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• Jefferson Lab
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What I will not talk about

Hadronic facilitiesHadronic facilities

Fixed-target lepton-hadron facilitiesFixed-target lepton-hadron facilities

Sorry!Sorry!

• J-PARC (KEK, Japan)
• FAIR (GSI, Germany)

• JLab 12 GeV (US)
• Upgraded COMPASS (CERN, Switzerland)
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Science goals of an Electron-Ion Collider (EIC)

Overarching goal:Overarching goal: Explore and understand QCD Explore and understand QCD

NSAC 2007 Long Rangle Plan links the EIC to three questionsNSAC 2007 Long Rangle Plan links the EIC to three questions

• What is the role of of gluons and gluon self-interactions in nucleons and nuclei?

• What is the internal (spin, flavor, spatial) landscape of the nucleons?

• What governs the transition of quarks and gluons into hadrons?

Potential for electroweak physics?Potential for electroweak physics?

• Important to directly probe the gluons and sea quarks (meson cloud)

• Very successful PVDIS fixed-target program at Jefferson Lab
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Why a collider?

• s = 4EeEp for colliders (e.g., 4 x 8 x 60 = 1920 GeV2)

• s = 2EeMp for fixed target experiments (e.g., 2 x 1000 x 0.938 = 1876 GeV2)

• >70% polarization for both beams – also transverse ion polarization!
• No dilution in polarized target
• No current limitations or holding fields
• No backgrounds from target (including Møller electrons)

Easier to reach high CM energies (EEasier to reach high CM energies (Ecmcm
22 = s) = s)

Spin physics with high figure of meritSpin physics with high figure of merit

Easier detection of reaction productsEasier detection of reaction products
• Can optimize kinematics by adjusting beam energies

– Laws of physics do not depend on frame, but measured uncertainties do!
• More symmetric kinematics improve acceptance, resolution, particle identification, etc
• Access to neutron structure with deuteron beams through spectator tagging (p ≠ 0)
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Past and future e-p and e-A colliders

HERA, Hamburg, 1992-2007
27 GeV e on 920 GeV p, L = 5 x 1031

LHeC, CERN, Geneva

Brookhaven, Upton, NYJefferson Lab, Newport News, VA

EIC
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Max e/p Energies s Max Luminosity

ENC@GSI 3 x 15 180 Few x 1032

MEIC@JLab 11 x 60 250-2650 Few x 1034

 MeRHIC@BNL 4 x 250 1200-4000 Close to 1033

ELIC@JLab 11 x 250 11000 Close to 1035

eRHIC@BNL 20 x 325 26000 Few x 1033

LHeC@CERN 70 x 1000 280000 1033

Design Goals for Colliders Under Consideration World-wide

Summary of current e-p/e-A collider ideas
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Kinematic coverage

• Medium-energy EIC
– Overlaps with and complements the LHeC (both versions)
– Overlaps with JLab 12 GeV at corresponding luminosity (JLab version)
– Provides high luminosity and excellent polarization for the range in between

• Currently only low-statistics fixed-target data available in this region

-

x

Medium-energy EIC (JLab version)

s (CM energy)

Q2 ~ xys
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Kinematic coverage

x

Medium-energy EIC (JLab version)

s (CM energy)

Q2 ~ xys

• High-energy EIC (not shown)
– Will move higher into the region covered by HERA (and LHeC)
– Will provide good polarization and heavy ions (which HERA did not have)
– If LHeC is not build, may be only machine that can see gluon saturation in e-A 

collisions

-
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• JLab 12 GeV: valence quarks
• EIC: gluons and sea quarks

C. Weiss

Nucleon structure beyond the valence region
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Gluon saturation
Q2 ~ xys

• At low virtuality (Q2) photons are “large” probes

• One is more likely to find gluons carrying a small fraction of the total momentum (small x)
– For a fixed Q2 this corresponds to a rise in gluon density with collision energy (s)

• At some point (at low Q2 and high s) the cross section (number of gluons) saturates

• Interesting for understanding QCD dynamics!

-

, x
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Gluon saturation in the nucleon

• HERA e-p data indicate that the cross 
section begins to saturate at small 
values of τ

• The saturation regime will be 
explored in ultraperipheral p-p 
collisions at the LHC

• Better measurements using e-p may 
be possible at the LHeC

• Gluon saturation in the proton will be 
outside the energy reach of the EIC

• EIC will study the transition to 
saturation in e-p collisions

– Outside of LHeC reach
– As important!

-

τ

τ = Q2/Q2
saturation(x)
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Gluon saturation in nuclei

• If the probe interacts coherently, there will 
be an enhancement, naively proportional to 
the radius.

• Nuclear beams make it possible to see the 
onset of saturation at lower collision 
energies.

• Results from A-A collisions at RHIC 
indicate that saturation models (Color Glass 
Condensate) may be applicable at 
unexpectedly low energies

• Saturation in e-A collisions may be within 
reach of an EIC
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Gluons in nuclei
F 2em

-lo
g 10

(x
) • Measured at HERA for the nucleon (see figure)

– DIS: FL ~ xG(x,Q2), scaling violations in F2

– Diffractive vector meson production
– 2+1 jet production

• EIC will provide the data on nuclei!

Longitudinal gluon distributions Longitudinal gluon distributions 

Multidimesional gluon distributionsMultidimesional gluon distributions

Role of gluons in nucleiRole of gluons in nuclei

• Coherent exclusive reactions
– DVCS
– Vector meson production (J/Ψ, φ, ρ)

• Generalized Parton Distributions 
– Will be discussed in the context of the nucleon

• As important as saturation physics!



14 February  2010 15

(From M. Stratmann, INT09-43W)

The spin of the proton
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• At sufficiently small x, xΔg is expected to 
be small, but not clear what is sufficiently 
small (are we there yet?)

• The net contribution measured by RHIC 
spin is close to zero

• Since all values of x contribute to the 
final uncertainty, this will be large 
without data at small x

• Measure Δg (Jaffe et al.) over a sufficiently wide range in x

• Measure GPDs and TMDs to learn about angular momentum (Ji)
– Connects with Lattice QCD
– Exclusive measurements require high luminosity at lower energies

Proton spin – two complementary approaches
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(Antje Bruell, Abhay Deshpande, Rolf Ent)

RHIC-Spin
∆g

/g

γ + p  D0 + X
          K- + π+

• Uncertainties in x∆g smaller than 0.01 
• Measures ∆G @ Q2 = 10 GeV2

Measuring Δg (Jaffe et al.) at an EIC

MEIC Coverage
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(disconnected diagrams not yet included)

ΔΣ and Lq (Ji) from Lattice QCD

LHPC Collaboration, PRD77, 094502 (2008)

• Orbital angular momentum of quarks
– Lu and Ld are both ~ 0.15, but cancel

• Quark spin ΔΣ as expected
• Implications for gluon angular momentum Jg

• Lattice QCD allows calculations in the 
non-perturbative regime

• Gives access to moments of GPDs, 
experimentally extracted from deep 
exclusive scattering data
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Generalized Parton Distributions (GPDs)
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EE ~,  don't appear in DIS (nucleon helicity flip)

Elastic Form FactorsElastic Form Factors

Parton Distribution Functions (PDFs)Parton Distribution Functions (PDFs)

• The GPD framework contains FFs and PDFs
– Transverse spatial information
– Longitudinal momentum information

• Skewness (ξ) can provide information on 
longitudinal qq correlations

Generalized Parton DistributionsGeneralized Parton Distributions
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Transverse (sea) quark imaging
• GPDs as “x-dependent form factors”

– Fourier transform of t-distribution provides transverse 
image

• Do strange and non-strange 
sea quark distributions have 
the same radius?

• πN or KΛ components in 
nucleon?

Tanja Horn
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Transverse gluon imaging

• Exclusive J/Ψ production a directly probe of 
gluons

• Hard scale given by mass, factorization ok even 
at low Q2

• t-distribution powerlike for large -t?

• Is the quark “radius” larger 
than the gluon radius?

• “pion cloud”
• Hints in HERA data
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• In SIDIS, PDFs can remain 
unintegrated over transverse 
momentum

• Parton and nucleon spins then 
give 18 structure functions

• Can be combined into TMDs, 
from which we can learn about 
orbital angular momentum

Transverse Momentum Distributions (TMDs) 

A. Bacchetta
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Nonperturbative TMD Perturbative region

In the perturbative 
limit 1/PT behavior is 
expected

Study SSA in transition from non-perturbative to perturbative 
regime. EIC will significantly increase the PT range.

H. Avakian

Transverse motion through, e.g., spin-orbit interactions, “deformations”

SIDIS: PT-dependence
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E. Kinney, J. Seele

• Higher CM energies give

– better coverage at 
small x

– larger uncertainties at 
large x (> 0.1)

100 days at 1033 cm-2 s-1 shown

5 on 50 10 on 250

x x

Note that inclusive DIS gives:

Flavor decomposition in SIDIS
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Physics, kinematic coverage, and luminosity

• Right plot (L vs. s) is a projection on the 
diagonal of the left one (Q2 vs. x)
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• MEIC = EIC@JLAB
– Up to 3 detectors
– Max luminosity: above 1034 cm-2s-1

• ELIC = high-energy EIC@JLab
– Size limited by JLab site
– s = 11000 GeV2

300 m

400 m

Electron energy: 3-11 GeV

Proton energy: 12-60 GeV

s = 250 - 2650 GeV2

Can operate in parallel
with fixed-target program

MEIC@JLab (Ring-Ring) – an overview

Special IP
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STAR

PHENIX

3 pass, 4 GeV ERL

M
eRHIC

detector?

s = 1200 - 4000 GeV2

Electron energy: 2-4 GeV

Proton energy: up to 250 GeV

• MeRHIC
– 1 (2 ?) detector(s)
– Max Luminosity:

1032-1033 cm-2s-1

– 90% of hardware can 
be reused for eRHIC.

RHIC circumference:  3.8 km

MeRHIC@BNL (ERL-Ring) – an overview
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Exclusive light meson kinematics (Q2 > 10 GeV2)

Tanja Horn

recoil baryonsscattered electronsmesons

4 
on

 2
50

 G
eV

4 
on

 3
0 

G
eV

δt/t ~ t/Ep  
lower Ep better

PID challenging

very high 
momenta

electrons in 
central barrel, 
but p different

0.2° - 0.45°

0.2° - 2.5°

ep → e'π+n



14 February  2010 29

Low (J/Ψ) vs high Q2 (light mesons) – 4 on 30 GeV
recoil baryonsscattered electronsmesons

no
 Q

2  c
ut

Q
2  >
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G
eV

2

t-distribution 
unaffected

forward mesons: 
low Q2, high p

low-Q2 electrons in 
electron endcap

high-Q2 electrons 
in central barrel:

 1-2 < p < 4 GeV

mesons in 
central barrel: 

2 < p < 4 GeV

ep → e'π+n Tanja Horn
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Forward detection with crossing angle

• Downstream dipole on ion beam line has several advantages
– No synchrotron radiation
– Electron quads can be placed close to IP
– Dipole field not set by electron energy
– Positive particles are bent away from the electron beam
– Long recoil baryon flight path gives access to low -t 
– Dipole does not interfere with RICH and forward calorimeters

• Excellent  acceptance (hermeticity)

exclusive mesons

0.2 - 2.5°

recoil baryons

solenoid

electron FFQs100 mrad

0 mrad

ion dipole w/ detectors

(approximately to scale)

ions

electrons

IP

detectors
ion FFQs

2+3 m 2 m 2 m

4 
on

 3
0 

G
eV

Q
2  >

 1
0 

G
eV

2
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Solenoid yoke integrated with
a hadronic calorimeter and
a muon detector

EM calorimeter

Sketch of central detector layout
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Time-of-flight
detectors shown
in green

• IP is shown at the center, but can be shifted left
– Determined by desired bore angle and forward tracking resolution

DIRC would have thin
bars  arranged in a
cylinder with mirrors
and readout after the
EM calorimeter
on the left
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• The next generation QCD facility will focus on gluons and sea quarks

• Both Jefferson Lab and Brookhaven are actively working on 
implementation options, guided by an international advisory 
committee.

• The current focus for both labs is a medium-energy Electron-Ion 
Collider (EIC), with an option for a high-energy upgrade.

• The user community and its involvement is rapidly expanding 

Summary
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Backup
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Diffractive and SIDIS (TMDs)
4 on 250 GeV4 on 50 GeV
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(E. Kinney)

100 days at 1033 cm-2 s-1 shown, curves are GRSV

SIDIS – flavor decomposition

• Higher cm energies give
– better coverage at small x
– larger uncertainties at large x

• Also interesting are 
spatial correlations in 
the vacuum (nucleon 
sea).
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