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I discuss how to use quenching weights in energy loss computations for hadron quenching in nDIS.
I also discuss a few ideas on how to implement the computation in the PQM simulation. Finally, I
quickly introduce some observables of interest.

I. INTRODUCTION

I will discuss hadron quenching in nuclear Deep In-
elastic Scattering (nDIS) in the framework of energy loss
models. In particular I will use the Salgado-Wiedemann
quenching weights [1] computed in the BDMS formalism.
Most formulae come from [2, 3], and several results have
been presented in [4].

The nDIS medium, i.e., the target nucleus is very inter-
esting, because it removes 2 of the biggest uncertainties
in energy loss computations of hadron quenching in A+A
collisions, namely, the initial medium density and its ex-
pansion dynamics. Indeed the nuclear density is known
and fixed in time. Thus, energy loss models can be tested
in nDIS before being applied to A+A collisions.

The kinematic variables are recalled in Fig. 2 and Ta-
ble I. Note that x, ν, Q2 are not independent: x =
Q2/(2Mν) in the target rest frame; in the following I
will choose ν and Q2 as independent variables, because
they are the most relevant in our discussion. I would like
to remark that in DIS we can experimentally measure
all the listed variables, especially ν, Q2 and zh. This is
markedly different from the situation in hadronic colli-
sions. The hadron energy in nDIS is the analog of pT

in midrapidity hadron production in hadronic collisions.
The hadron transverse momentum in DIS, is defined with
respect to the photon direction. Its analog in hadronic
collisions would be the transverse momentum with re-
spect to the jet axis.

The nuclear geometry is described by the nuclear den-

sity distribution ρA(~x), where ~x = (~b, z), z is the co-
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FIG. 1: Geometry of hadron production in nDIS in the nu-
cleus target rest frame. The particles 3-momenta are in paren-
theses. When the quark is collinear with γ∗ the problem is
rotationally invariant around the y axis. The non-collinear
case is discussed in Appendix A.

ordinate along the direction of the virtual photon and
~b its impact parameter. The center of the nucleus lies
at ~x = (~0, 0). The interaction of the virtual photon

γ∗ with the quark q happens at (~b, y). For simplicity,
following LO pQCD computations, I assume the quark
collinear with the virtual photon, and neglect the par-
ton intrinsic transverse momentum kT and the hadron
mass (mh/ν→0). Then, Eh ≈ zhν and the fractional mo-
mentum z in the fragmentation functions is z ≈ zh, see
Appendix A. This assumption should be relaxed when
using the PYTHIA generator, primarily because partons
are given an intrinsic transverse momentum kT . The gen-
eralized nuclear geometry and the relationship between
Eh, zh, z, ν are discussed in Appendix A.

I will be interested in calculating the hadron multiplic-
ity ratio RM defined experimentally as follows:

Rh
M (zh) =

1

NDIS
A

dNh
A(zh)

dzh

/

1

NDIS
D

dNh
D(zh)

dzh
, (1)

i.e., the single hadron multiplicity on a target of mass
number A normalized to the multiplicity on a deuteron
target as a function of the hadron’s fractional energy zh =
Eh/ν, where ν is the virtual photon energy (in the target
rest frame). The same ratio can be studied as a function
of ν, Q2 and the hadron transverse momentum phT .

II. QUENCHING WEIGHTS IN nDIS

A medium is characterized by its transport coefficient,
which is defined as the medium-induced transverse mo-
mentum squared per unit path length of a probe:

q̂ = 〈k2
T 〉medium/λ , (2)

where λ is the mean free path. For a static and uni-
form medium of length L, the parameters which char-
acterize medium-induced gluon bremsstrahlung are the
characteristic energy ωc of the radiated gluon, and the
size parameter R, which accounts for the fact that the
gluon transverse momentum kT must be smaller than its
energy ω:

ωc =
1

2
q̂L2 (3)

R = ωcL . (4)
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Four-momenta of the particles
Particle In target rest frame

Incident lepton k = (E,~k)

Scattered lepton k′ = (E′, ~k′)

Target nucleon/nucleus P = (M,~0)
Virtual photon q = (ν, ~q)
Produced hadron p = (Eh, ~p)

FIG. 2: Semi-inclusive hadron production in deep inelastic scattering on a target T in the pQCD factorization approach at
leading order. Parton distribution functions (PDF) and fragmentation functions (FF) represent the non-perturbative input.
Four-momenta of the particles involved in the process in the target rest frame are given separately.

Variable Covariant Target rest frame

Q2 = −q2 ≃ 2Mxν Negative four-momentum squared
of the virtual photon.

ν = q·p√
P2

= E′ − E Energy of the virtual photon in
the target rest frame.

x = −q2

2P ·q = Q2

2Mν
Bjorken scaling variable.

zh = p·P
q·P = Eh

ν
Fraction of the virtual photon
energy carried by the hadron.

y = q·P
k·P = ν

E
Fraction of the incident lepton
energy transferred to the target.

W 2 = (P + q)2 = M2 + 2Mν − Q2 Invariant mass squared of the
total hadronic final state.

TABLE I: Definitions of the kinematic variables for semi-inclusive DIS.

The nucleus density is static but non-uniform. We write
λ = (σρA)−1, where σ is the probe cross-section, and as-
sume σ to be fixed and independent of the atomic num-
ber. Then, we can define a position-dependent transport
coefficient,

q̂A(~b, y) =
q̂0

ρ0
ρA(~b, y) , (5)

where q̂0 = q̂Ā(0, 0) is the transport coefficient at the
center of a reference nucleus of atomic number Ā, and
ρ0 = ρĀ(0, 0).

We consider a quark struck at (~b, y) which propagates
in the nucleus along the y direction. We define its average
path-length L̄A:

L̄A(~b, y) = 2

∫∞

y dz (z − y)ρA(~b, z)
∫∞

y
dz ρA(~b, z)

(6)

the average nuclear density ρ̄A seen by the quark:

ρ̄A(~b, y) =

∫∞

y
dz ρA(~b, z)

L̄A(~b, y)
, (7)

and, from Eq. (5), the average transport coefficient ex-
perienced by the quark:

¯̂qA(~b, y) =
q̂0

ρ0
ρ̄A(~b, y) . (8)

For a uniform hard-sphere nuclear density ρA(r) =
ρ0θ(RA − r), the above definitions give L̄A = RA − y,
ρ̄A = ρ0, and ¯̂qA = q̂0 as it should be.

According to Eqs. (3)-(4), we can define the average
characteristic gluon energy ω̄c and size parameter R̄ as
follows:

ω̄c(~b, y) ≡ 1

2
¯̂qA(~b, y)L̄2

A(~b, y) =

∫ ∞

y

dz (z − y)q̂A(~b, z)

(9)

R̄(~b, y) ≡ ω̄c(~b, y)L̄A(~b, y) =
2ω̄2

C(~b, y)
∫∞

y
dz q̂A(~b, z)

, (10)

where in the last equalities there is no explicit depen-
dence on the definition of the average medium length
L̄A. These equations correspond to Eqs. (8) and (10) of
Ref. [6]. Note that they depend on only one parameter,
q̂0, analog of k in the cited reference. Finally, we can
easily see that

¯̂qA(~b, y) =
2

L̄2
A(~b, y)

∫ ∞

y

dz (z − y)q̂A(~b, z) , (11)

as in the SW paper [7], see Eq. (7) in Ref. [6]. In that pa-
per it was proven that one can approximate the quench-
ing weight for a dynamically expanding medium with the
quenching weight for an equivalent static (and uniform)
medium charachterized by the average ¯̂qA. However, the
natural parameters of the quenching weight are the gluon
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charachteristic energy and the size parameter. Hence, the
scaling law is more properly expressed by saying that the
equivalent static and uniform medium is charachterized
by the average ω̄c and R̄ [6]. In nDIS we have a static
but non-uniform medium. For a propagating parton, the
spatial non-uniformity is equivalent to a time-evolution of
the medium. Therefore, as an ansatz, we may generalize
the SW scaling law to the case of the static but non-
uniform medium encountered in nDIS, and use Eqs. (9)-
(10) in the quenching weight evaluation. This ansatz will
need to be better substantiated in the future.

A few things need to be remarked.

• The SW scaling law has only been established for
the special case of a Bjorken-like medium expan-
sion, q̂(ξ) = q̂0(ξ0/ξ)α and q̂0 = q̂(ξ0). As remarked
above we should remember that in nDIS it is only
an ansatz.

• The scaling law was shown in [1, 7] to be approx-
imately valid only for R̄ & 100. In applications to
nDIS, q̂A < 1GeV2/fm and one has typically pretty
low values of R̄ (especially for quark produced close
to the far side of the target nucleus and for small
nuclei). I did not yet numerically check the typical
〈R̄〉, but it would be interesting to do.

• ω̄c and R̄ depend on only 1 parameter, q̂0, which
can be fixed on, say, π+ quenching on a Kr target.
An eyeball fit [4] gives q̂0 = 0.5 − 0.7 GeV2/fm,
which is larger than Arleo’s fit of q̂ = 0.14 GeV2/fm
[10, 11]. The reason for this discrepancy, is that
Arleo’s computation is done at fixed length L̄A =
(3/4)RA, and does not include finite size correc-
tions (R̄ = ∞). Also, Arleo uses αs = 0.5 and SW
use αs = 0.3 in their quenching weight computa-
tion. See Sect. VI for a full discussion.

III. ANALYTICAL HADRON QUENCHING
COMPUTATION

We assume that the struck quark hadronizes well out-
side the medium, and that hadron attenuation is due to
medium-induced gluon radiation off the quark. At LO,
the initial quark energy is Eq = ν. After exiting the
medium, the quark energy is reduced to Eq = ν − ǫ,
where ǫ is the total energy of the radiated gluons. This
energy loss translates into a modified fragmentation func-
tion [4, 11]:

D̃h
f/A(zh, Q2;~b, y) =

(1−zh)ν
∫

0

dǫ p(ǫ; ω̄c, R̄) (12)

× 1

1 − ǫ/ν
Dh

f (
zh

1 − ǫ/ν
, Q2) + p0(R̄)Dh

f (zh, Q2) ,

where the dependence on (~b, y) on the r.h.s. is implicit in
ω̄c and R̄ defined in Eqs. (9)-(10). The quenching weight

P(ǫ) = p(ǫ) + p0δ(ǫ) [1] is the probability distribution of
an energy loss ǫ, with p(ǫ) its continuous part and p0 the
probability of no energy loss. The quenching weight is
computed for a static and uniform medium with charac-
teristic gluon energy ω̄c and size parameter R̄. Note that
as it stands, (12) implies use of the “non-reweighted”
quenching weight of Ref. [6], which amounts to consider-
ing absorbed the partons with energy loss ǫ ≥ Eq. Use of
the “reweighted” quenching weight requires dividing the
r.h.s. of (12) by

∫ ν

0 dǫP(ǫ).

At leading order (LO) in perturbative QCD, the
hadron multiplicity is computed as follows:

1

NDIS
A

dNh
A(zh)

dzh
=

1

σlA

∫

exp. cuts

dQ2 dν
∑

f

e2
fqf/A(x, Q2)

× dσlq

dQ2dν
D̃h

f/A(zh, Q2) ,

(13)

where we averaged the modified FF according to the dis-
tribution of γ∗q interaction points:

D̃h
f/A(zh, Q2) =

∫

d2b dy ρA(~b, y)D̃h
f/A(zh, Q2;~b, y) .

(14)

The LO computation is known to underestimate the ex-
perimentally measured average 〈ν〉zh

and 〈Q2〉zh
in each

zh bin [12]. This may result in an incorrect computa-

tions of D̃h
f/A(zh, Q2). The problem is likely to be solved

at NLO, and is not present in the BUU Monte Carlo
simulation of Falter et al. [13]. An effective way of cir-
cumventing the problem is to approximate Eq. (13)

1

NDIS
A

dNh
A(zh, Q2

dzh
≈ 1

σlA

∑

f

e2
fqf

(

〈x〉zh
, 〈Q2〉zh

)

× dσlq

d〈Q2〉d〈ν〉 D̃
h
f/A

(

zh, 〈Q2〉zh

)

.

(15)

The value of the average variables in each zh-bin is taken
from the measured values. Often, 〈x〉 is not available and
is replaced by 〈x〉 ≈ 〈Q2〉/(2mN 〈ν〉) [26]

This approach has been used in [4, 5], and a detailed
numerical study of pion quenching at HERMES is dis-
cussed in Sect. VI.

Remark:

• A criticism of this approach may be found in [8, 9].
I don’t quite understand it, though. The “dipole”
model presented there also combines induced en-
ergy loss (computed in an unconventional way)
with prehadron absorption.
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IV. IMPLEMENTATION IN PQM

The Parton Quenching Model (PQM) is a Monte Carlo
evaluation of the analytical quenching computation in
A+A collisions [6]. It is based on PYTHIA to simu-
late an e+p collision. PYTHIA is based on LO parton
cross-section, but due the inclusion of an intrinsic par-
ton momentum it actually generates non-collinear par-
tons. (Some non-collinearity might also be due to the
parton generation algorithm; it would be interesting to
check this by setting the intrinsic kT to zero). For this
reason, in the following I will not assume E = ν and
kT = 0 as done in the analytic LO pQCD calculations.
The generalized fragmentation kinematics is considered
in Appendix A.

Here is a possible generalization of the PQM event loop
to nDIS. For the definition of experimental cuts, see Ap-
pendix D. For definiteness, I assume that the events are
stored in suitably defined histograms, but more efficient
ways should be considered (as long as they retain infor-
mation on the variables discussed below).

1. Generate with PYTHIA a quark or gluon satisfying
the experimental cuts on x, ν, Q2, W 2. Extract the
ν, Q2 of the event, and the energy Ek and momen-

tum ~k of the parton. Populate the 6-dimensional
DIS event histogram:

N(ν, Q2, Ek, ~k) . (16)

The binning in Ek and ~k is required to study
the initial parton spectrum, but is not required if
PYTHIA is actually used event-by-event.

2. Sample the γ∗q interaction point according to

ρA(~b, y); determine ω̄c and R̄, see Eqs. (A1)-(A2).

3. Sample the energy loss ǫ from P(ǫ). If reweighting
is desired, sample until ǫ < E.

4. Fragment the parton according to the vacuum
D(z), and compute the hadron energy Eh =

Eh(z, Ek, ~k) from Eq. (A9) and zh = Eh/ν. Re-
ject the event if it does not satisfy the cuts on zh

and Eh. Populate the 4-dimensional semi-inclusive
histogram

Nh(ν, Q2, zh, phT ) (17)

It is also interesting to populate

ω̄c(ν, Q2, zh, phT ); R̄(ν, Q2, zh, phT ) (18)

b(ν, Q2, zh, phT ); y(ν, Q2, zh, phT ) (19)

ζ(ν, Q2, zh, phT ) (20)

where ζ = ǫ/E.

5. Go to point 1 until enough DIS events or semi-
inclusive events have been generated.

To save time, it is also possible to precompute the spec-

trum N(ν, Q2, Ek, ~k). In this case, the binning in Ek and
~k is necessary. Then point 1 above can be replaced by

1b. Use the precomputed N(ν, Q2, Ek, ~k) to sample the
event’s ν and Q2, and the parton energy and mo-

mentum, E and ~k.

The 2 methods are equivalent. The second might be pre-
ferred to save time when considering several nuclei, or
several transport coefficients. Care should be taken to
avoid systematic effects, as for example in the case of
a limited number of simulated events. Note that unless
the non-collinearity of the parton and photon turns out
to be irrelevant, it is difficult to interpolate the spectrum
for smoothness. It is preferrable to run PYTHIA long
enough to achieve the desired accuracy in the histograms,
provided enough computer time is available.

V. OBSERVABLES

Given the histograms defined in the previous section,
we may build many observables. As a concrete example,
I will concentrate on zh distributions, and discuss inter-
esting quantities to be studied. Analogously, one can
discuss ν- or Q2-distributions, or go for a multi-variable
analysis.

An important check is the degree of non-collinearity of
the photon and the struck parton, and the real need for
the generalized fragmentation kinematics of Appendix A.
For example, we may study the relationship between E
and ν as a scatter plot in the ν, Ek plane using

NνE(ν, Ek) =
∑

j,n

N(ν, Q2
j , Ek, ~kn) (21)

or plotting the average 〈E〉 as a function of ν:

〈Ek(ν)〉 =

∑

i,j,n Ek|jN(ν, Q2
i , Ek|j , ~kn)

∑

i,j,n N̄(ν, Q2
i , Ek|j , ~kn)

. (22)

(Note the compact notation: ~kn actually are 3 different
variables.) A complementary study can be done by com-

puting 〈~k2〉1/2. Alternatively, we can compute 〈θ〉 where
theta is the angle θ = arctan(|kT |/kz) (which would need
some extra binning of N at point 1 in the PQM loop).

Next, let’s consider the experimental observables. The
number of DIS events, independently of the parton’s en-
ergy, is

NDIS(ν, Q2) =
∑

m,n

N(ν, Q2, Ek|m, ~kn) . (23)

The hadron zh-spectrum is defined as

1

NDIS
A

dNh
A

dzh
=

1

∆z
∑

i,j NDIS(νi, Q2
j)

×
∑

i,j,l

Nh(νi, Q
2
j , zh, phT |l) ,

(24)
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FIG. 3: Pion quenching on Krypton target calculated with SW quenching weights. Left: realistic and approximate treatments
of the nuclear geometry. Right: effect of energy conservation corrections. The lines are described in the text. Experimental
data are from the HERMES collaboration [17]. Full symbols for π+ and open simbols for π− have been slighlty shifted to the
left and right for better display.

from which the attenuation ratio RM (zh) can be con-
structed. The average 〈ν〉zh

, and similarly 〈Q2〉zh
, is

〈ν〉zh
=

∑

i,j,l νiN
h(νi, Q

2
j , zh, phT |l)

∑

i,j,l Nh(νi, Q2
j , zh, phT |l)

. (25)

It is then interesting to check the obtained average kine-
matic variables values against experimental data.

The energy loss process may be characterized by the
average 〈R̄〉zh

, 〈ω̄c〉zh
, and 〈ζ〉zh

. They are defined, e.g.,
as

〈R̄〉zh
=

∑

i,j,l R̄(νi, Q
2
j , zh, phT |l)

∑

i,j,l N
h(νi, Q2

j , zh, phT |l)
. (26)

〈R̄〉 will give an idea of the strength of the finite size
corrections applied; 〈ζ〉 = 〈ǫ/E〉 gives an estimate for
the need of reweighting [6] or 1/ν corrections [14].

Other quantities of interest:

• distribution of γ∗q interaction points in single-
inclusive hadron production.

• Quenching of different flavors – at HERMES they
measure charge-separated π, K, p.

• Cronin effect: with energy loss and/or Fermi mo-
tion effects (see Appendix C for further details).

• Quenching at various experiments:

1. EMC – Elab = 100 and 200 GeV

2. HERMES – Elab = 27.5 and 12 GeV

3. JLAB – Elab = 12 and 6 GeV

The study of dihadron attenuation [15] is also very
interesting because up to now no model gets it right:
neither hadron absorption nor energy loss. However it
would probably require more effort, because at LO only 1
hadron is generated in the interaction, and the KKP frag-
mentation function are for single hadrons only. A possi-
bility is to directly use the JETSET module of PYTHIA
instead of KKP to fragment the produced partons. How-
ever, one should go a bit inside PYTHIA to subtract the
energy loss from the parton before fragmenting it. So,
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FIG. 4: As Fig. 3 but calculated with Arleo’s quenching weights (only the R→∞ case is available).

I would suggest to leave it for eventual future develop-
ments.

Any other idea is welcome!

VI. ANALYTIC QUENCHING RESULTS

I report here a study of π± quenching at HERMES in
the analytic quenching model of Sect. III. The computa-
tions have been done by further approximating Eq. (15)
as an isospin averaged sum of up and down quark frag-
mentation functions:

dNπ±

A (zh, Q2)

dzh
≈
〈

Dπ±

u

(

zh, 〈Q2〉zh

)

+ Dπ±

d

(

zh, 〈Q2〉zh

)

〉

A,Z

(27)

This approximation is a bit rough, as it does not take into
account the right mix of quarks and anti-quarks (plus it
neglects strange quarks altogether). However, it fairly
reproduces the computation in Arleo’s paper [11] with a
tendency to overshoot it. So, I consider Eq. (27) a fair
approximation to a full computation. Finally, I plot

Rh
M ≈ dNh

A/dNh
D . (28)

The results are shown in Figs. 3 and 4 using, viz., SW
quenching weights with αs = 1/3 [1] and Arleo’s quench-
ing weights with αs = 1/2 [14]. Note that Arleo’s
quenching weights are computed only in the asymptotic
medium limit R→∞. I determined the quenching weight
by an eyeball fit of the “full-geometry” computation rep-
resented by the solid lines. The result is q̂0 = 0.5 − 0.7
GeV2/fm and q̂0 ≈ 0.15 − 0.20 GeV2/fm, respectively.
The difference is due to a) the difference in the αs used
[27], and most importantly b) the use of finite R in one
case and R→∞ in the other (see also the discussion be-
low).

I will discuss 2 important aspects of these compu-
tations: the importance of correctly account for the
medium geometry [4], and the effect of energy conser-
vation corrections to insure that ǫ ≤ E.

Let’s start with nuclear geometry. The relevant plot
are the left ones in the figures. The crudest approxima-
tion is to use an average quark path-length L ≈ (4/3)RA,
asymptotic quenching weights (R→∞) and a constant
nuclear density, corresponding to a constant transport
coefficient q̂ (dotted line). This approximation is com-
monly considered, but as we can see it cannot at all re-
produce the slope of the data, and would require a much
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FIG. 5: Pion quenching for different nuclei compared to full-geometry, non reweighted SW computations. Experimental data
are from the HERMES collaboration [17, 18]. Full symbols for π+ and open simbols for π− have been slighlty shifted to the
left and right for better display.

smaller q̂ ≈ 0.2 GeV2/fm to touch the data. We can re-
lax these approximations in several steps: using asymp-
totic quenching weights with a variable medium length
(dashed line), non-asymptotic quenching weights (finite
R = ωcL with fixed average L (dot-dashed line) and with
variable L (solid line). The biggest effect is given by the
use of non-asymptotic quenching weights. Use of vari-
able versus average length gives a smaller but still impor-
tant effect. As already remarked, the extraction of the
quenching parameter from the data strongly depends on
the approximation used.

The effect of energy conservation is shown in the right
plots in each figure. The constraint ǫ ≤ Eq can be im-
posed by cutting the quenching weight at ǫ = Eq and
reweighting it to conserve probability [6]. Alternatively,
on can cut the single gluon radiation spectrum at ω = E,
and consider O(ωc/Eq) corrections [14]; the energy lost
through multiple gluon radiation can still be larger than
E, but the problem becomes much less severe, as we will
see. The energy conservation corrections tend to reduce
the quenching for a given q̂0. Their effect increases with
q̂0 and A, and decreases with zh. The magnitude is about
5-10% for Kr targets, and typically comparable to the
experimental error bars in the figure. Thus they are sub-
leading compared to the effect of correctly implement-
ing the nuclear geometry. It’s interesting to note that
the O(ωc/Eq) corrections are larger than the reweight-
ing correction, at least in the explored range of q̂. Fur-
ther reweighting the O(ωc/Eq)-corrected spectrum has
almost no effect, and the corresponding computation is
not shown in the plots. This shows that after accounting
O(ωc/Eq), the probability of radiating an energy ω > E
becomes negligible. For larger values of q̂0, as found in
A+A collisions, this might not be anymor true.

Finally, in Fig. 5 I compare the full-geometry, non
reweighted SW computation to the A-dependence of
the experimental quenching. The model can reason-
ably describe quenching for medium-heavy nuclei at zh &

0.4. When comparing the theoretical ν-distribution with
data, keep in mind that 〈zh〉ν ≈ 0.3, where the model
tends to overestimate the data (see left panel). For 4He
target, I don’t trust much the model to start with. In
fact, 4He is a pretty compact and small object, for which
the approximate treatment of nuclear effects which I em-
ployed might be insufficient.

APPENDIX A: NUCLEAR GEOMETRY AND
FRAGMENTATION KINEMATICS

If we relax the LO assumption that the quark is
collinear with the virtual photon (Fig. 6), the definitions

(~0, 0)

(~b, y)

θ

y
b2

b1

q (~k)γ∗ (~q )

φ

h (~ph)

FIG. 6: Geometry of hadron production in nDIS in the nu-
cleus target rest frame with non collinear quark and virtual
photon. The particles 3-momenta are in parentheses. Note

that ~k does not lie in the (b1, y) plane as ~q does.
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of ω̄c and R̄ in Eqs. (9)-(10) should read:

ω̄c(~b, y) =

∫ ∞

0

dξ ξ q̂A(~x0 + ξ~n) (A1)

R̄(~b, y) =
2ω̄2

C(b, y)
∫∞

0
dξ q̂A(~x0 + ξ~n)

, (A2)

where ~x0 = (~b, y) and ~n = ~k/|~k|, and ~k is the 3-
momentum of the quark. The degree of non collinear-
ity may be quantified by the quark angle relative to the
photon

θ = arctan
|~kT |
kz

. (A3)

However, note that θ alone does not charachterize the
direction of motion of the quark, which would also require
the angle φ in Fig. 6.

For fragmentation, some care is needed, because the z
entering the FF is defined as z = p+

h /p+
q (with light-cone

plus-momentum p+ = (E + pz)/
√

2, see Appendix B),
whereas the DIS invariant is zh = p·P/q·P = Eh/ν in the
target rest frame. Therefore, the equations Eh = zEq,
zh = z used in Sect. III are only valid in a special limiting
case, as we will see. The 4-momenta k of the parton in
light-cone and normal coordinates is, respectively,

kµ = (k+,
k2

T

2k+
, ~kT ) = (Ek, ~kT ,

√

E2
k − k2

T ) , (A4)

where the k− (k3) component has been fixed so that k2 =
0 (putting the parton on-shell might be wrong, I am

not sure). The generalization to a massive quark is
trivial. The 4-momentum of the produced hadron is ph.
If I understand well, by definition of the fragmentation
variable z, we have [20]

p+
h = zk+ (A5)

~phT = z~kT . (A6)

Note that this is different from Refs. [21, 22], which define
z = Eh/Ek. Since the hadron is on-shell with mass mh,
we obtain

ph = (zk+,
m2

hT

2zk+
, z~kT ) = (Eh, z ~kT ,

√

E2
h − m2

hT ) ,

(A7)

where

m2
hT = m2

h + (zkT )2 . (A8)

Next, we want to express the invariant zh as a function
of z. Using the definition of z in (A5), we have:

z =
Eh +

√

E2
h − m2

hT

Ek +
√

E2
k − k2

T

Inverting it, we can find Eh (and zh = Eh/ν) as a func-
tion of z,

Eh = zEk
1 +

√

1 − k2
T /E2

k

2

×



1 −
(

mhT

zEk

(

1 −
√

1 + k2
T /E2

k

)2




(A9)

This is the most general expression for Eh. It is very
suitable for implementation in PQM, because the 3-
momentum of the parton is known from PYTHIA, and z
from the sampling of D(z).

We can study some special cases. In the limit of large
parton energy, mhT /Ek→0 and kT /Ek→0, we obtain

Eh −−−−−→
large Ek

zEk . (A10)

We can also consider the “LO approximation”: we as-
sume the parton to have no intrinsic momentum, so that
k ≈ (ν,~0T , ν) by momentum conservation (see Fig. 2).
From (A9), we obtain

Eh −−−→
LO

zν

[

1 −
(mh

2zν

)2
]

. (A11)

If we further assume a large parton energy, mh/ν→0, we
obtain

Eh −−−−→
large ν

zν , (A12)

which parallels Eq. (A10) and explains the approximation
z ≈ zh used in the analytic computations of Sect. III.

In nDIS at HERMES, Eh ≈ zhν = 2−20 GeV, so that
the limit of large quark energy, Eq. (A10) [or Eq. (A12)]
might not be justified at low zh or low ν. Using the full
Eq. (A9) [or Eq. (A11)] is probably needed for hadrons
heavier than pions, and definitely important for heavy
flavors like D mesons.

Note that since Eh must be positive, Eq. (A9) imposes
a lower bound on z:

z ≥ mhT

Ek

(

1 +
√

1 − k2
T /E2

k

)

−−−→
LO

2
mh

ν
. (A13)

This bound needs not be implemented in PQM as long
as the experimental cuts require Eh > Eh,min with
Eh,min > 2mh, which is typically the case. In analytic
computations it is of concern only if 2mh/ν exceeds the
experimental zh|min.

The next step is to implement energy loss. In the PQM
philosophy, we generate a parton with a given Ek, which
loses an amount ǫ of energy according to the quenching
weight P(ǫ). The parton energy and momentum prior to
hadronization are

E′
k = Ek(1 − ǫ/Ek)

~k′ = ~k(1 − ǫ/Ek) .
(A14)
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Then, the hadron energy is simply given by Eq. (A9) with

Ek→E′
k and ~kT→~k′

T . In the high-ν LO approximation,
we obtain Eh = z(ν − ǫ) as used in the main text.

Note that Eq. (A14) is only valid for a massless quark.
For massive quarks, we need to define k′

3 such that k′2 =
M2

q . I will consider this generalization in the near

future.

APPENDIX B: LIGHT-CONE COORDINATES

The light-cone plus- and minus- momenta are defined
for any 4-vector aµ = (Ea, a1, a2, a3) = (Ea,~aT , a3) by

a± =
1√
2
(Ea ± a3) , (B1)

and conversely

Ea =
1√
2
(a+ + a−)

a3 =
1√
2
(a+ − a−) .

(B2)

In light-cone coordinates, we represent a as

a = (a+, a−,~aT ) . (B3)

The dot-product is

a · b = a+b− + a−b+ − ~aT ·~bT . (B4)

In nDIS, the reference frame is defined by the momen-
tum q of the virtual photon and p of the target:

pµ = p+nµ +
m2

2p+
nµ

qµ = −xBp+nµ +
Q2

2xBp+
nµ

(B5)

where p+ is a boost parameter, and n =
(1/

√
2,~0⊥, 1/

√
2), n = (1/

√
2,~0⊥,−1/

√
2) define

the “plus” and “minus” light-cone directions. In the
target rest frame (p+ = M/

√
2) the 2 momenta read:

p =
(M√

2
,

M√
2
,~0T

)

q =
(xBM√

2
,

Q2

√
2xBM

,~0T

)

(B6)

APPENDIX C: CRONIN EFFECT

The Cronin effect is the nuclear modification of the
hadron phT spectrum, where phT is defined relative to
the photon axis. In nDIS one defines a “Cronin ratio” as

Rh
M (phT ) =

1

NDIS
A

dNh
A(phT )

dphT

/

1

NDIS
D

dNh
D(phT )

dphT
.

(C1)

Experimentally, one observes a suppression of RM below
1 at low phT . 1 GeV, and a rapid increase of RM above
1 at larger hadron transverse momenta. I will discuss 2
possible mechanisms for the Cronin effect: the medium-
induced parton momentum broadening, and the nucleon
Fermi motion.

In the BDMPS energy loss framework, the transverse
momentum kick that a static and uniform medium trans-
fers to the parton is related to the transport coefficient
[23, 24]:

〈m2
T 〉 =

CR

CA
q̂L , (C2)

where ~mT is the transverse momentum gained by the par-

ton relative to its initial direction of motion ~k. However,
this equation holds only in the L/λ→∞ limit. Using our
ansatz of replacing q̂→q and L→L̄A, we obtain, in the
collinear quark approximation:

〈m2
T 〉 =

CR

CA

¯̂q(~b, y)L̄A(~b, y) =
CR

CA

∫ ∞

y

dz q̂A(~b, z) (C3)

which on the r.h.s. does not explicitly depend on L̄A.
Perhaps, a more sound starting point for non-asymptotic
media is to use relationship between 〈m2

T 〉 and 〈ǫ〉

〈m2
T 〉 =

8

αsNc

〈ǫ〉
L

, (C4)

which is valid also for finite-length matter, cold or hot,
and is independent of the parton nature [23]. In this case,
one uses the scaling law to compute

〈ǫ〉 =

∫

dǫ ǫP(ǫ, ω̄c, R̄) , (C5)

and replaces L→L̄A in (C4). The dependence on L̄A is
not fully cancelled, because 〈ǫ〉 ∝ ¯̂qL̄2

A ∝ L̄A is only valid
asymptotically. Thus, we might have a divergence of
〈m2

T 〉 as L̄A→0 if 〈ǫ〉 is less than linear in L̄A in that limit
(we should check this point.) To take into account
fluctuations in the momentum broadening, we may as-
sume a Gaussian distribution for its modulus mT = |~mT |

G(mT ) =
1

√

2π〈m2
T 〉

exp(−m2
T /(2〈m2

T 〉) , (C6)

with ~mT uniformly distributed around the parton mo-

mentum ~k [28]. We should remark that the Gaussian
approximation is correct in the limit of large broadening
(a consequence of the central limit theorem), which is
not necessarily realized in nDIS with small q̂. The final
quark momentum before fragmentation should read:

~k
′

= (1 − ζ)~k + ~mT , (C7)

where ζ is the fractional energy loss. Since the parton
broadening increases with A the broadening induces a
Cronin effect. Note that energy-loss has 2 effects: one
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is to broaden the parton momentum, which induces a
Cronin enhancement at large parton momenta; the other
is to quench the parton spectrum prior to hadronization,
which gives a Cronin suppression at all momenta. The 2
effects compete, so it is difficult to predict the net effect
on the Cronin ratio RM (pT ).

The second mechanism is nucleon Fermi motion. The
nucleon momentum distribution n(~l) in the target rest
rest frame can be computed, e.g., in non-relativistic mod-
els of the nuclear structure. Then we should modify the
initial momentum of the quark according to

~k→~k +~l . (C8)

This prescription may be oversimplified; I will

check that it is a reasonable approximation. Since

〈l2〉 is an increasing function of A, Fermi motion induces
a Cronin effect. The typical magnitude of the Fermi mo-
mentum is

√

〈l2〉 ≈ 200MeV . Hence the Fermi motion
induced Cronin effect might be small in absolute value,
and negligible compared to the effect of the momentum
transfer from the traversed medium.

APPENDIX D: EXPERIMENTAL CUTS

In Table II, the experimental kinematic cuts are col-
lected. They are divided in DIS cuts (e+A→e+X) and
semi-inclusive cuts (e + A→e + h + X). An example of
the allowed phase space is presented in Fig. 7.
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EMC HERMES27 HERMES27 HERMES12
N,Kr [17] He,Ne,Xe [18] N,Kr [19]

h h π, K p π K p h π
Ebeam GeV 100 200 27.5 . . . . . . 27.5 . . . . . . 12 . . .
Q2

min GeV2 2 . . . 1 . . . . . . 1 . . . . . . 0.5 . . .
W 2

min GeV2 4 . . . 4 . . . . . . 4 . . . . . . 4 . . .
xmin 0.02 . . . 0.02 . . . . . . 0.02 . . . . . . 0.01 . . .
xmax 1 . . . 1 . . . . . . 1 . . . . . . 1 . . .
νmin GeV 10 30 7 . . . . . . 2 . . . . . . 2 . . .
νmax GeV 85 170 23 . . . . . . 24 . . . . . . 9.5 . . .
zmin 0.2 . . . 0.2 . . . . . . 0.1 . . . . . . 0.2 . . .
zmax 1 . . . 1 . . . . . . 1 . . . . . . 1 . . .
Ehmin GeV 3 3 1.4 2.5 4 0.6 2 4 1 2.5†

Ehmax GeV 85 170 23 15 . . . 15 . . . . . . 9.5 . . .

TABLE II: Kinematic cuts of the EMC and HERMES experiments. They are divided into DIS cuts (upper group) and semi-
inclusive cuts (lower group). In order to highlight the differences, 3 dots are used in place of the value found at their left.
Notes: † L.LaGamba, who performed a cross-check of the analysis in [19], privately told me that pions results are compatible
with Ehmin = 1 and not 2.5 GeV.

ν min

ν max

/zΕhmaxν=

/zΕν= hmin

z max
z min

FIG. 7: Kinematic cuts for HERMES π and K production on N and Kr targets.


