Outline

• Introduction: Instrumentation and ASIC Developments at BNL

• Front-End ASIC Architectures and Examples

• Readout Electronic Examples

• Looking Forward: Information Centric Digitization?
Mission: To develop state-of-the-art instrumentation required for experimental research programs.

Instrumentation Division at BNL

Staff:
Approximately 45 total, including 14 scientists, 12 engineers, and 11 technicians.

Core Competencies:

Low-Noise Microelectronics and Cold Electronics: Low Noise ASICs, rad-hard electronics, high-throughput data acquisition, special printed circuit boards, and high-density interconnect laboratory.

Solid State Detectors Fabrication and Characterization: Silicon X- and gamma-ray detectors, silicon charged particle detectors, Si CCDs, germanium X- and gamma-ray detectors.

Gas and Noble Liquid Detectors: Micropattern gas detectors, noble liquid TPCs, noble liquid calorimetry, 3He based thermal neutron detectors.

Photocathodes, Lasers and Optics: Ultra-short photon and electron sources and measurements, photocathodes, optics and optical metrology.
ASIC Developments (since early 90’s)

- **RHIC/STAR**: Front-end for silicon vertex tracker
- **RHIC/PHENIX**: Front-end and flash ADC for time expansion chamber
- **ATLAS**: Cathode strip chamber, LAr calorimeter upgrades, Muon upgrades
- **Laser Electron Gamma Source**: ASIC for GEM-based TPC
- **Long Baseline Neutrino**: Cold front-end and mixed signal ASICs for MicroBooNE & LAr TPCs
- **Neutrino-less Rare Decays**: Cold charge and light ASICs for nEXO
- **Dark Matter Detection**: UNM DRIFT, OXI DRIFT II
- **Small Angle Neutron Scattering**: 3He neutron pad detector for SNS, ANSTO, Coded aperture
- **NSLS**: EXAFS, Powder diffraction, Inelastic scattering, CZT and Ge spectroscopy, Pixel imager
- **NSLS, CSIRO, NJIT**: High-rate x-ray fluorescence microprobe for elemental mapping
- **NSLS, SLAC**: High-voltage matrix switching, Charge-pump front-end for Active Matrix
- **NSLS, NASA**: SDD-based spectrometer for x-ray elemental mapping
- **NASA, WUSL**: X-ray polarimeter, Small pixel imager
- **NASA, SWRI**: Heavy ion sensor (HIS) for solar orbiter
- **BIOLOGY/MEDICAL**: Micro-PET for RatCAP, PET-MRI, Wrist scanner, CZT-based PET, Prostate cancer imager (Hybridyne), Eye-plaque dosimeter (CMRP)
- **NONPROLIFERATION/SECURITY**: VFG Gamma Scout, Portable Gamma Camera, 3D PSD (UM, DoD, DHS), CPG (LANL, DoD), HPGePC Neutron Detector (LBNL), Si Compton Imager for Special Nuclear Materials (NRL, DoD)
- **CRADAs**: eV Products (CZT), Digirad (Medical), CFDRC (MAPS), Photon Imaging (Si), Symbol Technologies (Wireless), Analogic, RMD, Gamma Medica, General Electric
Developing Front-End Readout ASICs: Increased Functionality and Complexity

• Low-noise low-power front-end optimized for high charge- and timing-resolution.
• High functionality integrated within front-end ASICs.
Linear Charge Amplifier:
- Pole-Zero Cancellation
- Continuous Reset

\[Q \cdot \delta(t) \]

\[C_F + C_A \]

\[C_S + C_A \]

\[\frac{4kT}{R_S N^2} \]

\[V_G \]

\[M_F \]

\[R_S \]

\[C_S \]

\[N \times C_F \]

\[N \times M_F \]

1st stage of filter

non-linear

linear

filter noise contribution:

Effective linear "charge amplification" by N

[Knoll_Rad. Det. 4th ed. 2010]

[De Geronimo et. al_TNS’2000]
nEXO Charge Readout Concept: Anti-Aliasing Filter

‘Anti-Aliasing’: to remove high-freq. parts which could alias into signal band after sampling

a) 12-bit ADC sampling continuously at 2MSps (into 4000 cell buffer), transfer upon trigger \(\sim 500\text{Mbits} \) to warm DAQ

b) ADC sampling continuously at 2MSps and transferring continuously \(250\text{ Gbps} \) to warm DAQ

Slow and rare events!

induced current ... after anti-aliasing samples

Daisy chain readout of 2-4 32-channel ASICs on each tile, or more, from several tiles

Off-line waveform analysis and optimal processing of samples for charge measurement

\[\text{anti-aliasing filter (“preamp=shaper”) s/h, ADC} \sim 2\text{-drift-time buffer, serializer} \]
Very Low Noise ASIC for Germanium Point-Contact detector

- **Large gain** (~5000) of charge amplifier to lower noise contributions from later stages
- **Adaptive continuous reset** successfully avoid dead-time and switching noise in charge amplifier, and automatically adjusts to detector leakage current.
- **Large bandwidth** of anti-alias filter (AAF) to preserve 50ns pulse rise time

![Diagram](image)

Parameters

<table>
<thead>
<tr>
<th>Cdet (fF)</th>
<th>ENC_total (e-)</th>
<th>ENC_m1&lk (e-)</th>
<th>ENC_m1-1/f (e-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 (possible load)</td>
<td>5.3</td>
<td>4.8 (~82%)</td>
<td>4.5 (~71%)</td>
</tr>
<tr>
<td>100 (target load)</td>
<td>3.9</td>
<td>3.5 (~78%)</td>
<td>3.2 (~65%)</td>
</tr>
<tr>
<td>1 (without load)</td>
<td>2.6</td>
<td>2.1 (~68%)</td>
<td>1.9 (~48%)</td>
</tr>
</tbody>
</table>

Ge Point-Contact detector C < 1 pF [P. Barton_LBNL]
Optimizing Shaper for Low-Noise and Low-Power

Signal and noise analysis in front-end electronics

Signal: assuming overall pulse response $h(t)$ and transfer function $H(f)$ it follows

$$v_o(t) = Q \cdot h(t) = \int_{-\infty}^{\infty} Q \cdot H(f) \cdot e^{-j2\pi ft} df$$

Note: we measure $v_o(t_{max}) = v_{o,max}$
Weighting Function Noise Coefficients

<table>
<thead>
<tr>
<th>Weighting function</th>
<th>Series white A_1</th>
<th>Parallel white A_3</th>
<th>Series 1/f $A_2(\text{calc})$</th>
<th>Series 1/f $A_2(\text{approx}) \approx 0.75(A_1A_3)^{1/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>triangle</td>
<td>2</td>
<td>2/3</td>
<td>0.88</td>
<td>.87</td>
</tr>
<tr>
<td>semi-gaussian 4th order</td>
<td>2.04</td>
<td>0.90</td>
<td>1.04</td>
<td>1.01</td>
</tr>
<tr>
<td>CR-RC</td>
<td>1.85</td>
<td>1.85</td>
<td>1.18</td>
<td>1.39</td>
</tr>
<tr>
<td>trapezoidal $\Delta=1$</td>
<td>2</td>
<td>1.67</td>
<td>1.38</td>
<td>1.37</td>
</tr>
</tbody>
</table>

$$\text{ENC}^2 = \frac{1}{2} \frac{e_n^2 C_{in}^2 A_1}{\tau} + \pi C_{\text{in}}^2 A_f A_2 + q I_0 A_3 \tau$$

[V. Radeka_NSS2012]
2-D ASIC Hi-Resolution X-ray Imager

- ~700,000 transistors in CMOS 130nm technology (1.2 V supply)
- 256 hexagonal channels at 250 µm pitch
- 3-side abuttable, with 33 I/O pins only on the right side
- Each channel includes:
 - low-noise charge amplifier (adjustable gain: 0.25, 0.5, 1 V/fC)
 - shaper (adjustable peaking time: 125, 250, 500, and 1000 ns)
 - baseline stabilizer
 - discriminator and peak-detector
- ~0.6 mW/channel
- Simulated ENC: ~ 11 electrons (@ 60 fF det. cap. & 6pA leakage per pixel)

⇒ Limited area for low-noise low-power readout chain
⇒ No direct address control of each pixel, relying on token passing

[S. Li & G. De Geronimo, IEEE NSS 2017]
FE-SOC: ASIC for ATLAS Muon Spectrometer

New Small Wheels: 2.3M channels, 2pC @ < 1fC rms, 100ns @ < 1ns rms, 30pF-2nF

- 64 channels: low-noise amplification, peak, timing, discrimination, 3 ADCs, timestamp, FIFO, L0 handling
- real-time address, sub-hysteresis, direct outputs, fully digital interface
- CMOS 130nm, 13.5 mm x 8.4 mm,
- transistor count/ch.: > 100,000

G. De Geronimo et al._TNS’2013
Analog 3D PSD Technique - H3D ASIC

- H3D ASIC measures peak amplitude and relative timing on each signal (Prof. Z. He)

[G. De Geronimo_TNS2008]
Digital 3D PSD Technique - H3DD ASIC

- H3DD ASIC measures **whole waveform** on each signal
- Waveforms are analyzed with powerful signal processing techniques, thus achieving **higher resolution** (Prof. Z. He)
DUNE LAr TPC Cold Readout Electronics

- Front end ASIC: ~5mW/ch.
- ADC ASIC: ~5mW/ch.
- FPGA (COTS): ~8mW/ch.
- Voltage regulation (COTS) (<100mV dropout)

Overall 128:4 multiplexing

R&D produced key components to form a complete cold front-end readout chain for LAr TPC experiments

Front end mother board assembly serving 128 wires ~2.4 W + LDO inefficiency
Possible Zero suppression for LBNE

- **Simple**: sending data of channels that are over a threshold level
- **Involving more than one sensor wire**:
 - Need to collect pre and post triggered data
 - Neighbor triggering up to the second order (Neighbors can be located on adjacent PCB)
 - Non trivial mapping of anode wires to ASIC channels
 - If more than 80 channels need to be readout zero suppression does not pay

Not including Header OR 8B/10B overhead

<table>
<thead>
<tr>
<th>Description</th>
<th>Data Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(12bit ADC) *(128 CHN) * 2MHz</td>
<td>3.072Gb</td>
</tr>
<tr>
<td>(12bit ADC + 7bit ADDR) * 128 CHN</td>
<td>4.864Gb</td>
</tr>
<tr>
<td>(12bit ADC + 7bit ADDR) * 80 CHN</td>
<td>3.04Gb</td>
</tr>
</tbody>
</table>
Silicon pixel sensors bump-bonded to 2-D ASICs

- Global peak-found signal triggers the FPGA and turns all channels into global read-out mode.
- FPGA assigns a token to pass along all 256 channels.
- Once receiving the token, a channel outputs its stored value to the external ADC.
- By counting the token, the FPGA corresponds the peak information to the channel which detected it.
Two-Dimensional, Pad Detector for Neutron Scattering

$^3\text{He} + n \rightarrow ^3\text{H} + p + 764\text{keV}$ ($\sim 5 \text{ fC}$, or $\sim 30\text{k electrons}$)

Array of 4×4 pad boards, comprising 37 k independent channels. Operation in ionization mode, i.e. unity gas gain, would not be not feasible without ASICs

PAD side

24 cm \times 24 cm anode pad board, with 5mm \times 5mm pads \rightarrow 2304 pixels

ASIC side

SNS ASIC

64 channel

2mW/ch

Neutron beam, $\sim 1 \text{ mm}^2$, over pad# 20-53

2 μs shaping, 3 bar ^3He / 2 bar C_9H_8

1 m \times 1 m Detector for ANSTO
Looking Forward: Information-Centric Digitization?

[Murmann_HEPIC’2017]
Backup Slides
<table>
<thead>
<tr>
<th>Year</th>
<th>ASIC Families</th>
<th>Collaborator</th>
<th>Publications</th>
<th>Impact areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996-1999</td>
<td>ATLAS family</td>
<td>ATLAS</td>
<td>*</td>
<td>Particle Physics</td>
</tr>
<tr>
<td>1996-1999</td>
<td>RHIC family</td>
<td>RHIC</td>
<td>*</td>
<td>Nuclear Physics</td>
</tr>
<tr>
<td>1997-2001</td>
<td>CreV family</td>
<td>eV Products</td>
<td>*</td>
<td>Nonproliferation, Medical Imaging</td>
</tr>
<tr>
<td>2000-2004</td>
<td>HERMES family</td>
<td>NSLS</td>
<td>*</td>
<td>Energy Sciences, Light Sources, Medical Imaging</td>
</tr>
<tr>
<td>2001-2009</td>
<td>PDD family</td>
<td>eV Products</td>
<td>*</td>
<td>Energy Sciences, Light Sources</td>
</tr>
<tr>
<td>2002-2003</td>
<td>CPG1 ASIC</td>
<td>LANL</td>
<td>*</td>
<td>Nonproliferation</td>
</tr>
<tr>
<td>2003-2004</td>
<td>LEGS TPC ASIC</td>
<td>Physics</td>
<td>*</td>
<td>Nuclear & Particle Physics</td>
</tr>
<tr>
<td>2005-2008</td>
<td>CPG2 ASIC</td>
<td>eV Products</td>
<td>*</td>
<td>Nonproliferation</td>
</tr>
<tr>
<td>2005-2007</td>
<td>SNS He3 ASIC</td>
<td>ORNL</td>
<td>*</td>
<td>Energy Sciences</td>
</tr>
<tr>
<td>2005-2007</td>
<td>Multiwindow ASIC</td>
<td>eV Products</td>
<td>*</td>
<td>Nonproliferation, Medical Imaging</td>
</tr>
<tr>
<td>2005-2008</td>
<td>RATCAP ASIC</td>
<td>Medical</td>
<td>*</td>
<td>Medical Imaging, Neuroscience</td>
</tr>
<tr>
<td>2006-2011</td>
<td>H3D family</td>
<td>DoD, UMich</td>
<td>*</td>
<td>Nonproliferation, Medical Imaging</td>
</tr>
<tr>
<td>2006-2009</td>
<td>Compton Imager ASIC</td>
<td>NRL, NASA</td>
<td>*</td>
<td>Nonproliferation, Energy Sciences</td>
</tr>
<tr>
<td>2006-2010</td>
<td>LUNAR family</td>
<td>NSLS, NASA</td>
<td>*</td>
<td>Energy Sciences, Light Sources</td>
</tr>
<tr>
<td>2010-</td>
<td>DUNE front-end ASIC</td>
<td>Physics</td>
<td>*</td>
<td>Particle Physics</td>
</tr>
<tr>
<td>2011-</td>
<td>DUNE ADC ASIC</td>
<td>Physics</td>
<td>*</td>
<td>Particle Physics</td>
</tr>
<tr>
<td>2011-</td>
<td>ATLAS VMM family</td>
<td>Physics</td>
<td>*</td>
<td>Particle & Nuclear Physics</td>
</tr>
<tr>
<td>2014-</td>
<td>MARS family</td>
<td>NSLS</td>
<td>*</td>
<td>Energy Sciences, Light Sources</td>
</tr>
<tr>
<td>2014-</td>
<td>HEXID 2D family</td>
<td>NSLS, NASA, SBU</td>
<td>*</td>
<td>Energy Sciences, Light Sources</td>
</tr>
<tr>
<td>2015-</td>
<td>Ge family</td>
<td>LBNL, LANL</td>
<td>*</td>
<td>Particle Physics, Energy Sciences, Nonproliferation</td>
</tr>
<tr>
<td>2015-</td>
<td>H3DD family</td>
<td>DoD</td>
<td></td>
<td>Nonproliferation, Particle & Nuclear Physics</td>
</tr>
<tr>
<td>2015-</td>
<td>ATLAS HLC ASIC</td>
<td>Physics</td>
<td>*</td>
<td>Particle Physics</td>
</tr>
<tr>
<td>2016-</td>
<td>SAR ADC ASIC</td>
<td>Physics</td>
<td></td>
<td>Particle Physics, Energy Sciences</td>
</tr>
<tr>
<td>2016-</td>
<td>LDO regulator</td>
<td>Physics</td>
<td></td>
<td>Particle Physics, Energy Sciences</td>
</tr>
</tbody>
</table>
ASIC for High Resolution X-ray Spectrometers

Improving Radiation Resistance:
- Radiation degradation due to leakage current of NMOS↑
- ENC degradation: peak at around 2 Mrad
- Modified design to improve radiation resistance: replacing NMOS switch with PMOS switch; insert PMOS switch between NMOS current source and charge amp. input; increase device length; gate-enclosed layout.

~11 e⁻ resolution (93 eV) with 20 mm² SDD pixel

[S. Li, de Geronimo, et al., IEEE TNS 2013]
Cryogenic Analog Front-End ASIC

- 16 channels - charge amplifier, filter, buffer
- Adjustable gain: 4.7, 7.8, 14 and 25 mV/fC
- Adjustable filter time constant: 0.5, 1, 2, 3 μs
- Selectable collection/non-collection mode
- Selectable DC/AC (100 μs) coupling
- Band-gap referenced biasing
- Temperature sensor (~3 mV/°C)
- 5.5 mW/channel (input MOSFET 3.6 mW)

Adopted in MicroBooNE, DRIFT, Argontube, CAPTAIN, LArIAT, LBNF 35T, LAr1-ND, ICARUS (CERN), candidate for nEXO

G. De Geronimo et al., IEEE TNS 58 2011
HLC1 FE ASIC

Outputs
- 16 x front-end channels
 - High gain, low gain output x 8 channels
 - Low-noise preamplifier
 - Programmable (25/50) internal termination
 - Differential output with ADC drivers
- 3 x summing channels
 - 2 x four-channel summing
 - 1 x eight-channel summing
 - Differential output with ADC drivers

Power Consumption
- 880 mW @ 1.2V => 733 mA

Configuration Interface
- 4 x 1.2V CMOS, SPI, 143 registers;

Package
- 128 LQFP

Other Features
- Pulse generator;
- Temperature sensor, biasing circuitry;
- 65 nm TSMC CMOS process;

[G. De Geronimo et al. IEEE NSS 2017]