 1 %05/16/2025In ProcessFALSE
- 6.06.03.01The beam abort kicker shall be tbd %05/16/2025In ProcessFALSE
- 6.06.03.01The cooling type shall be w (W,A)05/16/2025In ProcessFALSE
ESR-MPS-EXT_KICK-DUMP_BLK : ESR Machine Protection System Dump block (WBS 6.06.03.01)
- ESR-MPS-EXT_KICK-DUMP_BLK EXTERNALSRequirements who's parents are in other sub-systems.
- 6.06.03.01The diameter shall be 90 mm05/16/2025In ProcessFALSE
- 6.06.03.01The length shall be 2 m05/16/2025In ProcessFALSE
- 6.06.03.01The materials shall be C / Al / Cu05/16/2025In ProcessFALSE
- 6.06.03.01The energy deposited during abort shall be 320 kJ05/16/2025In ProcessFALSE
- 6.06.03.01The frequency of thermal cycle shall be 1 hour05/16/2025In ProcessFALSE
- 6.06.03.01The window thickness shall be tbd mm05/16/2025In ProcessFALSE
- 6.06.03.01The window material shall be tbd05/16/2025In ProcessFALSE
ESR-MPS-EXT_KICK-INST_BP : ESR Machine Protection System Beam Pipe & Instrumentation (WBS 6.06.03.01)
- ESR-MPS-EXT_KICK-INST_BP EXTERNALSRequirements who's parents are in other sub-systems.
- 6.06.03.01The Length shall be 50 m05/16/2025In ProcessFALSE
- 6.06.03.01The Internal diameter shall be 90 mm05/16/2025In ProcessFALSE
- 6.06.03.01The Temperature sensors shall be yes05/16/2025In ProcessFALSE
- 6.06.03.01The BPMs shall be 405/16/2025In ProcessFALSE
- 6.06.03.01The Correctors shall be 405/16/2025In ProcessFALSE
- 6.06.03.01The Corrector PS shall be tbd05/16/2025In ProcessFALSE
- 6.06.03.01The power supply accuracy shall be tbd05/16/2025In ProcessFALSE
- 6.06.03.01The Cooling / pumping shall be yes05/16/2025In ProcessFALSE
ESR-MPS-EXT_KICK-LAMBERT : ESR Machine Protection System Lamberton Magnet (WBS 6.06.03.01)
- ESR-MPS-EXT_KICK-LAMBERT EXTERNALSRequirements who's parents are in other sub-systems.
- 6.06.03.01The deflection shall be 2 mrad05/16/2025In ProcessFALSE
- 6.06.03.01The length shall be 1.2 m05/16/2025In ProcessFALSE
- 6.06.03.01The power supply shall be 1600 A05/16/2025In ProcessFALSE
- 6.06.03.01The power supply accuracy shall be TBD05/16/2025In ProcessFALSE
- 6.06.03.01The Y-chamber aperture shall be 36 mm05/16/2025In ProcessFALSE
- 6.06.03.01May need to add additional window requirements for other leg of Lambertson magnet TBD05/16/2025In ProcessFALSE
ESR-MPS-EXT_KICK-QUAD : ESR Machine Protection System Line Quads (WBS 6.06.03.01)
- ESR-MPS-EXT_KICK-QUAD EXTERNALSRequirements who's parents are in other sub-systems.
- 6.06.03.01The gradient shall be 17 T/m05/16/2025In ProcessFALSE
- 6.06.03.01The power supply shall be 1600 A05/16/2025In ProcessFALSE
- 6.06.03.01The power supply accuracy shall be TBD05/16/2025In ProcessFALSE
- 6.06.03.01The length shall be 70 cm05/16/2025In ProcessFALSE
- 6.06.03.01The aperture radius shall be 50 mm05/16/2025In ProcessFALSE
ESR-MPS-ABORT
- 6.06.03The ESR fast abort system shall receive its trigger from the ESR machine protection system.05/16/2025ReviewedFALSE
- 6.06.03The ESR fast abort system shall consist of a set of kickers, a septum magnet, and a beam dump05/16/2025ReviewedFALSE
- 6.06.03The ESR fast abort beam dump shall be external to the circulating beam line.05/16/2025ReviewedFALSE
- 6.06.03The ESR fast abort beam dump shall be installed in the stub tunnel in IR2.05/16/2025ReviewedFALSE
- 6.06.03The ESR beam dump shall be capable of absorbing the entire ESR beam (1160 bunches, 28 nC each, at 5 to 10 GeV, or 290 bunches, 11 nC each, at 18 GeV) without sustaining permanent damage.05/16/2025ReviewedFALSE
- 6.06.03The ESR beam dump shall be capable of absorbing the entire ESR beam at a rate of up to once every 20 minutes at 5-10 GeV, or once every 5 minutes at 18 GeV, respectively.05/16/2025ReviewedFALSE
- 6.06.03Radiation shielding shall be provided as part of the ESR beam dump assembly such that the radiation on the outer surface of the beam dump does not exceed TBD after TBD beam aborts at full intensity.05/16/2025ReviewedFALSE
- 6.06.03The ESR abort kickers shall be installed in the IR2 straight section, inside the IR2 experimental hall.05/16/2025ReviewedFALSE
- 6.06.03The rise time of the ESR abort kicker system shall not exceed 0.8 usec.05/16/2025ReviewedFALSE
- 6.06.03The ESR abort kicker pulse shall remain at or near its peak value for a duration of at least 13 usec.05/16/2025ReviewedFALSE
- 6.06.03The ESR abort kicker pulse amplitude shall be sufficiently large to detect the beam safely past the abort extraction septum.05/16/2025ReviewedFALSE
- 6.06.03A septum magnet shall separate the extracted ESR beam from the circulating ESR Beam.05/16/2025ReviewedFALSE
- 6.06.03The ESR septum magnet shall be designed such that the magnetic field in the circulating ESR beam enclosure does not compromise the circulating beam.05/16/2025In ProcessFALSE
- 6.06.03Between the ESR septum magnet and the ESR beam dump, DC magnets shall be installed to dilute the beam at the entrance face of the beam dump, such that at least a 50 percent safety margin on beam intensity is guaranteed before permanent damage to the beam dump occurs.05/16/2025ReviewedFALSE
- ESR-MPS-ABORT EXTERNALSRequirements who's parents are in other sub-systems.
- 6.06.03The ESR shall contain an Abort system to dump the beam.05/16/2025ApprovedFALSE
- 6.06.03.01The diameter shall be 90 mm05/16/2025In ProcessFALSE
- 6.06.03.01The length shall be 2 m05/16/2025In ProcessFALSE
- 6.06.03.01The materials shall be C / Al / Cu05/16/2025In ProcessFALSE
- 6.06.03.01The energy deposited during abort shall be 320 kJ05/16/2025In ProcessFALSE
- 6.06.03.01The frequency of thermal cycle shall be 1 hour05/16/2025In ProcessFALSE
- 6.06.03.01The window thickness shall be tbd mm05/16/2025In ProcessFALSE
- 6.06.03.01The window material shall be tbd05/16/2025In ProcessFALSE
- 6.06.03.01The Length shall be 50 m05/16/2025In ProcessFALSE
- 6.06.03.01The Internal diameter shall be 90 mm05/16/2025In ProcessFALSE
- 6.06.03.01The Temperature sensors shall be yes05/16/2025In ProcessFALSE
- 6.06.03.01The BPMs shall be 405/16/2025In ProcessFALSE
- 6.06.03.01The Correctors shall be 405/16/2025In ProcessFALSE
- 6.06.03.01The Corrector PS shall be tbd05/16/2025In ProcessFALSE
- 6.06.03.01The power supply accuracy shall be tbd05/16/2025In ProcessFALSE
- 6.06.03.01The Cooling / pumping shall be yes05/16/2025In ProcessFALSE
- 6.06.03.01The deflection shall be 2 mrad05/16/2025In ProcessFALSE
- 6.06.03.01The length shall be 1.2 m05/16/2025In ProcessFALSE
- 6.06.03.01The power supply shall be 1600 A05/16/2025In ProcessFALSE
- 6.06.03.01The power supply accuracy shall be TBD05/16/2025In ProcessFALSE
- 6.06.03.01The Y-chamber aperture shall be 36 mm05/16/2025In ProcessFALSE
- 6.06.03.01May need to add additional window requirements for other leg of Lambertson magnet TBD05/16/2025In ProcessFALSE
- 6.06.03.01The gradient shall be 17 T/m05/16/2025In ProcessFALSE
- 6.06.03.01The power supply shall be 1600 A05/16/2025In ProcessFALSE
- 6.06.03.01The power supply accuracy shall be TBD05/16/2025In ProcessFALSE
- 6.06.03.01The length shall be 70 cm05/16/2025In ProcessFALSE
- 6.06.03.01The aperture radius shall be 50 mm05/16/2025In ProcessFALSE
- 6.06.03.01The number of kickers shall be 605/16/2025In ProcessFALSE
- 6.06.03.01The Rise time shall be 900 ns05/16/2025In ProcessFALSE
- 6.06.03.01The Fall time shall be NA sec05/16/2025In ProcessFALSE
- 6.06.03.01The flat top time shall be 13 us05/16/2025In ProcessFALSE
- 6.06.03.01The waveshape shall be trap05/16/2025In ProcessFALSE
- 6.06.03.01The painting shall be vertical05/16/2025In ProcessFALSE
- 6.06.03.01The maximum field shall be 0.12 T05/16/2025In ProcessFALSE
- 6.06.03.01The total deflection shall be 16 mrad05/16/2025In ProcessFALSE
- 6.06.03.01The maximum current shall be TBD05/16/2025In ProcessFALSE
- 6.06.03.01The maximum voltage shall be TBD05/16/2025In ProcessFALSE
- 6.06.03.01The inductance with cable shall be TBD (uH)05/16/2025In ProcessFALSE
- 6.06.03.01The Max rep rate shall be 100 kV/pC05/16/2025In ProcessFALSE
- 6.06.03.01The flat top repeatability shall be NA Hz05/16/2025In ProcessFALSE
- 6.06.03.01The beam abort kicker shall be tbd %05/16/2025In ProcessFALSE
- 6.06.03.01The flatness of flat top/pulse form shall be 1 %05/16/2025In ProcessFALSE
- 6.06.03.01The cooling type shall be w (W,A)05/16/2025In ProcessFALSE
- 6.06.03The ESR Abort system shall contain a beam dump to safely absorb the energy of the stored beam in a controlled fashion.05/16/2025ApprovedFALSE
- 6.06.03.01The diameter shall be 90 mm05/16/2025In ProcessFALSE
- 6.06.03.01The length shall be 2 m05/16/2025In ProcessFALSE
- 6.06.03.01The materials shall be C / Al / Cu05/16/2025In ProcessFALSE
- 6.06.03.01The energy deposited during abort shall be 320 kJ05/16/2025In ProcessFALSE
- 6.06.03.01The window thickness shall be tbd mm05/16/2025In ProcessFALSE
- 6.06.03.01The frequency of thermal cycle shall be 1 hour05/16/2025In ProcessFALSE
- 6.06.03.01The window material shall be tbd05/16/2025In ProcessFALSE
ESR-COLL : ESR Momentum Collimator System (WBS 6.06.03.02)
- 6.06.03The ESR collimation system shall consist of betatron and momentum collimators.05/16/2025ReviewedFALSE
- 6.06.03The ESR collimation system shall reduce the electron-induced detector background such that the detector can operate safely and efficiently.05/16/2025ReviewedFALSE
- 6.06.03All ESR collimator stations shall be double-sided if available space allows. If only a single-sided collimator can be installed due to space constraints, a second collimator shall be installed on the same side as the first, at a betatron phase of 180 degrees from the first one.05/16/2025ReviewedFALSE
- 6.06.03The ESR Collimators shall be placed at accelerator locations suitable for back- ground reduction at 5, 10, and 18 GeV electron beam current.05/16/2025ReviewedFALSE
- 6.06.03The ESR Collimator jaws shall be independently and remotely movable over a range of TBD millimeters.05/16/2025In ProcessFALSE
- 6.06.03The ESR Collimator jaw material shall be chosen such that the collimator jaw can absorb TBD electrons at TBD energies without sustaining permanent damage.05/16/2025In ProcessFALSE
- 6.06.03All ESR collimator stations shall be equipped with appropriate beam loss monitors to protect the collimator jaws from excessive beam losses by aborting the beam via the Machine Protection System (MPS).05/16/2025ReviewedFALSE
- 6.06.03The ESR collimator jaws shall be wide enough to still be effective in the presence of beam orbit errors of TBD millimeters.05/16/2025In ProcessFALSE
- 6.06.03The ESR collimator jaws need to be replaceable within TBD days.05/16/2025In ProcessFALSE
- 6.06.03The ESR collimation stations shall be designed such as to minimize their beam impedance.05/16/2025ReviewedFALSE
- 6.06.03The ESR collimation stations shall be designed for operation in a vacuum system with pressure in the TBD nTorr range.05/16/2025In ProcessFALSE
- 6.06.03The total number of ESR collimators shall be minimized in order to keep their contribution to the accelerator impedance at a minimum.05/16/2025ReviewedFALSE
- ESR-COLL EXTERNALSRequirements who's parents are in other sub-systems.
- 6.06.03The ESR shall have a collimation system capable of ensuring a sufficiently low background at the detector.05/16/2025ApprovedFALSE
- 6.06.03.02The ESR Injection absorber shall be placed in Sector 12 adjacent to the Momentum collimator.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR Injection absorber shall be vertical.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall be 17.5 mm half gap. +/- 17.5 mm05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall be fixed.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR injection absorber has dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 550 W. 550 W05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be steady-state.05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be negligible. ~0 W05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 275 J (1 bunch). 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The thermal duty cycle shall be 2 Hz. 2 Hz05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 0.89 m05/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Al-Ti05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 1.1 m05/16/2025In ProcessFALSE
- 6.06.03.02The ESR detector absorbers shall be placed at Sector 5.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall be fixed.05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall be fixed.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall be tbd mm half gap. tbd mm05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall be tbd.05/16/2025In ProcessFALSE
- 6.06.03.02The detector absorbers have dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be negligible. ~0 W05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be tbd kW. tbd kW05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02The beam failure energy deposition shall be 275 J (1 bunch). 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The failure thermal duty cycle shall be intermittent.05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 21 mm05/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Cu05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 560-720 mm05/16/2025In ProcessFALSE
- 6.06.03.02The ESR momentum collimators shall be placed in Sector 12 adjacent to the Injection absorber.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR momentum collimator shall be horizontal.05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall be tbd mm half gap. tbd mm05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall be range shall be tbd.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR momentum collimator has dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 550 W. 550 W05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be steady-state.05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be negligible. ~0 W05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02The beam failure energy deposition shall be 275 J (1 bunch). 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The failure thermal duty cycle shall be intermittent.05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 0.89 m05/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Al-Ti05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 1.1 m05/16/2025In ProcessFALSE
- 6.06.03.02The ESR primary vertical collimator shall be placed at Sector 4.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR primary horizontal collimator shall be placed at Sector 2.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall range from 5 to 10 mm (half gap, +/- 10 µm).05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall range from 8 to 23 mm (half gap, +/- 10 µm).05/16/2025In ProcessFALSE
- 6.06.03.02The ESR primary collimators have dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 300 W on the tip of the jaw. 300 W05/16/2025In ProcessFALSE
- 6.06.03.02The duty cycle shall be steady state.05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be 2.5 kW (horizontal only). 2.5 kW05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02Jaw angle in position relative to beam axshall be 1 mrad05/16/2025In ProcessFALSE
- 6.06.03.02The beam failure energy deposition shall be 275 J (1 bunch) on the tip of the jaw. 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The failure thermal duty cycle shall be intermittent.05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 180 mm05/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Mo-Gr05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 762-995 mm05/16/2025In ProcessFALSE
- 6.06.03.02The ESR secondary vertical collimators shall be placed at Sector 4.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR secondary horizontal collimators shall be placed at Sector 2.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall range from 6 to 11 mm (half gap, +/- tbd). tbd mm05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall range from 9 to 25 mm (half gap, +/- tbd).05/16/2025In ProcessFALSE
- 6.06.03.02The ESR collimators have dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 300 W. 300 W05/16/2025In ProcessFALSE
- 6.06.03.02The duty cycle shall be steady state.05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be 2.5 kW (horizontal only). 2.5 kW05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02Jaw angle in position relative to beam axshall be 1 mrad05/16/2025In ProcessFALSE
- 6.06.03.02The beam failure energy deposition shall be 275 J (1 bunch). 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The failure thermal duty cycle shall be intermittent.05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Mo-Gr05/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 180 mm05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 762-995 mm05/16/2025In ProcessFALSE
- 6.06.03The ESR shall have a collimation system capable protecting all machine elements in case of failure.05/16/2025ApprovedFALSE
- 6.06.03.02The ESR Injection absorber shall be placed in Sector 12 adjacent to the Momentum collimator.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR Injection absorber shall be vertical.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall be 17.5 mm half gap. +/- 17.5 mm05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall be fixed.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR injection absorber has dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 550 W. 550 W05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be steady-state.05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be negligible. ~0 W05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 275 J (1 bunch). 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The thermal duty cycle shall be 2 Hz. 2 Hz05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 0.89 m05/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Al-Ti05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 1.1 m05/16/2025In ProcessFALSE
- 6.06.03.02The ESR detector absorbers shall be placed at Sector 5.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall be fixed.05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall be fixed.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall be tbd mm half gap. tbd mm05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall be tbd.05/16/2025In ProcessFALSE
- 6.06.03.02The detector absorbers have dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be negligible. ~0 W05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be tbd kW. tbd kW05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02The beam failure energy deposition shall be 275 J (1 bunch). 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The failure thermal duty cycle shall be intermittent.05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 21 mm05/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Cu05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 560-720 mm05/16/2025In ProcessFALSE
- 6.06.03.02The ESR momentum collimators shall be placed in Sector 12 adjacent to the Injection absorber.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR momentum collimator shall be horizontal.05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall be tbd mm half gap. tbd mm05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall be range shall be tbd.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR momentum collimator has dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 550 W. 550 W05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be steady-state.05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be negligible. ~0 W05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02The beam failure energy deposition shall be 275 J (1 bunch). 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The failure thermal duty cycle shall be intermittent.05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 0.89 m05/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Al-Ti05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 1.1 m05/16/2025In ProcessFALSE
- 6.06.03.02The ESR primary vertical collimator shall be placed at Sector 4.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR primary horizontal collimator shall be placed at Sector 2.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall range from 5 to 10 mm (half gap, +/- 10 µm).05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall range from 8 to 23 mm (half gap, +/- 10 µm).05/16/2025In ProcessFALSE
- 6.06.03.02The ESR primary collimators have dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 300 W on the tip of the jaw. 300 W05/16/2025In ProcessFALSE
- 6.06.03.02The duty cycle shall be steady state.05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be 2.5 kW (horizontal only). 2.5 kW05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02Jaw angle in position relative to beam axshall be 1 mrad05/16/2025In ProcessFALSE
- 6.06.03.02The beam failure energy deposition shall be 275 J (1 bunch) on the tip of the jaw. 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The failure thermal duty cycle shall be intermittent.05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 180 mm05/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Mo-Gr05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 762-995 mm05/16/2025In ProcessFALSE
- 6.06.03.02The ESR secondary vertical collimators shall be placed at Sector 4.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR secondary horizontal collimators shall be placed at Sector 2.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall range from 6 to 11 mm (half gap, +/- tbd). tbd mm05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall range from 9 to 25 mm (half gap, +/- tbd).05/16/2025In ProcessFALSE
- 6.06.03.02The ESR collimators have dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 300 W. 300 W05/16/2025In ProcessFALSE
- 6.06.03.02The duty cycle shall be steady state.05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be 2.5 kW (horizontal only). 2.5 kW05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02Jaw angle in position relative to beam axshall be 1 mrad05/16/2025In ProcessFALSE
- 6.06.03.02The beam failure energy deposition shall be 275 J (1 bunch). 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The failure thermal duty cycle shall be intermittent.05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Mo-Gr05/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 180 mm05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 762-995 mm05/16/2025In ProcessFALSE
ESR-COLL-ABS : ESR Momentum Collimator Injection Absorbers (WBS 6.06.03.02)
- ESR-COLL-ABS EXTERNALSRequirements who's parents are in other sub-systems.
- 6.06.03.02The ESR Injection absorber shall be placed in Sector 12 adjacent to the Momentum collimator.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR Injection absorber shall be vertical.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall be 17.5 mm half gap. +/- 17.5 mm05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall be fixed.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR injection absorber has dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 550 W. 550 W05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be steady-state.05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be negligible. ~0 W05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 275 J (1 bunch). 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The thermal duty cycle shall be 2 Hz. 2 Hz05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 0.89 m05/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Al-Ti05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 1.1 m05/16/2025In ProcessFALSE
ESR-COLL-DET : ESR Momentum Collimator Detector Absorbers (WBS 6.06.03.02)
- ESR-COLL-DET EXTERNALSRequirements who's parents are in other sub-systems.
- 6.06.03.02The ESR detector absorbers shall be placed at Sector 5.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall be fixed.05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall be fixed.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall be tbd mm half gap. tbd mm05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall be tbd.05/16/2025In ProcessFALSE
- 6.06.03.02The detector absorbers have dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be negligible. ~0 W05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be tbd kW. tbd kW05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02The beam failure energy deposition shall be 275 J (1 bunch). 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The failure thermal duty cycle shall be intermittent.05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 21 mm05/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Cu05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 560-720 mm05/16/2025In ProcessFALSE
ESR-COLL-MOM : ESR Momentum Collimator (WBS 6.06.03.02)
- ESR-COLL-MOM EXTERNALSRequirements who's parents are in other sub-systems.
- 6.06.03.02The ESR momentum collimators shall be placed in Sector 12 adjacent to the Injection absorber.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR momentum collimator shall be horizontal.05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall be tbd mm half gap. tbd mm05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall be range shall be tbd.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR momentum collimator has dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 550 W. 550 W05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be steady-state.05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be negligible. ~0 W05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02The beam failure energy deposition shall be 275 J (1 bunch). 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The failure thermal duty cycle shall be intermittent.05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 0.89 m05/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Al-Ti05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 1.1 m05/16/2025In ProcessFALSE
ESR-COLL-PRIM : ESR Momentum Collimator Primary Collimators (WBS 6.06.03.02)
- ESR-COLL-PRIM EXTERNALSRequirements who's parents are in other sub-systems.
- 6.06.03.02The ESR primary vertical collimator shall be placed at Sector 4.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR primary horizontal collimator shall be placed at Sector 2.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall range from 5 to 10 mm (half gap, +/- 10 µm).05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall range from 8 to 23 mm (half gap, +/- 10 µm).05/16/2025In ProcessFALSE
- 6.06.03.02The ESR primary collimators have dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 300 W on the tip of the jaw. 300 W05/16/2025In ProcessFALSE
- 6.06.03.02The duty cycle shall be steady state.05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be 2.5 kW (horizontal only). 2.5 kW05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02Jaw angle in position relative to beam axshall be 1 mrad05/16/2025In ProcessFALSE
- 6.06.03.02The beam failure energy deposition shall be 275 J (1 bunch) on the tip of the jaw. 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The failure thermal duty cycle shall be intermittent.05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 180 mm05/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Mo-Gr05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 762-995 mm05/16/2025In ProcessFALSE
ESR-COLL-SECDRY : ESR Momentum Collimator Secondary Collimators (WBS 6.06.03.02)
- ESR-COLL-SECDRY EXTERNALSRequirements who's parents are in other sub-systems.
- 6.06.03.02The ESR secondary vertical collimators shall be placed at Sector 4.05/16/2025In ProcessFALSE
- 6.06.03.02The ESR secondary horizontal collimators shall be placed at Sector 2.05/16/2025In ProcessFALSE
- 6.06.03.02The vertical aperture shall range from 6 to 11 mm (half gap, +/- tbd). tbd mm05/16/2025In ProcessFALSE
- 6.06.03.02The horizontal aperture shall range from 9 to 25 mm (half gap, +/- tbd).05/16/2025In ProcessFALSE
- 6.06.03.02The ESR collimators have dual jaws.05/16/2025In ProcessFALSE
- 6.06.03.02The aperture shall be centered on the beam axshall be.05/16/2025In ProcessFALSE
- 6.06.03.02The beam energy deposition shall be 300 W. 300 W05/16/2025In ProcessFALSE
- 6.06.03.02The duty cycle shall be steady state.05/16/2025In ProcessFALSE
- 6.06.03.02The energy deposition from synchrotron radiation shall be 2.5 kW (horizontal only). 2.5 kW05/16/2025In ProcessFALSE
- 6.06.03.02The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc05/16/2025In ProcessFALSE
- 6.06.03.02Jaw angle in position relative to beam axshall be 1 mrad05/16/2025In ProcessFALSE
- 6.06.03.02The beam failure energy deposition shall be 275 J (1 bunch). 275 J05/16/2025In ProcessFALSE
- 6.06.03.02The failure thermal duty cycle shall be intermittent.05/16/2025In ProcessFALSE
- 6.06.03.02The tapered jaw slope shall be 1/10. 1/1005/16/2025In ProcessFALSE
- 6.06.03.02The jaw tip length shall be 180 mm05/16/2025In ProcessFALSE
- 6.06.03.02The jaw material shall be Mo-Gr05/16/2025In ProcessFALSE
- 6.06.03.02The total length shall be 762-995 mm05/16/2025In ProcessFALSE
ESR-CONT : ESR Controls System (WBS 6.07.02)
- ESR-CONT EXTERNALSRequirements who's parents are in other sub-systems.
- 6.07.02The ESR control system shall facilitate all ESR global control requirements.05/16/2025ApprovedFALSE
- 6.07.02The BBA quad strength command output rate shall be 1 Hz05/16/2025In ProcessFALSE
- 6.07.02The tune feedback measurement sample rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02The tune feedback correction rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.07.02The ESR control system shall facilitate all network, relational database and data archiving required.05/16/2025ApprovedFALSE
- 6.07.02The tune feedback measurement sample rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02The BBA quad strength command output rate shall be 1 Hz05/16/2025In ProcessFALSE
- 6.07.02The tune feedback correction rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02The control system shall facilitate all machine protection systems required05/16/2025ApprovedFALSE
- 6.07.02The tune feedback measurement sample rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02The BBA quad strength command output rate shall be 1 Hz05/16/2025In ProcessFALSE
- 6.07.02The tune feedback correction rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02The ESR control system shall facilitate all EIC machine timing required.05/16/2025ApprovedFALSE
- 6.07.02The tune feedback measurement sample rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02The BBA quad strength command output rate shall be 1 Hz05/16/2025In ProcessFALSE
- 6.07.02The tune feedback correction rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02The ESR control system shall facilitate fast orbit feedback integration systems as required.05/16/2025ApprovedFALSE
- 6.07.02The BBA quad strength command output rate shall be 1 Hz05/16/2025In ProcessFALSE
- 6.07.02Placeholder for fast orbit feedback requirements05/16/2025In ProcessFALSE
- 6.07.02Placeholder for fast orbit feedback requirements05/16/2025In ProcessFALSE
- 6.07.02The tune feedback measurement sample rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02Placeholder for fast orbit feedback requirements05/16/2025In ProcessFALSE
- 6.07.02The tune feedback correction rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02The ESR control system shall facilitate all physics application support required.05/16/2025ApprovedFALSE
- 6.07.02The BBA quad strength command output rate shall be 1 Hz05/16/2025In ProcessFALSE
- 6.07.02The tune feedback measurement sample rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02The tune feedback correction rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02The ESR controls system shall be capable of producing arbitrary spin pattern at injection05/16/2025In ProcessFALSE
- 6.07.02The number of bunches @ 18GeV shall be 290 cnt05/16/2025In ProcessFALSE
- 6.07.02The Spin pattern control granularity shall be 1 bunch05/16/2025In ProcessFALSE
- 6.07.02The number of bunches @ 10GeV and below shall be 1160 cnt05/16/2025In ProcessFALSE
ESR-CONT-ALGNMNT : ESR Controls Beam Based Alignment (WBS 6.07.02)
- ESR-CONT-ALGNMNT EXTERNALSRequirements who's parents are in other sub-systems.
- 6.07.02The BBA quad strength command output rate shall be 1 Hz05/16/2025In ProcessFALSE
ESR-CONT-FEEDBACK : ESR Controls Slow Orbit Feedback (WBS 6.07.02)
- ESR-CONT-FEEDBACK EXTERNALSRequirements who's parents are in other sub-systems.
- 6.07.02The slow orbit feedback BPM data averaging period shall be tbd -05/16/2025In ProcessFALSE
- 6.07.02The slow orbit feedback correction output rate shall be 10 Hz05/16/2025In ProcessFALSE
- 6.07.02Placeholder for fast orbit feedback requirements05/16/2025In ProcessFALSE
- 6.07.02Placeholder for fast orbit feedback requirements05/16/2025In ProcessFALSE
- 6.07.02Placeholder for fast orbit feedback requirements05/16/2025In ProcessFALSE
- 6.07.02The tune feedback measurement sample rate shall be tbd Hz05/16/2025In ProcessFALSE
- 6.07.02The tune feedback correction rate shall be tbd Hz05/16/2025In ProcessFALSE
ESR-CONT-SPIN : ESR Controls Spin Pattern (WBS 6.07.02)
- ESR-CONT-SPIN EXTERNALSRequirements who's parents are in other sub-systems.
- 6.07.02The ESR controls system shall be capable of producing arbitrary spin pattern at injection05/16/2025In ProcessFALSE
- 6.07.02The Spin pattern control granularity shall be 1 bunch05/16/2025In ProcessFALSE
- 6.07.02The number of bunches @ 18GeV shall be 290 cnt05/16/2025In ProcessFALSE
- 6.07.02The number of bunches @ 10GeV and below shall be 1160 cnt05/16/2025In ProcessFALSE
ESR-RF : ESR RF System (WBS 6.08.03.02)
- 6.08The ESR RF Systems shall meet ambient magnetic field hygiene requirements.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cryomodule maximum design ambient magnetic field amplitude shall be 700 mG.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum magnetic shield attenuation factor at SRF cavity equator shall be 50.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall be designed to protect cryogenic surfaces utilizing passive thermal control systems to reduce radiative heat transfer on all 2K, 5K and 50K surfaces.05/16/2025ApprovedFALSE
- 6.08.04.01The cold insulating maximum vacuum shall be 5.0e-7 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The warm insulating maximum vacuum shall be 1.0e-5 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The insulating vacuum maximum leak rate shall be 1.0e-8 mbar L/s.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum thermal radiative heat transfer to all 2K and 5K surfaces shall be 2 W/m^2.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum thermal radiative heat transfer to all 50K surfaces shall be 5 W/m^2.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall be designed to utilize common transportation methods without degradation of performance.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be capable of withstanding a maximum allowable vertical acceleration of ±4 G.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be capable of withstanding a maximum allowable beamline axis acceleration of ±5 G.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be capable of withstanding a maximum allowable lateral acceleration of ±1.5 G.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to withstand a tilt around the beamline axis (roll) up to ± 0.03 radians.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall interface to all required accelerator systems.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cavity helium jacket shall have a minimum helium bath vapor surface area of 0.049 m^2.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed helium supply operational temperature shall be 5.5 K.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed helium supply operational pressure shall be 3 to 3.5 bar.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed combined helium return temperature shall be 20 to 100 K.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed combined helium return pressure shall be 2.4 to 2.6 bar.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed sub-atmospheric helium return temperature shall be 4.5 K.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed sub-atmospheric helium return pressure shall be 30 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cooling water subsystem shall be designed to utilize the supply characteristics as defined by the EIC Infrastructure Utility Requirements Document (Doc. No. EIC-IFD-RSI-012).05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cavity aperture radius shall be 30 mm.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall be able to accommodate 0.1 W/m electron beam losses.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall provide conditioning capabilities necessary for ESR operations.05/16/2025ApprovedFALSE
- 6.08.04.01Conditioning for individual components shall have a maximum average cryogenic power dissipation of 200 W.05/29/2025ApprovedFALSE
- 6.08.04.01Conditioning for individual components shall be achieved with a maximum temperature of 2.1 K.05/29/2025ApprovedFALSE
- 6.08The ESR RF Systems shall have an active frequency tuning system to maintain and tune the resonant frequency in order to accommodate radial beam offset and changes in the synchronous trajectory circumference.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cavity Slow Tuner tuning range shall be 600 kHz.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum SRF Cavity Slow Tuner resolution shall be ± 1 Hz.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cavity slow tuner tuning rate shall be 800 Hz/s.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum SRF Cavity Slow Tuner hysteresis shall be ± 20 Hz.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall be rotatable around the beamline axis (roll) to facilitate installation without degradation of performance.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to withstand a tilt around the beamline axis (roll) up to ± 0.03 radians.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall have alignment verification designed into the system.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in X shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Y shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Z shall be ± 5 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the pitch shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the roll shall be ± 0.04 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the yaw shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall achieve an independent beam line vacuum level equivalent to the ESR operational vacuum level.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.08.04.01The cold beamline maximum vacuum shall be 1.0e-9 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The warm beamline maximum vacuum shall be 5.0e-7 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The beamline vacuum maximum leak rate shall be 5e-10 mbar L/s.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall provide all necessary controls and diagnostics necessary for system operation but not extending beyond the RF System interfaces.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall provide 0.1% field amplitude stability05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cryomodule FPC external quality factors shall all be within ± 0.1e5 of all other FPC external quality factor design values.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall provide 0.02 degree phase stability05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cryomodule FPC external quality factors shall all be within ± 0.1e5 of all other FPC external quality factor design values.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall be protected from degradation due to adjacent beam lines and hardware.05/16/2025ApprovedFALSE
- 6.08.04.01The manufactured SRF Cryomodule Cavity shall produce no field emission at 4 MV.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems design shall be protected against beam loss and RF field collapse events.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall maintain ESR operations in the event of single RF system failure.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured voltage shall be 4 MV.05/29/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cavity Slow Tuner tuning range shall be 600 kHz.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems active frequency tuning system shall be maintainable in-situ.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.08.04.01The active SRF cavity tuning mechanism components (motor/gearbox/drive mechanism) shall be replaceable and maintainable in-situ.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems air-side FPC components shall be maintainable in-situ.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.08The ESR Crabbing RF System shall be designed to crab electron bunches.05/16/2025ApprovedFALSE
- 6.08The ESR Storage RF System design shall protect against common electron beam instabilities.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF longitudinal impedance (accelerator definition) shall be 52 MΩ Ghz.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF horizontal impedance (accelerator definition) shall be 24 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF vertical impedance (accelerator definition) shall be 24 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cavity aperture radius shall be 30 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured quality factor (Qo) shall be 1.5E10.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF pressure sensitivity maximum shall be 10 Hz/mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum SRF Cavity Slow Tuner resolution shall be ± 1 Hz.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF maximum lorentz force detuning shall be 5 Hz/(MV/m)^2.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum SRF Cavity Slow Tuner hysteresis shall be ± 20 Hz.05/16/2025ApprovedFALSE
- 6.08The ESR Storage RF System shall be designed as identical modular components to provide the full system functionality.05/16/2025ApprovedFALSE
- 6.08The ESR Storage RF System shall maintain constant electron beam energy after injection.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to operate with a beam current up to 2.5 A.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule loaded quality factor shall be 2.9e5 ± 0.2e5.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured voltage shall be 4 MV.05/29/2025ApprovedFALSE
- 6.08.04.01The SRF cavity shall be designed to handle a minimum forward power of 800 kW.05/16/2025ApprovedFALSE
- 6.08The ESR Storage RF System shall be capable of coupling 10 MW of RF power to the beam.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured voltage shall be 4 MV.05/29/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to operate with a beam current up to 2.5 A.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity shall be designed to handle a minimum forward power of 800 kW.05/16/2025ApprovedFALSE
- 6.08The ESR Storage RF System shall maintain beam energy from 5 to 18 GeV.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to operate with a beam current up to 2.5 A.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule loaded quality factor shall be 2.9e5 ± 0.2e5.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured voltage shall be 4 MV.05/29/2025ApprovedFALSE
- 6.08.04.01The SRF cavity shall be designed to handle a minimum forward power of 800 kW.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cavity Slow Tuner tuning range shall be 600 kHz.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum SRF Cavity Slow Tuner resolution shall be ± 1 Hz.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum SRF Cavity Slow Tuner hysteresis shall be ± 20 Hz.05/16/2025ApprovedFALSE
- 6.08The ESR Storage RF System shall be able to provide 68 MV peak voltage for an RF bucket height 10x greater than the rms energy spread of the beam.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured voltage shall be 4 MV.05/29/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to operate with a beam current up to 2.5 A.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity shall be designed to handle a minimum forward power of 800 kW.05/16/2025ApprovedFALSE
- ESR-RF EXTERNALSRequirements who's parents are in other sub-systems.
- 6.08The ESR RF Systems shall be designed to fulfill all necessary parameters as set by the Master Parameter Table (MPT). [Document#: EIC-SEG-RSI-005]05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured voltage shall be 4 MV.05/29/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to operate with a beam current up to 2.5 A.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity shall be designed to handle a minimum forward power of 800 kW.05/16/2025ApprovedFALSE
- 6.08The ESR RF System shall utilize superconductivity.05/16/2025ApprovedFALSE
- 6.08.04.01The cavity helium bath maximum designed operational temperature shall be 2 K.05/16/2025ApprovedFALSE
- 6.08.04.01The cavity helium bath maximum designed operational pressure shall be 30 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The cavity helium bath designed operational pressure stability shall be ±0.1 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cavity helium jacket shall have a minimum helium bath vapor surface area of 0.049 m^2.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed helium supply operational temperature shall be 5.5 K.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed helium supply operational pressure shall be 3 to 3.5 bar.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed combined helium return temperature shall be 20 to 100 K.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed combined helium return pressure shall be 2.4 to 2.6 bar.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed sub-atmospheric helium return temperature shall be 4.5 K.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed sub-atmospheric helium return pressure shall be 30 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity maximum Niobium temperature shall be 5 K during operation.05/16/2025ApprovedFALSE
- 6.08.04.01The warm beamline maximum vacuum shall be 5.0e-7 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The cold beamline maximum vacuum shall be 1.0e-9 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The beamline vacuum maximum leak rate shall be 5e-10 mbar L/s.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall conform to the ESR lattice.05/16/2025ApprovedFALSE
- 6.04.06.04The ESR shall have two synchrotron light monitors (SLM) and one X-ray pin hole monitor05/16/2025In ProcessFALSE
- 6.04.06.04The longitudinal bunch profile monitor shall have a turn-by-turn capability based on a single bunch in the fully filled bunch train.05/16/2025In ProcessFALSE
- 6.04.06.04TThe SLM systems shall measure the crabbing angle, longitudinal bunch parameters, H & V beam size and global coupling.05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure a crabbing angle of 12.5 mrad with accuracy of 10 %05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the Longitudinal bunch parameters with accuracy of TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the H & V beam size with accuracy of H=?? V=?? units05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the Global coupling with accuracy of TBD -05/16/2025In ProcessFALSE
- 6.04.06.04One SLM port shall be located downstream of a dipole in an appropriate location in the ESR, exact location not critical.05/16/2025In ProcessFALSE
- 6.04.06.04The second SLM port shall be located in a complimentary location in the lattice to ensure all the necessary SLM measurements can be made. TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The SLM light extraction port mirrors shall be good quality, having a surface finish better than 1/10 Lambda05/16/2025In ProcessFALSE
- 6.04.06.04The SLM light extraction port mirrors shall be water cooled to avoid image distortion.05/16/2025In ProcessFALSE
- 6.04.06.04There shall be an enclosed SL transport from the light extraction port to the SLM optical lab rooms. Length to be determined by the distance to optical lab room, should be minimized to reduce vibration problems.05/16/2025In ProcessFALSE
- 6.04.06.04The locations of the SLM optical lab rooms shall be TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The double-slit interferometer method shall be used to measure transverse beam size05/16/2025In ProcessFALSE
- 6.04.06.04The standard transverse resolution of an SLM using visible light shall be ~60 um05/16/2025In ProcessFALSE
- 6.04.06.04The resolution using the double-slit method shall equal to 10 um05/16/2025In ProcessFALSE
- 6.04.06.04A streak camera shall be used to measure the bunch longitudinal profiles05/16/2025In ProcessFALSE
- 6.04.06.04A position sensitive photo-diode will provide photon beam centroid information which shall supplement the orbit stability measurements by the BPMs05/16/2025In ProcessFALSE
- 6.04.06.04A GigE CCD/CMOS camera, externally triggerable with exposure times ranging from 10 nsec to 5 sec, shall be used to image the visible radiation05/16/2025In ProcessFALSE
- 6.04.06.04A commercially available gated camera with gate width of <2 nsec (compared to a minimum bunch spacing of 10 nsec) shall be used to detect injection oscillations and for beam studies.05/16/2025In ProcessFALSE
- 6.04.06.04The location of the X-ray pinhole monitoring system shall be TBD05/16/2025In ProcessFALSE
- 6.04.06.04The target resolution of the X-ray pin hole monitoring system shall be ~ 5 um (or as best that can be achieved with the machine parameters and commercial equipment) 5 um05/16/2025In ProcessFALSE
- 6.04.06.04The X-ray pin hole monitor shall provide independent measurement of the energy spread and horizontal/vertical emittance. H=V=15.4 nm05/16/2025In ProcessFALSE
- 6.04.06.04The X-ray pinhole photon beamline shall be equipped with gated cameras that will be employed to provide high resolution turn-by-turn profile measurements05/16/2025In ProcessFALSE
- 6.04.06.04A pinhole assembly including tungsten slits shall provide sufficient resolution to precisely measure the beam size05/16/2025In ProcessFALSE
- 6.04.06.04Several different size pinholes sizes shall be incorporated to allow easy alignment and measurements at different beam currents and energies.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF cryomodule cavity beam axis to the tunnel floor shall be vertically alignable to 1381.09 ± 20 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in X shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Y shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Z shall be ± 5 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the pitch shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the roll shall be ± 0.04 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the yaw shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall be installed in the straight sections of the ESR lattice within the existing RHIC tunnel in IR10.05/16/2025ApprovedFALSE
- 6.04.06.04The ESR shall have two synchrotron light monitors (SLM) and one X-ray pin hole monitor05/16/2025In ProcessFALSE
- 6.04.06.04The longitudinal bunch profile monitor shall have a turn-by-turn capability based on a single bunch in the fully filled bunch train.05/16/2025In ProcessFALSE
- 6.04.06.04TThe SLM systems shall measure the crabbing angle, longitudinal bunch parameters, H & V beam size and global coupling.05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure a crabbing angle of 12.5 mrad with accuracy of 10 %05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the Longitudinal bunch parameters with accuracy of TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the H & V beam size with accuracy of H=?? V=?? units05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the Global coupling with accuracy of TBD -05/16/2025In ProcessFALSE
- 6.04.06.04One SLM port shall be located downstream of a dipole in an appropriate location in the ESR, exact location not critical.05/16/2025In ProcessFALSE
- 6.04.06.04The second SLM port shall be located in a complimentary location in the lattice to ensure all the necessary SLM measurements can be made. TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The SLM light extraction port mirrors shall be good quality, having a surface finish better than 1/10 Lambda05/16/2025In ProcessFALSE
- 6.04.06.04The SLM light extraction port mirrors shall be water cooled to avoid image distortion.05/16/2025In ProcessFALSE
- 6.04.06.04There shall be an enclosed SL transport from the light extraction port to the SLM optical lab rooms. Length to be determined by the distance to optical lab room, should be minimized to reduce vibration problems.05/16/2025In ProcessFALSE
- 6.04.06.04The locations of the SLM optical lab rooms shall be TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The double-slit interferometer method shall be used to measure transverse beam size05/16/2025In ProcessFALSE
- 6.04.06.04The standard transverse resolution of an SLM using visible light shall be ~60 um05/16/2025In ProcessFALSE
- 6.04.06.04The resolution using the double-slit method shall equal to 10 um05/16/2025In ProcessFALSE
- 6.04.06.04A streak camera shall be used to measure the bunch longitudinal profiles05/16/2025In ProcessFALSE
- 6.04.06.04A position sensitive photo-diode will provide photon beam centroid information which shall supplement the orbit stability measurements by the BPMs05/16/2025In ProcessFALSE
- 6.04.06.04A GigE CCD/CMOS camera, externally triggerable with exposure times ranging from 10 nsec to 5 sec, shall be used to image the visible radiation05/16/2025In ProcessFALSE
- 6.04.06.04A commercially available gated camera with gate width of <2 nsec (compared to a minimum bunch spacing of 10 nsec) shall be used to detect injection oscillations and for beam studies.05/16/2025In ProcessFALSE
- 6.04.06.04The location of the X-ray pinhole monitoring system shall be TBD05/16/2025In ProcessFALSE
- 6.04.06.04The target resolution of the X-ray pin hole monitoring system shall be ~ 5 um (or as best that can be achieved with the machine parameters and commercial equipment) 5 um05/16/2025In ProcessFALSE
- 6.04.06.04The X-ray pin hole monitor shall provide independent measurement of the energy spread and horizontal/vertical emittance. H=V=15.4 nm05/16/2025In ProcessFALSE
- 6.04.06.04The X-ray pinhole photon beamline shall be equipped with gated cameras that will be employed to provide high resolution turn-by-turn profile measurements05/16/2025In ProcessFALSE
- 6.04.06.04A pinhole assembly including tungsten slits shall provide sufficient resolution to precisely measure the beam size05/16/2025In ProcessFALSE
- 6.04.06.04Several different size pinholes sizes shall be incorporated to allow easy alignment and measurements at different beam currents and energies.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule maximum length shall be 7.2 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule maximum width shall be 2.15 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule maximum height shall be 1.7 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cryomodule cavity beam axis to the tunnel floor shall be vertically alignable to 1381.09 ± 20 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in X shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Y shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Z shall be ± 5 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the roll shall be ± 0.04 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the pitch shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the yaw shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic box maximum height shall be 2.1m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic box maximum length (not including vacuum jacketed lines) shall be 1.5 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic box maximum width shall be 1.0 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic valve box minimum vertical stay clear height above the cryomodule shall be 0.92 m.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall conform to the EIC Code of Record.05/16/2025ApprovedFALSE
- 6.08.04.01All cryomodule surfaces accessible to workers shall be within the temperature range of 283 to 333 K.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by ASME B31.3.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by ASME BPVC.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by ASTM C1055.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by NFPA 70.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by NFPA 70E.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by API 520 & API 521.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by AWS.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by CGA S1.3.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards as directed by the DOE Vacuum Vessel Consensus Standards.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to meet or exceed the maximum working pressures defined by the EIC pressure document (Document No. TBD).05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems within the tunnel shall operate within its yearly radiation exposure budget.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that cannot be maintained in-situ shall be designed with a minimum lifetime radiation tolerance of 1 MGy.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.08The ESR RF Systems shall have a minimum operating lifetime of 20 years05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall operate through a minimum of 200 thermal cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner 1% range tuning cycles shall be 100,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner full range tuning cycles shall be 1,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that cannot be maintained in-situ shall be designed with a minimum lifetime radiation tolerance of 1 MGy.05/16/2025ApprovedFALSE
- 6.08.04.01All critical monitoring and control instruments that cannot be maintained in-situ shall utilize a back-up instrument.05/16/2025ApprovedFALSE
- 6.08The ESR RF System shall be designed to minimize unscheduled downtime, maintenance time and repair time to achieve ESR operational availability.05/16/2025ApprovedFALSE
- 6.07.02The ESR controls system shall be capable of producing arbitrary spin pattern at injection05/16/2025In ProcessFALSE
- 6.07.02The Spin pattern control granularity shall be 1 bunch05/16/2025In ProcessFALSE
- 6.07.02The number of bunches @ 18GeV shall be 290 cnt05/16/2025In ProcessFALSE
- 6.07.02The number of bunches @ 10GeV and below shall be 1160 cnt05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 300K to 150K shall be 10 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 150K to 50K shall be 30 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 50K to 4.5K shall be 10 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 4.5K to 2K shall be 0.5 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum warmup rate of the SRF cavity between 50K to 150K shall be 30 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall achieve steady state temperature with the cavity bath at 4K in a maximum of 2 days.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall achieve a full warm-up cycle from 4K to 295K in a maximum of 2 days.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall operate through a minimum of 200 thermal cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner 1% range tuning cycles shall be 100,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner full range tuning cycles shall be 1,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The manufactured SRF Cryomodule Cavity shall produce no field emission at 4 MV.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that cannot be maintained in-situ shall be designed with a minimum lifetime radiation tolerance of 1 MGy.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.08.04.01All critical monitoring and control instruments that cannot be maintained in-situ shall utilize a back-up instrument.05/16/2025ApprovedFALSE
- 6.08.04.01The active SRF cavity tuning mechanism components (motor/gearbox/drive mechanism) shall be replaceable and maintainable in-situ.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cavity slow tuner tuning rate shall be 800 Hz/s.05/16/2025ApprovedFALSE
- 6.08The ESR Storage RF System shall be designed to accelerate electrons.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF longitudinal impedance (accelerator definition) shall be 52 MΩ Ghz.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF horizontal impedance (accelerator definition) shall be 24 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF vertical impedance (accelerator definition) shall be 24 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum broadband RF power emitted from the cryomodule shall be 30 kW for all EIC design energies and currents.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to operate with a beam current up to 2.5 A.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured voltage shall be 4 MV.05/29/2025ApprovedFALSE
- 6.08.04.01The SRF cavity nominal cold frequency shall be 591.149 MHz.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity field probe Qext range shall be 1.00E11 to 2.00E11.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity shall be designed to handle a minimum forward power of 800 kW.05/16/2025ApprovedFALSE
ESR-RF-NCRF : ESR Main RF System (WBS 6.08.03.02)
ESR-RF-NCRF-TBD : ESR Main RF Fundamental Mode (WBS 6.08.03.02)
ESR-RF-SRF : Superconducting RF (WBS 6.08.04)
ESR-RF-SRF-591_1Cell : 591MHz 1 Cell Cryomodule (WBS 6.08.04.01)
ESR-RF-SRF-394_Crab
ESR-RF-SRF-400KW
- 6.08.06.01The RF Amplifier system shall utilize watercooling to dissipate a minimum of 80 % heat.05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier system shall have a maximum die temperature of 130 C.05/16/2025ApprovedFALSE
- 6.08.06.01The minimum acceptable system loss of RF Amplifiers due to faults shall be 10 %.05/16/2025ApprovedFALSE
- 6.08.06.01The maximum RF Amplifier shutoff switch time shall be 100 ns.05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier shall be designed to self-protect to a maximum overdrive power of 10 %.05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier phase linearity over a 40dB dynamic range shall be 30 deg.05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplified input/output impedance shall be 50 ohms.05/16/2025ApprovedFALSE
- 6.08.06.01The maximum RF Amplifier input VSWR shall be 1.5:1 .05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier input RF overdrive shall be 10 dBm.05/16/2025ApprovedFALSE
- 6.08.06.01All RF Amplifier harmonics shall not exceed -30 dBc.05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier spurious and line harmonics shall not exceed -80 dBc.05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier noise power output in the ON state shall be -90 dBm/Hz.05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier noise power output in the STANDBY state shall be -154 dBm/Hz.05/16/2025ApprovedFALSE
- 6.08.06.01The maximum RF Amplifier group delay shall be 200 ns.05/16/2025ApprovedFALSE
- 6.08.06.01The minimum RF Amplifier AC to RF efficiency at full rated power shall be 45 %.05/16/2025ApprovedFALSE
- 6.08.06.01The operational frequency band of the RF Amplifier system shall be 591 ± 5 MHz.05/16/2025ApprovedFALSE
- 6.08.06.01The minimum RF on/off ratio (Δgain between on/standby) shall be 86 dB.05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier system shall be designed to operate in an ambient temperature range of 18-30 C.05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier system shall be designed to operate in a maximum relative humidity of 60-65 %.05/16/2025ApprovedFALSE
- 6.08.06.01With the load mismatch of less than 3:1, the RF Amplifier shall maintain 100% forward power. .05/16/2025ApprovedFALSE
- 6.08.06.01With the load mismatch of greater than 3:1, the RF Amplifier shall utilize 0% forward power. .05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier forward RF sample coupling across the amplifier bandwidth shall be 70±0.5 dB.05/16/2025ApprovedFALSE
- 6.08.06.01The minimum RF Amplifier forward directivity across the amplifier bandwidth shall be 30 dB.05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier reflected RF sample coupling across the amplifier bandwidth shall be 70±0.5 dB.05/16/2025ApprovedFALSE
- 6.08.06.01The minimum RF Amplifier reflected directivity across the amplifier bandwidth shall be 30 dB.05/16/2025ApprovedFALSE
- 6.08.06.01The maximum RF Amplifier audible noise at 1m shall be 70 dB(A).05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier pulse width range shall be .001-100 ms.05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier duty cycle range shall be 1-50 %.05/16/2025ApprovedFALSE
- 6.08.06.01The maximum RF Amplifer rise time during pulsed operation shall be 0.75 μs.05/16/2025ApprovedFALSE
- 6.08.06.01The maximum RF Amplifer fall time during pulsed operation shall be 0.75 μs.05/16/2025ApprovedFALSE
- 6.08.06.01The maximum RF Amplifier pulse droop at max pulse width shall be 0.5-1 dB.05/16/2025ApprovedFALSE
- 6.08.06.01The maximum RF Amplifier phase error over pulse at max pulse width shall be 2.5-5 deg.05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier AC Voltage input shall remain between 432-528 VAC.05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier controls AC Voltage input shall remain between 108-132 VAC.05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier AC frequency shall be 60 Hz .05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier power factor shall be between 0.90-0.95 .05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier input power for the rated output power shall be ±1.5 dBm.05/16/2025ApprovedFALSE
- 6.08.06.01The minimum output power of the RF Amplifier for all operational modes shall be 200/400 kW.05/16/2025ApprovedFALSE
- 6.08.06.01The minimum linear power of the RF Amplifier for all operational modes shall be 200/400 kW.05/16/2025ApprovedFALSE
- 6.08.06.01The nominal power gain for the RF Amplifier system over a 40 dB dynamic range shall be 86 dB.05/16/2025ApprovedFALSE
- 6.08.06.01The maximum power gain deviation of the RF Amplifier system shall be 1.5 dB.05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier maximum height shall be 3 m.05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier maximum width shall be 3 m.05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier maximum length shall be 3 m.05/16/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier shall be designed to have a minimum MTBF of 10,000 hours.05/16/2025ApprovedFALSE
- 6.08.06.01The RF devices shall be designed to have a minimum MTBF of 35,000 hours.05/16/2025ApprovedFALSE
- 6.08.06.01The RF amplifier shall be designed to meet all applicable standards as defined by ASTM C1055 as directed by the EIC Code of Records Doc No. EIC-ORG-RSI-026 and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA) .05/16/2025ApprovedFALSE
- 6.08.06.01The RF amplifier shall be designed to meet all applicable standards as defined by 29 CFR 1910 as directed by the EIC Code of Records Doc No. EIC-ORG-RSI-026 and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA) .05/16/2025ApprovedFALSE
- 6.08.06.01The RF amplifier shall be designed to meet all applicable standards as defined by NFPA 70E-2021 as directed by the EIC Code of Records Doc No. EIC-ORG-RSI-026 and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA) .05/16/2025ApprovedFALSE
- 6.08.06.01The RF amplifier shall be designed to meet all applicable standards as defined by UL 508 as directed by the EIC Code of Records Doc No. EIC-ORG-RSI-026 and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA) .05/16/2025ApprovedFALSE
- 6.08.06.01The RF amplifier shall be designed to meet all applicable standards as defined by Occupatioanl Radiation Protection 10 CFR 835 as directed by the EIC Code of Records Doc No. EIC-ORG-RSI-026 and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA) .05/16/2025ApprovedFALSE
ESR-RF-ACAV:591S
- 6.08.04Infrastructure shall provide supply and return headers within the tunnel for Low Conductivity Water (LCW) to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04Infrastructure shall provide Low Conductivity Water (LCW) to/from the common supply/return header(s) to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04RF Pre-Installation shall provide all distribution design, materials, and installation of the piping (or hoses) for Low Conductivity Water (LCW) from the tunnel header to the Cryomodules to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide Low Conductivity Water (LCW) supply/return receptacles at the Cryomodule to facilitate installation by RF Pre-Installation.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide instrument air receptables to be utilized by TBD.07/25/2025In ProcessFALSE
- 6.08.04TBD shall provide an instrument air supply system for the required SRF Systems Cryomodule components in the tunnel.07/25/2025In ProcessFALSE
- 6.08.04TBD shall provide all routing design, installation, and control logic to the instrument air receptacles on the SRF Systems Cryomodule.07/25/2025In ProcessFALSE
- 6.08.04RF Pre-Installation shall provide the helium blowdown system design, materials (including helium gas), and installation labor to any water circuit required on the SRF cryomodule inside the tunnel.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide a helium blowdown receptacle to be utilized by Pre-Installation.07/25/2025In ProcessFALSE
- 6.08.04The 2K Cryogenics Distribution System shall provide all distribution design, materials, and installation of the helium piping for the 2K helium distribution system inside the tunnel to the Cryomodules to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04The 2K Cryogenics Distribution System shall provide Supercritical Helium to/from the supply/return header(s) to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide Helium supply and return receptacle(s) at the cryomodule to be utilized by the 2K Cryogenics Distribution System.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide calculations and analyses necessary for sizing the piping and supply by the 2K Cryogenics Distribution.07/25/2025In ProcessFALSE
- 6.08.04The 2K Cryogenics Distribution System shall provide all distribution design, materials, and installation of the helium piping for the helium relief system inside the tunnel to the cryomodule to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide a helium pressure relief valve with common relief header receptacle to be utilized by the 2K Cryogenics Distribution Relief System.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide calculations and analyses necessary for sizing the relief piping by the 2K Cryogenics Distribution relief header.07/25/2025In ProcessFALSE
- 6.08.04The 2K Cryogenics Distribution System shall provide all distribution design, materials, and installation of the helium piping for the guard vacuum inside the tunnel to the cryomodule to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide a helium pressure relief valve with common guard vacuum receptacle to be utilized by the 2K Cryogenics Distribution System.07/25/2025In ProcessFALSE
- 6.08.04Cryogenics Controls shall provide all cabling, routing design, installation, and control logic to the cryomodule control receptacles at the SRF Systems Cryomodules.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide helium liquid level monitor receptacles to be utilized by Cryogenics Controls.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide pressure monitor receptacles to be utilized by Cryogenics Controls.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide temperature monitors receptacles to be utilized by Cryogenics Controls.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide heater control receptacles to be utilized by Cryogenics Controls.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide cryogenic control valve receptacles to be utilized by Cryogenics Controls.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide Beamline All Metal Gate Valve receptacles to be utilized by ESR Vacuum System.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide Beamline Ion pump receptacles to be utilized by ESR Vacuum System.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide Vacuum pressure receptacles to be utilized by ESR Vacuum System.07/25/2025In ProcessFALSE
- 6.08.04TBD shall provide all cabling, routing design, installation, and control logic to the cryomodule vacuum control receptacles at the Cryomodules to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide RF feedback and control receptacles to be utilized by RF Controls.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide temperature monitors receptacles to be utilized by RF Controls.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide tuner control receptacles to be utilized by RF Controls.07/25/2025In ProcessFALSE
- 6.08.04RF Controls shall provide all cabling, routing design, installation, and control logic to the cryomodule RF control receptacles at the Cryomodules to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04High Power RF shall design and provide a waveguide to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide a receptacle for the High Power RF waveguide to be utilized by High Power RF.07/25/2025In ProcessFALSE
- 6.08.04Accelerator Installation shall provide the schedule and funding for the waveguide installation to the SRF Cryomodule.07/25/2025In ProcessFALSE
- 6.08.04High Power RF shall provide DC Bias to be utilized by the SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide a receptable on the cryomodule for the DC Bias connection to be used by High Power RF.07/25/2025In ProcessFALSE
- 6.08.04High Power RF shall provide all design, fabrication, and controls of the DC Bias system to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04Beamline Components shall provide a doorknob waveguide to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04Beamline Components shall provide a BLA to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04Beamline Components shall provide conditioned FPC to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide fiducialization points on the Cryomodule relating back to the electromagnetic center of the beamline to be utilized by Accelerator Installation.07/25/2025In ProcessFALSE
- 6.08.04RF Pre-Installation shall arrange the installation location/area to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04Accelerator Installation shall provide the schedule and funding for the SRF Cryomodule installation and app technician support (lag bolts/rough alignment/pedestal/etc...).07/25/2025In ProcessFALSE
- 6.08.04The Mechanical Design Group shall model the tunnel to define the required spatial locations to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide a receptacle for the beamline connection on both ends of the SRF cryomodule to be utilized by RF System07/25/2025In ProcessFALSE
- 6.08.04ESR Vacuum System shall provide installation labor of the SRF Systems Cryomodule to the beamline.07/25/2025In ProcessFALSE
- 6.08.04RF System shall ensure that during installation the SRF Systems Cryomodule cleanliness does not degrade.07/25/2025In ProcessFALSE
- 6.08.04RF System shall ensure that the beamline components surrounding the SRF Systems Cryomodule does not degrade the performance of the SRF Systems Cryomodule during its lifetime.07/25/2025In ProcessFALSE
- 6.08.04Cryomodule Verification shall ensure TJNAF has a bunker that can high power test the SRF Systems Cryomodule.07/25/2025In ProcessFALSE
- 6.08.04RF Pre-Installation shall ensure BNL has a bunker that can high power test the SRF Systems Cryomodule.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide insulating vacuum gate valve receptables to be utilized by TBD.07/25/2025In ProcessFALSE
- 6.08.04TBD shall provide a vacuum system for the insulating vacuum of the SRF Systems Cryomodule in the tunnel to be utilized by SRF Systems07/25/2025In ProcessFALSE
- 6.08.04TBD shall provide all cabling, routing design, installation, and control logic to the insulating vacuum control receptacles at the SRF Systems Cryomodule.07/25/2025In ProcessFALSE
- 6.08.04RF Pre-Installation shall ensure BNL has a bunker that can high power test the SRF Systems Cryomodule.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide insulating vacuum gate valve receptables to be utilized by TBD.07/25/2025In ProcessFALSE
- 6.08.04TBD shall provide a vacuum system for the insulating vacuum of the SRF Systems Cryomodule in the tunnel to be utilized by SRF Systems07/25/2025In ProcessFALSE
- 6.08.04TBD shall provide all cabling, routing design, installation, and control logic to the insulating vacuum control receptacles at the SRF Systems Cryomodule.07/25/2025In ProcessFALSE
- ESR-RF-ACAV:591S EXTERNALSRequirements who's parents are in other sub-systems.
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.08.04.01The cavity helium bath maximum designed operational temperature shall be 2 K.05/16/2025ApprovedFALSE
- 6.08.04.01The cavity helium bath maximum designed operational pressure shall be 30 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The cavity helium bath designed operational pressure stability shall be ±0.1 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cavity helium jacket shall have a minimum helium bath vapor surface area of 0.049 m^2.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed helium supply operational temperature shall be 5.5 K.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed helium supply operational pressure shall be 3 to 3.5 bar.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed combined helium return temperature shall be 20 to 100 K.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed combined helium return pressure shall be 2.4 to 2.6 bar.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed sub-atmospheric helium return temperature shall be 4.5 K.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed sub-atmospheric helium return pressure shall be 30 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 300K to 150K shall be 10 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 150K to 50K shall be 30 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 50K to 4.5K shall be 10 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 4.5K to 2K shall be 0.5 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum warmup rate of the SRF cavity between 50K to 150K shall be 30 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall achieve steady state temperature with the cavity bath at 4K in a maximum of 2 days.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall achieve a full warm-up cycle from 4K to 295K in a maximum of 2 days.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cooling water subsystem shall be designed to utilize the supply characteristics as defined by the EIC Infrastructure Utility Requirements Document (Doc. No. EIC-IFD-RSI-012).05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall operate through a minimum of 200 thermal cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner 1% range tuning cycles shall be 100,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner full range tuning cycles shall be 1,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The manufactured SRF Cryomodule Cavity shall produce no field emission at 4 MV.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that cannot be maintained in-situ shall be designed with a minimum lifetime radiation tolerance of 1 MGy.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.08.04.01The active SRF cavity tuning mechanism components (motor/gearbox/drive mechanism) shall be replaceable and maintainable in-situ.05/16/2025ApprovedFALSE
- 6.08.04.01All critical monitoring and control instruments that cannot be maintained in-situ shall utilize a back-up instrument.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF longitudinal impedance (accelerator definition) shall be 52 MΩ Ghz.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF horizontal impedance (accelerator definition) shall be 24 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF vertical impedance (accelerator definition) shall be 24 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cavity aperture radius shall be 30 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum broadband RF power emitted from the cryomodule shall be 30 kW for all EIC design energies and currents.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to operate with a beam current up to 2.5 A.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule loaded quality factor shall be 2.9e5 ± 0.2e5.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cryomodule FPC external quality factors shall all be within ± 0.1e5 of all other FPC external quality factor design values.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured quality factor (Qo) shall be 1.5E10.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured voltage shall be 4 MV.05/29/2025ApprovedFALSE
- 6.08.04.01The SRF cavity field probe Qext range shall be 1.00E11 to 2.00E11.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity nominal cold frequency shall be 591.149 MHz.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF pressure sensitivity maximum shall be 10 Hz/mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF maximum lorentz force detuning shall be 5 Hz/(MV/m)^2.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity maximum Niobium temperature shall be 5 K during operation.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity shall be designed to handle a minimum forward power of 800 kW.05/16/2025ApprovedFALSE
- 6.08.04.01The warm beamline maximum vacuum shall be 5.0e-7 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The cold beamline maximum vacuum shall be 1.0e-9 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The beamline vacuum maximum leak rate shall be 5e-10 mbar L/s.05/16/2025ApprovedFALSE
- 6.08.04.01The warm insulating maximum vacuum shall be 1.0e-5 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The cold insulating maximum vacuum shall be 5.0e-7 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The insulating vacuum maximum leak rate shall be 1.0e-8 mbar L/s.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cavity Slow Tuner tuning range shall be 600 kHz.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cavity slow tuner tuning rate shall be 800 Hz/s.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum SRF Cavity Slow Tuner resolution shall be ± 1 Hz.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum SRF Cavity Slow Tuner hysteresis shall be ± 20 Hz.05/16/2025ApprovedFALSE
- 6.08.04.01All cryomodule surfaces accessible to workers shall be within the temperature range of 283 to 333 K.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by ASME B31.3.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by ASME BPVC.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by ASTM C1055.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by NFPA 70.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by NFPA 70E.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by API 520 & API 521.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by CGA S1.3.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by AWS.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards as directed by the DOE Vacuum Vessel Consensus Standards.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule maximum length shall be 7.2 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule maximum width shall be 2.15 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule maximum height shall be 1.7 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cryomodule cavity beam axis to the tunnel floor shall be vertically alignable to 1381.09 ± 20 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in X shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Y shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Z shall be ± 5 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the roll shall be ± 0.04 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the pitch shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the yaw shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic box maximum height shall be 2.1m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic box maximum width shall be 1.0 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic box maximum length (not including vacuum jacketed lines) shall be 1.5 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic valve box minimum vertical stay clear height above the cryomodule shall be 0.92 m.05/16/2025ApprovedFALSE
- 6.08.04.01Conditioning for individual components shall have a maximum average cryogenic power dissipation of 200 W.05/29/2025ApprovedFALSE
- 6.08.04.01Conditioning for individual components shall be achieved with a maximum temperature of 2.1 K.05/29/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be capable of withstanding a maximum allowable vertical acceleration of ±4 G.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be capable of withstanding a maximum allowable lateral acceleration of ±1.5 G.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be capable of withstanding a maximum allowable beamline axis acceleration of ±5 G.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to withstand a tilt around the beamline axis (roll) up to ± 0.03 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cryomodule maximum design ambient magnetic field amplitude shall be 700 mG.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum magnetic shield attenuation factor at SRF cavity equator shall be 50.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum thermal radiative heat transfer to all 2K and 5K surfaces shall be 2 W/m^2.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum thermal radiative heat transfer to all 50K surfaces shall be 5 W/m^2.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to meet or exceed the maximum working pressures defined by the EIC pressure document (Document No. TBD).05/16/2025ApprovedFALSE
ESR-RF-ACAV:591S-FPC
- 6.08.04.01The FPC shall be designed and fabricated to deliver an average forward RF power of 400 kW under all reflection conditions expected during SRF operation and during SRF cavity quench.06/05/2025ApprovedFALSE
- 6.08.04.01The FPC’s window bandwidth shall be (591 ± 10) MHz with S11 < -30 dB.06/05/2025ApprovedFALSE
- 6.08.04.01The FPC shall be capable to withstand a maximum allowable 5G acceleration in all directions.06/05/2025ApprovedFALSE
- 6.08.04.01The FPC lowest order mode mechanical frequency of the FPC during all events shall be greater than 60 Hz.06/05/2025ApprovedFALSE
- 6.08.04.01The FPC design shall prevent modal mechanical resonance frequencies at multiples of 60 Hz up to 240 Hz.06/05/2025ApprovedFALSE
- 6.08.04.01The maximum temperature of all surfaces on the FPC not accessible to workers shall be 100°C.06/05/2025ApprovedFALSE
- 6.08.04.01The minimum temperature for all water-cooled FPC components shall be 0°C to prevent freezing.06/05/2025ApprovedFALSE
- 6.08.04.01The FPC shall be designed and fabricated to provide a minimum bias voltage of ± 5 kV.06/05/2025ApprovedFALSE
- 6.08.04.01The FPC air-side components shall be maintainable in-situ.06/05/2025ApprovedFALSE
- 6.08.04.01The FPC shall have an air side purge with a minimum flow rate of 5 SCFH nitrogen gas with less than 10 ppm water and filtered to 25 µm.06/05/2025ApprovedFALSE
- 6.08.04.01The FPC design shall protect against multipacting.06/05/2025ApprovedFALSE
- 6.08.04.01The extension of the thermal transition from 2 K to room temperature shall not exceed 317 mm from the beam line axis.06/05/2025ApprovedFALSE
- 6.08.04.01The FPC shall include arc detectors, independent vacuum monitoring, thermosensors, and heaters.06/05/2025ApprovedFALSE
ESR-RF-CCAV:394
- 6.08.04.05The SRF CM shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing05/16/2025In ProcessFALSE
- 6.08.04.05The cavity helium bath maximum operational temperature shall be TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The cavity helium bath maximum operational pressure shall be TBD mbar05/16/2025In ProcessFALSE
- 6.08.04.05The cavity helium bath operation pressure stability shall be ±TBD mbar05/16/2025In ProcessFALSE
- 6.08.04.05The maximum helium supply operational temperature shall be TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The range of the helium supply operational pressure shall be TBD to TBD bar05/16/2025In ProcessFALSE
- 6.08.04.05The range of the combined helium return temperature shall be TBD to TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The range of the combined helium return pressure shall be TBD to TBD bar05/16/2025In ProcessFALSE
- 6.08.04.05The maximum sub-atmospheric helium return temperature shall be TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The maximum Subatmospheric helium return pressure shall be TBD mbar05/16/2025In ProcessFALSE
- 6.08.04.05The minimum cooldown rate of the SRF cavity between 300K and 4.5K shall be TBD K/hour05/16/2025In ProcessFALSE
- 6.08.04.05The minimum cooldown rate of the SRF cavity between 4.5K to 2K shall be TBD K/hour05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall achieve steady state temperature with the cavity bath at 4K in a maximum of TBD days05/16/2025In ProcessFALSE
- 6.08.04.05The chilled water and low-conductivity water operational temperature range shall be TBD to TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The chilled water and low-conductivity water operational pressure range shall be TBD to TBD bar05/16/2025In ProcessFALSE
- 6.08.04.05The minimum magnetic shield attenuation factor at SRF cavity equator shall be TBD05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall operate through a minimum of TBD thermal cycles05/16/2025In ProcessFALSE
- 6.08.04.05The minimum SRF Cavity Slow tuner minimum lifetime shall be TBD years05/16/2025In ProcessFALSE
- 6.08.04.05The minimum SRF CM Slow Tuner 1% range tuning cycles shall be TBD cycles05/16/2025In ProcessFALSE
- 6.08.04.05The minimum SRF CM Slow Tuner full range tuning cycles shall be TBD cycles05/16/2025In ProcessFALSE
- 6.08.04.05The manufactured SRF CM Cavity shall produce no field emission at TBD MV05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM components that are not replaceable in-situ shall be designed with a radiation tolerance greater than TBD MGy05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM components that are replaceable in-situ shall have a radiation tolerance greater than TBD kGy05/16/2025In ProcessFALSE
- 6.08.04.05The active SRF cavity tuning mechanism components (bearings/motor/piezo) shall be replaceable and maintainable in-situ.05/16/2025In ProcessFALSE
- 6.08.04.05All critical monitoring and control instruments that cannot be maintained in-situ shall utilize a back-up instrument.05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM instrument should have maximized instruments that can be maintained and replaced in-situ05/16/2025In ProcessFALSE
- 6.08.04.05The SRF maximum (per cavity) RF longitudinal impedance shall be TBD MΩ GHz05/16/2025In ProcessFALSE
- 6.08.04.05The SRF maximum (per cavity) RF horizontal impedance shall be TBD MΩ/m05/16/2025In ProcessFALSE
- 6.08.04.05The SRF maximum (per cavity) RF vertical impedance shall be TBD MΩ/m05/16/2025In ProcessFALSE
- 6.08.04.05The minimum cavity aperture radius shall be TBD mm05/16/2025In ProcessFALSE
- 6.08.04.05The maximum broadband RF power emitted from the CM shall be TBD kW05/16/2025In ProcessFALSE
- 6.08.04.05The Maximum Quadrupole multipole content shall be TBD mT05/16/2025In ProcessFALSE
- 6.08.04.05The Maximum Sextupole multipole content shall be TBD mT/m05/16/2025In ProcessFALSE
- 6.08.04.05The Maximum Octupole multipole content shall be TBD T/m^205/16/2025In ProcessFALSE
- 6.08.04.05The Maximum Decapole multipole content shall be TBD T/m^305/16/2025In ProcessFALSE
- 6.08.04.05The SRF cavity minimum manufactured quality factor (Qo) shall be TBD05/16/2025In ProcessFALSE
- 6.08.04.05The SRF cavity minimum manufactured voltage shall be TBD MV05/16/2025In ProcessFALSE
- 6.08.04.05The SRF cavity fundamental power coupler Qext shall be TBD05/16/2025In ProcessFALSE
- 6.08.04.05The SRF cavity field probe Qext range shall be TBD05/16/2025In ProcessFALSE
- 6.08.04.05The SRF cavity nominal cold frequency shall be TBD MHz05/16/2025In ProcessFALSE
- 6.08.04.05The SRF cavity maximum Niobium temperature shall be TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The SRF Pressure sensitivity maximum shall be TBD Hz/mBar05/16/2025In ProcessFALSE
- 6.08.04.05The SRF maximum Lorentz force detuning shall be TBD Hz/(Mv/m)^205/16/2025In ProcessFALSE
- 6.08.04.05The warm beamline maximum vacuum shall be TBD mbar05/16/2025In ProcessFALSE
- 6.08.04.05The cold beamline maximum vacuum shall be TBD mbar05/16/2025In ProcessFALSE
- 6.08.04.05The beamline vacuum maximum leak rate shall be TBD mbar L/s05/16/2025In ProcessFALSE
- 6.08.04.05The warm insulating maximum vacuum shall be TBD mbar05/16/2025In ProcessFALSE
- 6.08.04.05The cold insulating maximum vacuum shall be TBD mbar05/16/2025In ProcessFALSE
- 6.08.04.05The insulating vacuum maximum leak rate shall be TBD mbar L/s05/16/2025In ProcessFALSE
- 6.08.04.05The minimum SRF Cavity Slow Tuner tuning range shall be shall be -TBD, +TBD kHz05/16/2025In ProcessFALSE
- 6.08.04.05The minimum SRF Cavity slow tuner tuning rate shall be TBD Hz/s05/16/2025In ProcessFALSE
- 6.08.04.05The maximum SRF Cavity Slow Tuner resolution shall be TBD Hz05/16/2025In ProcessFALSE
- 6.08.04.05The maximum SRF Cavity Slow Tuner hysteresis shall be ±TBD Hz05/16/2025In ProcessFALSE
- 6.08.04.05The external warm maximum allowable working pressure of the SRF cavity shall not exceed TBD bar05/16/2025In ProcessFALSE
- 6.08.04.05The external cold maximum allowable working pressure of the SRF cavity shall not exceed TBD bar05/16/2025In ProcessFALSE
- 6.08.04.05The internal maximum allowable working pressure of the SRF cavity shall not exceed TBD bar05/16/2025In ProcessFALSE
- 6.08.04.05All cryomodule surfaces accessible to workers shall be within the temperature range of TBD to TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the EIC code of records to meet all applicable safety standards as defined by ASME B31.305/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the EIC code of records to meet all applicable safety standards as defined by ASME BPVC05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the EIC code of records to meet all applicable safety standards as defined by ASTM C105505/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the EIC code of records to meet all applicable safety standards as defined by NFPA 7005/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by API 520 & API 52105/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the EIC code of records to meet all applicable safety standards as defined by NFPA 70E05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by CGA S1.305/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by AWS05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM maximum length shall be TBD m05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM maximum width shall be TBD m05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM maximum height shall be TBD m05/16/2025In ProcessFALSE
- 6.08.04.05The distance from the beamline to the tunnel floor shall be TBD m05/16/2025In ProcessFALSE
- 6.08.04.05The Cavity Electromagnetic Center Alignment Tolerance in X shall be ±TBD μm05/16/2025In ProcessFALSE
- 6.08.04.05The Cavity Electromagnetic Center Alignment Tolerance in Y shall be ±TBD μm05/16/2025In ProcessFALSE
- 6.08.04.05The Cavity Electromagnetic Center Alignment Tolerance in Z shall be ±TBD mm05/16/2025In ProcessFALSE
- 6.08.04.05The Cavity Electromagnetic Center Alignment Tolerance for the roll shall be ±TBD degrees05/16/2025In ProcessFALSE
- 6.08.04.05The Cavity Electromagnetic Center Alignment Tolerance for the pitch shall be ±TBD degrees05/16/2025In ProcessFALSE
- 6.08.04.05The Cavity Electromagnetic Center Alignment Tolerance for the yaw shall be ±TBD degrees05/16/2025In ProcessFALSE
- 6.08.04.05Conditioning for individual cavities shall have a maximum average cryogenic power dissipation of TBD W05/16/2025In ProcessFALSE
- 6.08.04.05Conditioning for individual cavities shall be achieved with a maximum temperature of TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be capable of withstanding a maximum allowable vertical acceleration of TBD G05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be capable of withstanding a maximum allowable lateral acceleration of TBD G05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be capable of withstanding a maximum allowable beamline axis acceleration of TBD G05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed to withstand a minimum tilt around the beamline axis (roll) of ±TBD radians05/16/2025In ProcessFALSE
- 6.08.04.05The SRF Cryomodule loaded quality factor shall be TBD ± TBD.05/16/2025In ProcessFALSE
- 6.08.04.05The SRF Cryomodule FPC external quality factor balance shall be TBD.05/16/2025In ProcessFALSE
ESR-ARC : Arc Sections
- ESR-ARC EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04The ESR lattice arc magnet structure shall contain an array of regular FODO cells05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR lattice arc magnet structure shall consists of a quadrupole, a sextupole, a bending section, and a dipole corrector in each arc half-cell.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR lattice arc magnet structure shall accommodate slightly different average arc radii in the individual arcs by adjusting the drift spaces between individual elements in each FODO cell.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR beamline bending sections shall contain three individual dipole magnets, referred to as “super-bends”.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR super-bends shall generate additional synchrotron radiation damping to support a large beam-beam parameter of 0.1 and to create the required horizontal design emittance in the Master Parameter Table (MPT) when the ESR is operated at energies below 10 GeV. [Document: EIC-SEG-RSI-005]05/16/2025ApprovedFALSE
- 6.04.06.04The ESR shall have two synchrotron light monitors (SLM) and one X-ray pin hole monitor05/16/2025In ProcessFALSE
- 6.04.06.04The longitudinal bunch profile monitor shall have a turn-by-turn capability based on a single bunch in the fully filled bunch train.05/16/2025In ProcessFALSE
- 6.04.06.04TThe SLM systems shall measure the crabbing angle, longitudinal bunch parameters, H & V beam size and global coupling.05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure a crabbing angle of 12.5 mrad with accuracy of 10 %05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the Longitudinal bunch parameters with accuracy of TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the H & V beam size with accuracy of H=?? V=?? units05/16/2025In ProcessFALSE
- 6.04.06.04The SLM shall be able to measure the Global coupling with accuracy of TBD -05/16/2025In ProcessFALSE
- 6.04.06.04One SLM port shall be located downstream of a dipole in an appropriate location in the ESR, exact location not critical.05/16/2025In ProcessFALSE
- 6.04.06.04The second SLM port shall be located in a complimentary location in the lattice to ensure all the necessary SLM measurements can be made. TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The SLM light extraction port mirrors shall be good quality, having a surface finish better than 1/10 Lambda05/16/2025In ProcessFALSE
- 6.04.06.04The SLM light extraction port mirrors shall be water cooled to avoid image distortion.05/16/2025In ProcessFALSE
- 6.04.06.04There shall be an enclosed SL transport from the light extraction port to the SLM optical lab rooms. Length to be determined by the distance to optical lab room, should be minimized to reduce vibration problems.05/16/2025In ProcessFALSE
- 6.04.06.04The locations of the SLM optical lab rooms shall be TBD -05/16/2025In ProcessFALSE
- 6.04.06.04The double-slit interferometer method shall be used to measure transverse beam size05/16/2025In ProcessFALSE
- 6.04.06.04The standard transverse resolution of an SLM using visible light shall be ~60 um05/16/2025In ProcessFALSE
- 6.04.06.04The resolution using the double-slit method shall equal to 10 um05/16/2025In ProcessFALSE
- 6.04.06.04A streak camera shall be used to measure the bunch longitudinal profiles05/16/2025In ProcessFALSE
- 6.04.06.04A position sensitive photo-diode will provide photon beam centroid information which shall supplement the orbit stability measurements by the BPMs05/16/2025In ProcessFALSE
- 6.04.06.04A GigE CCD/CMOS camera, externally triggerable with exposure times ranging from 10 nsec to 5 sec, shall be used to image the visible radiation05/16/2025In ProcessFALSE
- 6.04.06.04A commercially available gated camera with gate width of <2 nsec (compared to a minimum bunch spacing of 10 nsec) shall be used to detect injection oscillations and for beam studies.05/16/2025In ProcessFALSE
- 6.04.06.04The location of the X-ray pinhole monitoring system shall be TBD05/16/2025In ProcessFALSE
- 6.04.06.04The target resolution of the X-ray pin hole monitoring system shall be ~ 5 um (or as best that can be achieved with the machine parameters and commercial equipment) 5 um05/16/2025In ProcessFALSE
- 6.04.06.04The X-ray pin hole monitor shall provide independent measurement of the energy spread and horizontal/vertical emittance. H=V=15.4 nm05/16/2025In ProcessFALSE
- 6.04.06.04The X-ray pinhole photon beamline shall be equipped with gated cameras that will be employed to provide high resolution turn-by-turn profile measurements05/16/2025In ProcessFALSE
- 6.04.06.04A pinhole assembly including tungsten slits shall provide sufficient resolution to precisely measure the beam size05/16/2025In ProcessFALSE
- 6.04.06.04Several different size pinholes sizes shall be incorporated to allow easy alignment and measurements at different beam currents and energies.05/16/2025In ProcessFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The polarity of the ESR center bending magnet shall be capable of being wired in reverse to control the beam emittance and to damp the beam. The polarity will be dictated by the beam energy.05/16/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE
- 6.04The ESR FODO cell shall operate with a horizontal and vertical betatron phase advance of 60 degrees per arc section at beam energies of 10 GeV and below.05/16/2025ApprovedFALSE
- 6.04The ESR sextupole wiring scheme shall accommodate the required sextupole families needed per arc to create the 60 degree FODO cell phase advance at < 10 GeV.05/16/2025ApprovedFALSE
- 6.04The ESR FODO cell shall operate with a horizontal and vertical betatron phase advance of 90 degrees per arc section to maintain the required horizontal beam emittance in the MPT at 18 GeV. [Document#:EIC-SEG-RSI-005]05/16/2025ApprovedFALSE
- 6.04The ESR Sextupole wiring scheme shall create the required sextupole families needed per arc to maximize dynamic aperture at the 90 degree per FODO cell phase advance at 18 GeV.05/16/2025ApprovedFALSE
- 6.04The ESR vertical emittance shall be controlled by appropriate beam orbit manipulations and horizontal-vertical cross coupling.05/16/2025ApprovedFALSE
ESR-CRYO_CENT_PLANT : Cryogenics Central Plant
ESR-CRYO_IR10_SAT_PLANT : IR10 Satellite Cryogenics Plant
ESR-INJ
- 6.04The ESR injection system shall inject a single bunch onto the closed orbit.05/16/2025In ProcessFALSE
- 6.04The ESR injection system shall be installed in IR4.05/16/2025In ProcessFALSE
- 6.04The ESR injection point shall be upstream of IP4, where the ESR is installed along the outer tunnel wall.05/16/2025In ProcessFALSE
- 6.04The ESR injection system shall be capable of injecting one bunch per second.05/16/2025In ProcessFALSE
- 6.04The ESR injection system kickers shall deflect the incoming beam in the horizontal direction.05/16/2025In ProcessFALSE
- 6.04The ESR injection kicker pulse form shall be such that fewer than 10 stored bunches receive a kick that leads to betatron oscillations of these bunches that correspond to less than 0.1 RMS transverse beam sizes.05/16/2025In ProcessFALSE
- 6.04The ESR injection system shall upon injection of a new bunch into a given bucket extract the spent stored bunch by the same kicker pulse.05/16/2025In ProcessFALSE
- 6.04The ESR injection system shall deflect replaced (extracted) bunches towards a dedicated beam dump.05/16/2025In ProcessFALSE
- 6.04The ESR injection system beam dump for replaced bunches (replacement dump) shall be internal to the beam pipe.05/16/2025In ProcessFALSE
- 6.04The ESR injection system replacement dump shall be capable of absorbing one bunch per second, with the bunch parameters listed in the Master Parameter Table. [Document#: EIC-SEG-RSI-005]05/16/2025In ProcessFALSE
- 6.04The ESR injection system shall be designed with a 50 percent safety margin for absorption of spent bunches into the replacement dump.05/16/2025In ProcessFALSE
- 6.04The ESR injection system shall have radiation shielding provided around the replacement dump.05/16/2025In ProcessFALSE
- 6.04There shall be no slow injection/extraction bump in the ESR.05/16/2025In ProcessFALSE
- 6.04Incoming bunches from the RCS shall have their transverse emittances matched to the equilibrium emittances in the ESR within 10 percent.05/16/2025In ProcessFALSE
- 6.04The energy, bunch length, and momentum spread of the incoming bunches from the RCS shall be matched to the ESR bucket.05/16/2025In ProcessFALSE
- 6.04The layout of the ESR injection and extraction beam lines shall minimize the required kick angle by taking advantage of the split yokes of the APS quadrupoles in the area.05/16/2025In ProcessFALSE
ESR-INJ-DUMP
- 6.06.03The ESR replacement beam dump shall be located in IR4.05/16/2025ReviewedFALSE
- 6.06.03The ESR replacement beam dump shall be located downstream of the ESR injection kicker.05/16/2025ReviewedFALSE
- 6.06.03The ESR replacement beam dump shall be internal.05/16/2025In ProcessFALSE
- 6.06.03The ESR replacement beam dump shall be based on the ESR injection kicker, which extracts a single bunch towards the replacement dump as it injects a fresh bunch into the ESR.05/16/2025ReviewedFALSE
- 6.06.03The spent ESR bunch shall be extracted in the horizontal plane.05/16/2025ReviewedFALSE
- 6.06.03The ESR horizontal half aperture for the circulating beam at the location of the replacement beam dump shall correspond to at least 15 horizontal RMS beam sizes, based on the emittances defined in the Master Parameter Table (MPT), plus an additional 10 mm. [Document#: EIC-SEG-RSI-005]05/16/2025ReviewedFALSE
- 6.06.03The ESR vertical half aperture for the circulating beam at the location of the replacement beam dump shall correspond to at least 15 vertical RMS beam sizes, assuming a fully coupled beam based on the emittances defined in the MPT, plus an additional 5 mm. [Document#: EIC-SEG-RSI-005]05/16/2025ReviewedFALSE
- 6.06.03The ESR replacement beam dump shall be capable of safely absorbing one bunch per second, with the bunch parameters defined in the MPT. [Document#: EIC-SEG-RSI-005]05/16/2025ReviewedFALSE
- 6.06.03The material(s) of the ESR replacement beam dump shall be consistent with these requirements.05/16/2025ReviewedFALSE
- 6.06.03The geometry of the ESR replacement dump shall be consistent with the impedance budget requirements of the ESR.05/16/2025ReviewedFALSE
ESR-IR
ESR-IR-PS
ESR-IR-PS-B2ER : IR Magnet Power Supply B2AER (WBS 6.06.02.01)
ESR-PROT : Machine Protection
ESR-PROT-ABORT
ESR-PROT-COLL : Collimation System
ESR-PROT-DUMP
ESR-PROT-MPS
ESR-STRAIGHT : Straight Sections
- ESR-STRAIGHT EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04The phase advance of each straight section shall be tunable in order to optimize the dynamic aperture of the ESR.05/16/2025ApprovedFALSE
- 6.04The ESR straight sections IR02, IR04, IR10 and IR12 shall be based on FODO cells.05/16/2025ApprovedFALSE
- 6.04Ther ESR shall have matching sections at the ends of each of the straight sections to compensate for the different FODO cell lengths with respect to the arc FODO cells imposed by geometric constraints.05/16/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.03.01.01The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <2.73 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=008/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<408/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,08/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be a single function dipole with a vertical field direction.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)08/04/2025ApprovedFALSE
- 6.04.02.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)08/04/2025ApprovedFALSE
- 6.04.02.01The physical magnet length shall be <1.13 (m).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm).08/04/2025ApprovedFALSE
- 6.04.02.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)08/04/2025ApprovedFALSE
- 6.04.02.01The magnet good field aperture dAx required shall be 35.0345 mm.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet-to-magnet variability shall be < 0.1%.08/04/2025ApprovedFALSE
- 6.04.02.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).08/04/2025ApprovedFALSE
- 6.04.02.01The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm08/04/2025ApprovedFALSE
- 6.04.02.01The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region408/04/2025ApprovedFALSE
- 6.04.02.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)08/04/2025ApprovedFALSE
- 6.04.02.01*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000008/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.608/04/2025ApprovedFALSE
- 6.04.02.01*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.508/04/2025ApprovedFALSE
- 6.04.02.01*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.508/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall not be designed to limit CrossTalk requirements.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline08/04/2025ApprovedFALSE
- 6.04.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.08/04/2025ApprovedFALSE
- 6.04.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.08/04/2025ApprovedFALSE