Requirement Details
Electron Ion Collider
F-ESR-ARC.05
Requirement details, history, relationships and interfaces associated with requirement F-ESR-ARC.05
CURRENT RECORD
ARCHIVE RECORDS
RELATIONSHIPS
INTERFACES
Record Date: 03/03/2025 18:11 | |||
Identifier: | F-ESR-ARC.05 | WBS: | 6.04 |
Date Modified: | TBD: | FALSE | |
Status Date: | Status: | Approved | |
Description: | The ESR super-bends shall generate additional synchrotron radiation damping to support a large beam-beam parameter of 0.1 and to create the required horizontal design emittance in the Master Parameter Table (MPT) when the ESR is operated at energies below 10 GeV. [Document: EIC-SEG-RSI-005] | ||
Comments: |
Record Date: 02/24/2025 18:26 | |||
Identifier: | F-ESR-ARC.5 | WBS: | 6.04 |
Date Modified: | TBD: | FALSE | |
Status Date: | Status: | Approved | |
Description: | The ESR super-bends shall generate additional synchrotron radiation damping to support a large beam-beam parameter of 0.1 and to create the required horizontal design emittance in the MPT when the ESR is operated at energies below 10 GeV. [Document: EIC-SEG-RSI-005] | ||
Comments: |
Record Date: 01/27/2025 16:43 | |||
Identifier: | F-ESR-ARC.5 | WBS: | 6.04 |
Date Modified: | TBD: | FALSE | |
Status Date: | Status: | Reviewed | |
Description: | The ESR super-bends shall generate additional synchrotron radiation damping to support a large beam-beam parameter of 0.1 and to create the required horizontal design emittance in the MPT when the ESR is operated at energies below 10 GeV. [Document: EIC-SEG-RSI-005] | ||
Comments: |
Parents | |
G-ESR.03 | The ESR shall provide electron bunches having the bunch parameters specified in the MPT. [Document#:EIC-SEG-RSI-005] |
Children | |
P-ESR-INST-SLM.01 | The ESR shall have two synchrotron light monitors (SLM) and one X-ray pin hole monitor |
P-ESR-INST-SLM.02 | The longitudinal bunch profile monitor shall have a turn-by-turn capability based on a single bunch in the fully filled bunch train. |
P-ESR-INST-SLM.03 | TThe SLM systems shall measure the crabbing angle, longitudinal bunch parameters, H & V beam size and global coupling. |
P-ESR-INST-SLM.04 | The SLM shall be able to measure a crabbing angle of 12.5 mrad with accuracy of 10 % |
P-ESR-INST-SLM.05 | The SLM shall be able to measure the Longitudinal bunch parameters with accuracy of TBD - |
P-ESR-INST-SLM.06 | The SLM shall be able to measure the H & V beam size with accuracy of H=?? V=?? units |
P-ESR-INST-SLM.07 | The SLM shall be able to measure the Global coupling with accuracy of TBD - |
P-ESR-INST-SLM.08 | One SLM port shall be located downstream of a dipole in an appropriate location in the ESR, exact location not critical. |
P-ESR-INST-SLM.09 | The second SLM port shall be located in a complimentary location in the lattice to ensure all the necessary SLM measurements can be made. TBD - |
P-ESR-INST-SLM.10 | The SLM light extraction port mirrors shall be good quality, having a surface finish better than 1/10 Lambda |
P-ESR-INST-SLM.11 | The SLM light extraction port mirrors shall be water cooled to avoid image distortion. |
P-ESR-INST-SLM.12 | There shall be an enclosed SL transport from the light extraction port to the SLM optical lab rooms. Length to be determined by the distance to optical lab room, should be minimized to reduce vibration problems. |
P-ESR-INST-SLM.13 | The locations of the SLM optical lab rooms shall be TBD - |
P-ESR-INST-SLM.14 | The double-slit interferometer method shall be used to measure transverse beam size |
P-ESR-INST-SLM.15 | The standard transverse resolution of an SLM using visible light shall be ~60 um |
P-ESR-INST-SLM.16 | The resolution using the double-slit method shall equal to 10 um |
P-ESR-INST-SLM.17 | A streak camera shall be used to measure the bunch longitudinal profiles |
P-ESR-INST-SLM.18 | A position sensitive photo-diode will provide photon beam centroid information which shall supplement the orbit stability measurements by the BPMs |
P-ESR-INST-SLM.19 | A GigE CCD/CMOS camera, externally triggerable with exposure times ranging from 10 nsec to 5 sec, shall be used to image the visible radiation |
P-ESR-INST-SLM.20 | A commercially available gated camera with gate width of <2 nsec (compared to a minimum bunch spacing of 10 nsec) shall be used to detect injection oscillations and for beam studies. |
P-ESR-INST-SLM.21 | The location of the X-ray pinhole monitoring system shall be TBD |
P-ESR-INST-SLM.22 | The target resolution of the X-ray pin hole monitoring system shall be ~ 5 um (or as best that can be achieved with the machine parameters and commercial equipment) 5 um |
P-ESR-INST-SLM.23 | The X-ray pin hole monitor shall provide independent measurement of the energy spread and horizontal/vertical emittance. H=V=15.4 nm |
P-ESR-INST-SLM.24 | The X-ray pinhole photon beamline shall be equipped with gated cameras that will be employed to provide high resolution turn-by-turn profile measurements |
P-ESR-INST-SLM.25 | A pinhole assembly including tungsten slits shall provide sufficient resolution to precisely measure the beam size |
P-ESR-INST-SLM.26 | Several different size pinholes sizes shall be incorporated to allow easy alignment and measurements at different beam currents and energies. |
P-ESR-MAG-D13.01.01 | The magnet shall be a single function dipole with a vertical field direction. |
P-ESR-MAG-D13.01.02 | The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1) |
P-ESR-MAG-D13.01.03 | To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1) |
P-ESR-MAG-D13.01.06 | The physical magnet length shall be <2.73 (m). |
P-ESR-MAG-D13.01.10 | The magnet pole gap height and width shall be H=52 (mm), W=140(mm) |
P-ESR-MAG-D13.01.11.02 | Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad). |
P-ESR-MAG-D13.02.01 | The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1) |
P-ESR-MAG-D13.02.06 | The magnet-to-magnet variability shall be < 0.1%. |
P-ESR-MAG-D13.02.07 | Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad). |
P-ESR-MAG-D13.03.01 | The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm |
P-ESR-MAG-D13.03.02 | The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=0 |
P-ESR-MAG-D13.03.03 | The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.) |
P-ESR-MAG-D13.03.03.01 | *Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000, |
P-ESR-MAG-D13.03.03.02 | *Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<4 |
P-ESR-MAG-D13.03.03.03 | *Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6, |
P-ESR-MAG-D13.03.03.04 | *Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.5 |
P-ESR-MAG-D13.03.03.05 | *Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.5 |
P-ESR-MAG-D13.03.03.06 | *Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.5 |
P-ESR-MAG-D13.03.03.07 | *Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.5 |
P-ESR-MAG-D13.03.03.08 | *Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.5 |
P-ESR-MAG-D13.03.03.09 | *Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.5 |
P-ESR-MAG-D13.03.03.10 | *Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.5 |
P-ESR-MAG-D13.03.03.11 | *Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.5 |
P-ESR-MAG-D13.03.03.12 | *Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.5 |
P-ESR-MAG-D13.03.03.13 | *Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.5 |
P-ESR-MAG-D13.03.03.14 | *Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.5 |
P-ESR-MAG-D13.03.03.15 | *Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.5 |
P-ESR-MAG-D13.03.03.16 | *Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.5 |
P-ESR-MAG-D13.04 | The magnet shall not be designed to limit CrossTalk requirements. |
P-ESR-MAG-D13.05 | The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline |
P-ESR-MAG-D13.09 | The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years. |
P-ESR-MAG-D13.10 | The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years. |
P-ESR-MAG-D2.01 | The magnet shall be a single function dipole with a vertical field direction. |
P-ESR-MAG-D2.01.02 | The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1) |
P-ESR-MAG-D2.01.03 | To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1) |
P-ESR-MAG-D2.01.06 | The physical magnet length shall be <1.13 (m). |
P-ESR-MAG-D2.01.10 | The magnet pole gap height and width shall be H=52 (mm), W=140(mm). |
P-ESR-MAG-D2.09 | The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years. |
P-ESR-MAG-D2.01.11.02 | Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad). |
P-ESR-MAG-D2.02.01 | The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1) |
P-ESR-MAG-D2.02.04 | The magnet good field aperture dAx required shall be 35.0345 mm. |
P-ESR-MAG-D2.02.06 | The magnet-to-magnet variability shall be < 0.1%. |
P-ESR-MAG-D2.02.07 | Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad). |
P-ESR-MAG-D2.03.01 | The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm |
P-ESR-MAG-D2.03.02 | The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region4 |
P-ESR-MAG-D2.03.03 | The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.) |
P-ESR-MAG-D2.03.03.01 | *Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 10000 |
P-ESR-MAG-D2.03.03.02 | *Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<6 |
P-ESR-MAG-D2.03.03.03 | *Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.6 |
P-ESR-MAG-D2.03.03.04 | *Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.5 |
P-ESR-MAG-D2.03.03.05 | *Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.5 |
P-ESR-MAG-D2.03.03.06 | *Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.5 |
P-ESR-MAG-D2.03.03.07 | *Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.5 |
P-ESR-MAG-D2.03.03.08 | *Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.5 |
P-ESR-MAG-D2.03.03.09 | *Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.5 |
P-ESR-MAG-D2.03.03.10 | *Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.5 |
P-ESR-MAG-D2.03.03.11 | *Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.5 |
P-ESR-MAG-D2.03.03.12 | *Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.5 |
P-ESR-MAG-D2.03.03.13 | *Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.5 |
P-ESR-MAG-D2.03.03.14 | *Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.5 |
P-ESR-MAG-D2.03.03.15 | *Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.5 |
P-ESR-MAG-D2.03.03.16 | *Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.5 |
P-ESR-MAG-D2.04 | The magnet shall not be designed to limit CrossTalk requirements. |
P-ESR-MAG-D2.05 | The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline |
P-ESR-MAG-D2.10 | The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years. |
This function not yet implemented.