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Abstract

The procedure used for structure function measurements at HERA is briefly described and related to the properties of
kinematic reconstruction. The reconstruction methods of the inclusive deep inelastic scattering variables are reviewed
and their sensitivity to the energy and angle miscalibrations are discussed in detail. New prescriptions are introduced and
related to the standard methods in order to optimize the F, structure function measurement over the widest kinematic
range, both in the low x, low Q2 and in the high x, high 0 regions. The prospects for the future high 0 studies are briefly
discussed. © 1999 Elsevier Science B.V. All rights reserved.

Keywords; Deep inelastic scattering; HERA; Structure functions; Kinematic reconstruction; Systematic effects

1. Introduction

The measurement of the structure functions of
the nucleon is a major tool for the study of the
strong interaction and the behavior of the parton
densities in the hadrons. To reveal possible non-
standard small deviations from their well-estab-
lished behaviour described by the DGLAP [1-3]
evolution equations, such as BFKL effects at low
x or the presence of intrinsic charm in the proton at
high x to name just two of them, requires a precise
reconstruction of the deep-inelastic scattering (DIS)
kinematics over the widest possible kinematic

—_——

*Corresponding author. Tel: + 1-33-1-44-27-47-94; fax:
+ 1-33-1-44-27-46-38.

E-mail address: gregorio@mail.desy.de (G. Bernardi)

range. With the advent of the HERA electron—pro-
ton collider, this reconstruction no longer needs to
rely on the scattered lepton only, since the most
important part of the hadronic systemn is visible in
the almost hermetic H1 and ZEUS detectors. This
redundancy allows for an experimental control of
the systematic errors and of the radiative correc-
tions to the structure function measurement if it is
based on several independent methods to deter-
mine the usual DIS kinematic variables x,y, Q%

_9  _Pg
*“2pg YT PR
Q= —(—KP = — = o

with s being the ep center of mass energy squared,
Pk the 4-vectors of the incident proton and lepton,
and k' of the scattered lepton. Since many different

0168-9002/99/§ - see front matter © 1999 Eisevier Science B.V. All rights reserved.
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reconstruction methods have already been used at
HERA, it is a natural objective to optimize this
reconstruction, and to try to find the “best”
method, or at least to justify the use of a given
method instead of a kinematic fitting algorithm for
instance. In this report we briefly sketch in Section
2 the procedure used so far to measure F, at
HERA, and relate it to the effects of kinematic
reconstruction. In Section 3 we review the methods
of kinematic reconstruction used at HERA, and we
classify them on the basis of their properties. In
Section 4 we discuss possible improvements of
these reconstruction methods, in particular those
related to the study of low x physics. In Section 5
we study the effect of the hadronic final state and
scattered electron reconstruction errors on the kine-
matic methods in order to understand the choices
made in this field by the two HERA collaborations.
In Section 6, the high Q? case is treated in more
detail due to its future importance and also since
there are new possibilities in this kinematic regime.
In conclusion, we briefly provide some prospects
on the influence of these technical matters on the
structure function measurement program of the
next decade.

2. Structure function measurements

The cross-section for the DIS reaction
et + p —»e™ + X with unpolarized beams is
d?e 2n

Trdg? = 3ol Y +Fas07) — R0

— Y_xF3(x,@%] (1 + 4. @

In this equation « is the electromagnetic coupling,
F, is the generalized structure function which re-
flects both photon and Z° exchange, Fp is the
longitudinal structure function, xF; is a structure
function arising only from the Z° exchange, 4, is the
electroweak radiative correction. The helicity de-
pendence of electroweak interactions, is contained
in the functions ¥, =1+ (1 — y)~

At HERA, these three structure functions of the
proton can be measured, in particular ¥, which has
already been measured over several orders of mag-
nitude in x and Q* with a precision of about 5%.

Although apparently only one observable
{(d®a/dx dQ?) is related to the three structure func-
tions, the problem can be solved because in some
kinematic region only one of them has a relevant
contribution and/or because the beam conditions
(energy, lepton sign) can be changed, hence chang-
ing the coefficient in front of each of them, for
a given d’¢/dxdQ? In the following, we will not
study the procedure to derive them from the cross-
section measurement (which are described in Ref
[4] for instance), but concenirate on the determina-
tion of d*g/dxdQ>.

Generally, the value of d®¢/dxdQ? at the point
(x0,08) is experimentally determined by the number
N (“D” stands for Data) of DIS events observed in
an {x,0%) bin A centered around (x,,03), normalized
to the integrated luminosity L® accumulated dur-
ing the data taking and corrected by an acceptance
factor TY which depends on the event selection cuts
and on the detector response:

d’%¢  Ca N3 3
dxdQ®  LPTY )
C, is a numerical factor which takes into account
the surface of the bin. Actually, resolution effects
cause migration of events from one bin to other
bins, so the previous relation should be treated in
fact as a matrix relation, with the cross-section
being related to ali bins via the inverse of a matrix
T(ij), in which every matrix element (ij) gives the
probability that an event originating from the bin
i is reconstructed in a bin j. Thus the double differ-
ential cross-section measured at the center of the
bin (7) is

d*c C iy
wag =~ e M) @
The matrix T can be obtained by simulating a large
sample of DIS events, provided the simulation is
able to reproduce the detector effects. However to
solve Eq. {4) one needs to invert this matrix. This is
a non-trivial task due in particular to numerical
instabilities [5-7], which has not been done yet for
the published HERA structure function measure-
ments. Instead, an iterative procedure is used to
solve Eg. (3). Obviously, if the structure function
used in the simulation is equal to the one to be
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measured, and assuming that 7% = TS (“S” stands
for simulation), we have

d’c  NRLS d%° s
dxdQ®  LP N3dxdQ? ©)

This equation is solved iteratively, starting the
simulation from a “guessed” structure function para-
metrization, and replacing it at each iteration by
the parametrization obtained from a fit to the
structure function “measured” at the previous iter-
ation. In three or four iterations the result is stable
within 1% or less (see Ref. [8] for a more detailed
discussion} in the measureable regions. These
measureable regions are empirically characterized
by values of T, close to unity. In order to define
them in a more rigorous way and to understand
their relation to the kinematic reconstruction, we
will now study the T, factors.

‘We distinguish two ways of defining the bin A:
one (A,t) based on the “true” kinematic variables,
defined at the hadronic vertex; the other (A, r) based
on the reconstructed variables, We also consider
the effect of the “event selection cuts” on the num-
ber of events (Ni) compared to the number of
events before the cuts (N,). These “cuts™ are im-
posed to improve the precision of the measurement,
but can have an influence on the distribution of the
events in the kinematic plane, so the two cases must
clearly be separated. With these definitions, we
deduce from Eq. (3) that T4 can be expressed as
[9,10]

c c
— NA,r NA.!

T, = Ny, =gp,-As With gy, = K and
Ay =27 6
=R (©

The first term (g, ,) characterizes the “efficiency” of
the cuts in the bin A, while the second one can be
defined as the “smearing acceptance” of the bin A,
since only the smearing of the kinematic recon-
struction is involved in its variations. Since the cuts
are choosen to have a high efficiency, we will not
discuss here the difference at the percent level which
might occur between ¢, as determined on the data
and on the simulation, but focus on the behavior of
the smearing acceptance, which can have large vari-
ations (up to hundreds of percents) across the kin-

ematic plane, hence determining the measureable
regions. The smearing acceptance variations are
better studied considering the (A,i) subset which
contains the events belonging to (A,]) and (A7)
Then A can be rewritten as

SA . Nz i NZ i

Ay=— th §, =— d P,=—

2=p, WOATRg, M OTATNG)
NA,i = NA.tnA,r- (7)

Saand P, are referred as the stability and the purity
of the bin A, since they characterize respectively:

# The proportion of genuine events of a bin, which
are reconstructed in the same bin. S, character-
izes the number of events which migrate outside
of the bin A.

e The ratio of genuine events of a bin reconstruc-

ted in the same bin divided by the total number
- of events reconstructed in that bin. This last
number is influenced by the number of events
originating from other bins which migrate info A.

The obvious goal is to maintain a stability and
a purity as close to unity as possible, hence A, will
also be close to 1. However 4, can be close to unity
even for a low stability bin, if its purity roughly
matches its stability. In order to ensure a reliable
measurement of the cross-section, we will thus en-
force conditions on S, and P, separately, rather
that only on their ratio. To make a concrete
example let us examine the three standard recon-
struction methods used for DIS neutral currents at
HERA, in the (x,0?) binning used by the H1 collab-
oration, i.e. 8 (5) bins per order of magnitude in Q>
{(x) [11]. The smearing acceptance, stability and
purity for the H1 detector are shown in Fig. 1 for
the electron, Double-angle [12,13] and Z [14]
methods, in x bins, at Q* =20GeVZ2. As men-
tioned, the acceptance can be equal to unity, while
the stability and the purity are low { ~ 25%), like
for instance at the lowest x point in the DA method.
Conversely, by requiring a “reasonably” high stab-
ility and purity (we will use throughout this paper
a minimum of 30%, as the H1 collaboration did for
this binning [117), we ensure an acceptance close to
unity.

We observe in Fig. 1 that the stability has a
more regular behaviour than the purity or the
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Fig. 1. Smearing acceptance, stability and purity at Q2 = 20 GeV? for the three kinematic reconstruction methods: ¢ (open triangles),

DA (open squares), X (closed circles).

acceptance, since it reflects only the combination of
the resolutions in x and Q% in a given bin. The
stability can be increased by enlarging the size of
the bin. Although the stability and purity are re-
lated quantities (they share the same numerator),
the purity is more irregular because it is influenced
by events coming from other bins, which may be
populated in a different way, and have different
resolutions in the kinematic variables. Like the
stability, the purity can also be increased by enlarg-
ing the bin size; however the migrations inside the
bin depend on several factors (resolutions in differ-
ent bins, population of different bins, structure
function values in regions which are not “measur-
able”, radiative effects), rendering the control of the
purity more delicate than the stability. Thus, in the
following, when comparing different methods, we
will make the comparison on their purity, but only
in the bins having a minimum stability (chosen to
be 30%).

3. Kinematic reconstruction methods at HERA

In the naive quark-parton model (QPM), the
lepton scatters elastically with a quark of the pro-
ton, and the two body final state is completely
constrained using two variables, if we know the
initial energies labeled E; and P, of the electron
and proton. Similarly, the DIS variables can be
determined using two independent variables, which

can be the energy (E) of the scattered electron, its
polar angle' (§) or independent quantities recon-
structed out of the hadronic final state particles.
For instance X, obtained as the sum of the scalar
quantities Ey, — p., of each particle (assumed to be
massless) belonging to the hadronic final state,
Pr.s a8 its total transverse momentum or the inclus-
ive angle y of the hadronic system” which corre-
sponds to the angle of the scattered quark in the
QPM:

= Z (Eh - pz.h):
h

Prn= \/@ px,h) Ty (Xh) p_v,h> 2,

¥ xz
m(i) -2 ®)

Ey, Pxs Py,po Pz a1€ the four-momentum vector
components of each hadronic final state particle. 2
is by construction minimally affected by the losses
in the forward direction due to the beam pipe hole
in which the target jet and the initial state gluon

1The positive z-axis is defined at HERA as the incident
proton beam direction.

2We can define the similar quantities for the scattered elec-
tron:
Z.=E(l —cosf), pr.=Esiné, ie tan(0/2)=Z/pr.
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radiation tend to disappear. pry covers the other
spatial dimensions, and is more sensitive to forward
losses. Thus to improve the kinematic reconstruc-
tion we should avoid using pr ; directly. We can use
y instead, which carries the pr, information and is
better measured since in the ratio Z/pr, the energy
uncertainties cancel to first order and the effect of
the losses in the forward beam pipe is diminished.
Thus the optimal four “detector oriented” variables
to characterize deep inelastic scattering at HERA
are [E,8,Xy].

Using these four input variables, there are three
basic methods which make use of only two of them
at a time, and which are precise enough to allow
sensible kinematic reconstruction, namely:

¢ The electron only method (¢) which uses E
and 6.

¢ The double-angle method (DA) which uses & and
y [12,13].

¢ The hadrons only method (h) which uses X and
y [15]

In the following, all methods (for instance the DA)
using some information from the hadronic final
state will be called “hadronic”, although strictly
speaking there is only one inclusive hadronic
method (a complete set of formulae is given in the
appendix). The h method will not be discussed
in the following since it is not precise enough
compared to the others, for neutral current DIS
events.

More than two variables are needed to determine
the kinematics if the incident energy is unknown,
which is the case when the incident electron emits
a photon before the hard collision. This photon is
often undetected since it is emitted colinearly with
the incident electron beam direction, and can thus
escape inside the beam pipe. In this case three
variables are needed to reconstruct the kinematics.
For instance, y, = Z/2E, can be replaced by
yr=Z/Z + Z,) to take into account the missing
energy due to the escaping photon. A further im-
portant characteristic of y; is that at high y, ©
becomes the dominant term in the denominator
and thus experimental errors on the X~ measure-
ment tend to cancel between numerator and de-
nominator. In the X method [14], Q% is
constructed, like yr to be independent of QED

initial state radiation (ISR) and to be optimal in
terms of resolution; thus pr. is used instead
of Proat

QF=rt/l—y)  x:=Q¥sys &)

Insensitivity to ISR on x; is achieved simply by
replacing s by 2Py(X + X,), thereby obtaining the
IZ method which is based on (E,§,%). The DA
method was also rendered ISR independent by
using E to reconstruct the initial electron beam
energy. The IDA method [12,13] obtained in this
way i$ thus based on (E,f,y). The complete formulae
and the comparison of these two methods can be
found in Ref. [14]. They will not be considered
in the following, since the gain obtained by the
complete independence to ISR is not sufficient to
compensate the loss of precision induced by the
reconstruction of the incident electron energy.

Fig. 2 shows the purity of the ¢, DA and
2 methods as a function of x in bins of 0* The
properties of the three standard methods to recon-
struct the kinematics of neutral current DIS events
at HERA are clearly visible: high precision of
the e method at high y with a severe degradation at
low y, good precision for the X method in the
complete kinematic range, high precision of the DA
method at medium ( ~ 10*GeV?) and high Q2
{ ~ 10* GeV?) with a severe degradation at low Q2
( ~1GeV?),

The “hadronic” methods have already been
shown to display at low x and low Q2 a rather
imprecise reconstruction of 0% A simple solution
to this problem is to use Q2 and to obtain, via
Q? = xys, either x from a hadronic y or y from
a hadronic x. For instance we have the mixed
method [16] (x,, is obtained from y, and QZ) which
has a good precision at low y [17,18]. The precision
at high y can be improved by using the mixed
Z (mZ; ymr = ys and Q%4; = Q?), or better the eX
method (x.; = x; and Q% = 0?) as was shown in
Figs. 2 and 3 of Ref. [14].

Another approach to combining two methods
which have complementary properties has been
tried by the H1 collaboration in the analysis of the
diffractive  structure function [19]. Since
0% = 4E}(1 — y)/tan®(8/2) both in the ¢ and DA
methods, an “average” method (labeled here ADA)
has been introduced, in which y,p, is obtained by
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Fig. 2. Purity at 0* = 1, 5, 50, 500, 5000 and 25 000 GeV? for the three kinematic reconstruction methods: e (open triangles), DA (open

squares), 2 (closed circles).

weighting y. and ypa by y and (1 — y) respectively,

/__H’_.VADA = y? + ypall — Ypak

_ 4E%(1 — Yapa)

Qhon ="tz (10)

On the non-diffractive DIS events a better comp-
lementarity is actually achieved in the AX method
by “averaging” the e and the 2 methods [20].
However neither the AX mor the ADA method
bring an improvement compared to the simpler eX
method as can be seen in Fig. 3: the AZ method is
giving similar performances to the eX one except at
low x where it is slightly less precise, while the ADA
method is better at high x and high 0%, but weaker
elsewhere, in particular at low Q7.

Before ordering these methods to underline
their relations, let us introduce another method
derived from the DA method, which will be

useful later, for the understanding of more
complicated methods and for the study of error
propagation. Following the logic used for the
T method, the inclusive hadronic angle y can be
replaced by ;s defined by tan(ys/2) = 2 /1, SINCE
transverse momentum conservation implies
Pra = Pt €veN in the case of colinear ISR. This
replacement improves the precision on the had-
ronic angle but has the obvious drawback of intro-
ducing a sensitivity to the electron energy
reconstruction errors, which is absent in the DA
method. This DX method defined using v instead
of y in the DA formulae, gives

_ tan(yz/2)
oI = an(re/2) + tan(9/2)

Z/pT,e

= Jr- (11)

B Z/pT,e + Ze/pT,a B
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Fig. 3. Purity at 0% = 1, 50 and 5000 GeV? for the three kinematic reconstruction methods: AZ (open triangles), ADA (open squares), eZ

{closed circles).

The Q2; and xp; are nevertheless different from
their 2 counterparts (although xpz = x,) and we
will see in the Section 5 how the hadronic and
electron miscalibrations affect them.

In Fig. 4 the distribution of the reconstructed
X (%) divided by the true x (x,.,) and the equiva-
lent distribution for Q* are compared for the e, DA,
X, DX methods at high y (0.3-0.7).% This figure, as
all the figures in this paper, is obtained from
a deep-inelastic sample simulated in detail in the
H1 detector (1995 set-up) as described in Ref. [21].
All known effects both from the detector and from
the physics point of view (structure functions, QED
radiation) are included in the simulation, which has
been shown to give a good description of the H1
data in the complete kinematic range [21-23]. The
uncertainty on the electron energy, on the polar
angle and on the hadronic energy scale are typically
1%, 1mrad and 4% respectively. For Figs. 4 and 5,
acut at 9% > 7 GeV? has been made, which corres-
ponds at HERA to the region measured with the
highest precision. In Fig. 4 the excellent resolution
at low x and low Q? of the e method is clearly
visible. Only the X method has a comparable, al-
though lower, resolution in x. In @ the weakness of

3 At low y, since all hadronic methods give rather similar
results in terms of resolution, (contrary to the e method which
strongly degrades), the comparison is better made using the
plots of the purity (Fig. 2). The purity of the DX method is
aimost identical to the Z one at low y (not shown),

all these hadronic methods is visible. The DZ
method is more precise than the DA one at low 02,
as expected from the way it is constructed. Unfortu-
nately the e method is not precise at low y (as can
be seen in Fig. 2), so either the structure function
measurement is done using different methods in
different regions of the kinematic plane, or a precise
method over the complete kinematic plane is found.
Both these approaches have already been used at
HERA, but for the more precise future measure-
ments it is mandatory to focus on the second case
and to optimize the reconstruction method to be
used.

To conclude this section, the hadronic methods
are ordered in Table 1: each column represents the
type of approach followed (sigma, double-angle,
mixed), while each row represents a prescription to
derive them: basic method, ISR independent, “opti-
mized resclution”. The relations become clear and
the effects coming from the type of reconstruction
used can be disentangled, by comparing methods
from the same row, from those due to the detector
response which can be studied by comparing
methods from the same column.

4. Kinematic reconstruction improvements

The description of the methods given above sug-
gests that it might be possible to further optimize
the reconstruction precision. The most direct way
would be to perform a fit of the kinematics using all

:;E I

?
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Fig. 4. Distribution of X,../%,. (8} and @2./02, (b) for the ¢, DA,Z and DZ methods for ¢* > 7 GeV? at high y (0.3 < y < 0.7);
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Fig. 5. Distribution of Xmapoa/Xgen (8) and Q2 uea/Q2- (b) for the e, Z, rZ and +DI (= PT) methods for §* > 7 GeV? at high
y(03<y<Q7.

information available as described for instance in
[24,25]. However the redundancy is not large, since
P, 18 not precise enough to be helpful in neutral
current events, except at high Q2. Furthermore, the
method requires a good knowledge of the uncer-
tainties of the measured variables over all the kin-
ematic plane and the lack of statistics has prevented
the production of a detailed enough map of all
imperfections of the detectors. We will thus concen-
trate on the “analytic” improvement of the

hadronic energy: £ may be rescaled to approach its
true value using the formula ¥ + X, = 2E,, if the
error on X, is assumed to be small compared to the
X one.* But if ¥ is expressed as 2E, — ¥, in the h or

*Indeed, the relative error on ¥ increases when going to lower
x and lower @2 since the hadronic final state contains an
increasing fraction of low energy particles which are measured

hadronic methods, in particular by “rescaling” the tectors.
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Table 1

Classification of the hadronic methods. For the methods using
the Double-angle approach, the correponding hadronic angle
is also given. Note that the mZ method is ISR independent only
in y. The methods displayed in the last row are discussed in
Section 4 -

Sigma  Double-angle  Mixed

Basic method h DA (9 m

1SR independent 1z IDA {y) mX
Optimized method z DX (ys} e
Rescaled method r¥ PT (y5) reX

X2 method, these methods become identical to the
¢ method. An intermediate solution between the
2 and e method can be obtained by using the
rescaling factor defined as

L 2E
T X4z,

(12)

as was already implicitly done in some of the pre-
viously discussed variables:

QZ
Ye=1¥Vn Yer=17V5 Q% = Te; Q%}: = QST

(13)

An improvement on the X kinematic variables at
low x is obtained by directly rescaling X, thereby
defining an rZ method:

rZ Pi.

= —_— 2 = ,
_?‘Z+}:e er 1—_1’»:

Yz (14)
The corresponding “rescaled” hadronic angle is
defined as tany,; = rZ/pr,. and allows to define
a rescaled DX method (fDZX). This method was
already derived in a different way by the ZEUS
collaboration, and is called the “PT” method® [8].
Similarly an reX method is defined, using x,.r and
Q2. With these definitions we create the last row of
Table 1 with the “rescaled” methods. These new
methods are compared to the e and X methods in
x and Q2 in Fig. 5 in the same Q2y intervals as

% Actually, the “PT” method includes also a calibration of the
hadronic final state using pr.. Here we single out the analytic
definition of the method.

those of Fig. 4. With the rescaling, xpr (x,y) has
indeed a better resolution than xpy (x5). However,
xpr I8 still less precise for y values between 0.3 and
0.7. than the simple, non-rescaled, x5, due to the
propagation of the hadronic error in these two
methods (cf. Section 5). The difference in x between
the rescaled methods and the ¢ method is now
smaller, which is also true in Q* where the rescaled
methods (rZ and PT) are similar and definitely
better than the non-rescaled ones (¥ and DX). By
using the QZ, the reX combination allows a further
improvement with respect to the two other rescaled
methods or to the eX method. The overall behav-
iour in the complete kinematic plane of one of the
rescaled methods (the PT), compared to the e can
be judged by their purity shown in Fig. 6. They
both show a precise behaviour over the complete
kinematic plane. The eZ method is more precise at
low x, at high Q?, and has a comparable or better
purity than the e method (compare Figs. 2 and 6)
even at low x and low Q2.

Before examining in the next section the propa-
gation of the errors on the kinematic variables, let
us consider the other characteristic of the rescaling,
ie. the increased dependence on the electron vari-
ables, since the rescaling factor depends also on the
reconstructed energy and angle of the scattered
electron. We can indirectly demonstrate the in-
creased dependence by applying a further rescaling,
and obtain three new methods: r, 2, r,DX and rye 2.
The v, rescaling factor is obtained recursively
(assuming ro = L,r; =r and y, s = y;) using the
following formulae:

2E,
Fno1Z + 2

Yrouz
yr,.Z‘ =

=——~==  and 7, =
Vg + 1= !

(15)

The resolution at high y improves at each rescaling
and actually y, ; — y. when n— oo ® implying that
the three approaches (r,2,r,D2 and r,eX) converge
to the e method. This means that the gain in pre-
cision at high y is obtained at the expense of a loss
of precision at low y. Furthermore the “hadronic”

$Since y,.y can be written as 1/l +u-+u*+ - +
Wl wys), withu=1—y,.
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Fig. 6. Purity at 9 = 1, 5, 50, 500, 5000 and 25000 GeV? for the PT (open squares) and eX (closed circles) kinematic reconstruction
nethods. With the high-precision measurement of the electron energy in the H1 detector, the X method is better than the PT method at
ow x and also at high (2 (see Fig. 7 for further comments on this matter).

methed becomes more influenced by the e errors
and the significance of the cross-check of the sys-
tematics which can be made when using the e and
Z methods independently is reduced at each rescal-
ing. However, we will now study the influence of the
hadronic and electron reconstruction errors on
these methods, to see when the usage of a rescaled
method is worthwile.

5. Error propagation on the kinematic variables

In this section we will first consider that the
hadronic final state reconstruction is the dominant
source of systematic error on the kinematic vari-
ables, and thus neglect the effect of the electron
reconstruction, which will be considered specifi-
cally in the second part of the section. This approxi-
mation is legitimate at HERA, in particular at low
02, since the energy carried by the hadronic final

‘siny X pra

state which is visible in the detector becomes on
average smaller as Q7 decreases. Since the hadronic
final state is a combination of several particles
which enter the detector in different places, the
precise effect of the detector response can be ob-
tained only via a complete detector simulation/re-
construction program. However we can start by
examining the propagation of the observable errors
on the kinematic variables, before comparing the
results to a realistic simulation. Namely we will
consider errors like 62/% and dpg,,/pr.r Which are
related to the error on the hadronic angle &y by’

Oy _ 90X dprs (16)

7In all the error equations, negative signs may appear in front
of some terms, allowing to know the direction of the bias
introduced by a given measurement error. When the terms are
independent, the actual total error squared is obtained as usual,
ie. by quadratically summing the different terms.
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