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Great Opportunities Ahead of Us
• 12 GeV CEBAF Upgrade

CD3 for upgrade approved,

Construction already started

Exciting fixed target program 
beyond 2020

• What CEBAF will provide

Up to 12 GeV CW electron beam

High repetition rate (3x499 MHz)

High polarization (>80%)

Very good beam quality

World first multi-pass recirculated 
SRF linac above GeV energy  

Opportunity: Electron-Ion Collider on CEBAF

Add a modern ion complex with a Green Field design

Expand science program beyond 12 GeV CEBAF fixed target physics

Open up new science domain with higher CM energy

11 GeV max 

energy

12 GeV 

max 

energy



Science Motivation and Detector 

Requirements 

•Key issues in nucleon structure & nuclear physics

 Sea quark and gluon imaging of nucleon with GPDs (x >~ 0.01) 

 Orbital angular momentum, transverse spin, and TMDs 

 QCD vacuum in hadron structure and fragmentation 

 Nuclei in QCD: Binding from EMC effect, quark/gluon radii from 

coherent processes, transparency

•Machine/detector requirements 

 High luminosity > 1034: Low rates, differential measurements 

 CM energy: s ~ 1000 GeV2: Reach in Q2, x 

 Detactability: Angular coverage, particle ID, energy resolution 

 favors lower, more symmetric energies! 



 Energy
Wide CM energy range between 10 GeV and 100 GeV

• Low energy:           3 to 10 GeV e      on    3 to 12 GeV/c p (and ion)

• Medium energy:     up to 11 GeV e    on    60 GeV p or 30 GeV/n ion

and

• High energy:          up to 10 GeV e on    250 GeV p or 100 GeV/n ion

 Luminosity
• 1033 up to 1035 cm-2 s-1 per interaction point

• Multiple interaction points

 Ion Species
• Polarized H, D, 3He, possibly Li

• Up to heavy ion A = 208, all striped

 Polarization
• Longitudinal at the IP for both beams, transverse of ions

• Spin-flip of both beams

• All polarizations >70% desirable

 Positron Beam desirable

ELIC Design Goals



Design Challenges & Opportunities
Design an Electron-Ion Collider that

• Covers a wide CM energy range (10 to 100 GeV) in a unified & coherent

way for highest science productivity

Medium energy EIC is our immediate goal so it should be given first 

priority for maximum design optimization

High energy EIC is a future goal so it should  be leaved with greatest 

flexibility and upgrade potential

• Deliver best collider quality in terms of high luminosity, high polarization, 

multiple interaction points, maximum flexibility and reliability

• Takes maximum advantages of existing CEBAF

• Offers a good path for staging and future upgrade   

• Requires minimum R&D and realizes in a most cost effective way  

• Ion complex is a green field design so we have freedom to be innovative

• We can take benefit of knowledge learnt in the last several decades and 

incorporate many proofed great ideas/schemes in the design

• We have an opportunity to design a brand new class of hadron collider just 

we had done in CEBAF near twenty years ago.
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EIC@JLab at Low to Medium Energy

Three compact rings:

• 3 to 11 GeV electron

• Up to 12 GeV/c proton (worm)

• Up to 60 GeV/c proton (cold)



EIC@JLAB at Low to Medium Energy

polarimetry



ELIC Figure-8 Collider Ring Footprint
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• Ring design is optimized with
• Synchrotron radiation power of e-beam

 prefers large ring (arc) length

• Space charge effect of i-beam

 prefers small ring circumference

• Multi IPs require long straight sections

• Straight sections also hold required 

components (e-cooling, injection and 

ejections, etc.)
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EIC@JLab Parameters at Low-to-

Medium Energy
Beam Energy GeV 60/5 60/3 12/3

Collision freq. MHz 499

Particles/bunch 1010 0.74/2.9 1.1/6 0.47/2.3

Beam current A 0.59/2.3 0.86/4.8 0.37/2.7

Energy spread 10-4 ~ 3

RMS bunch length mm 5 5 50

Horz. emit., norm. μm 0.56/85 0.8/75 0.18/80

Vert. emit. Norm. μm 0.11/17 0.8/75 0.18/80

Horizontal beta-star mm 25 25 5

Vertical beta-star mm 5

Vert. beam-beam tune shift / IP 0.01/0.03 0.015/0.08 0.015/0.013

Laslett tune shift (p-beam) 0.1 0.054 0.1

Peak Luminosity/IP, 1034 cm-2s-1 1.9 4.0 0.59
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ELIC at High Energy & Staging

Ion 

Sources
SRF 

Linac

p
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prebooster

ELIC 

collider 

ring

MEIC 

collider 

ring

injector

12 GeV CEBAF

Ion ring

electron ring

Vertical crossing

Interaction Point

Small Large

Circumference m 1800 2500

Radius m 140 180

Width m 280 360

Length m 695 920

Straight m 306 430

Stage Max. Energy 

(GeV/c)

Ring Size 

(M)

Ring Type IP

#

p e p e p e

1 Low 12 5 (11) 630 630 Warm Warm 1

Medium 60 5 (11) 630 630 Cold Warm 2

2 Medium 60 10 600 1800 Cold Warm 4

3 High 250 10 1800 1800 Cold Warm 4



EIC@JLab Parameters: High Energy

Beam Energy GeV 250/10 150/7

Collision freq. MHz 499

Particles/bunch 1010 1.1/3.1 0.5/3.25

Beam current A 0.91/2.5 0.4/2.6

Energy spread 10-4 3

RMS bunch length mm 5

Horz. beta-star mm 125 75

Vert. beta-star mm 5

Horz. emit., norm. μm 0.7/51 0.5/43

Vert. emit. Norm. μm 0.03/2 0.03/2.87

B-B tune shift per IP 0.01/0.1 0.015/0.05

Laslett tune shift (p-beam) 0.1 0.1

Lumi. per IP, 1034 cm-2s-1 11 4.1

Major design change: symmetric IR  asymmetric IR
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 Energy Recovery Linac-Storage-Ring (ERL-R)

 ERL with Circulator Ring – Storage Ring (CR-R)

 Back to Ring-Ring (R-R)

by taking CEBAF advantage as full energy polarized injector

 Reason of design change: 

High current polarized electron/positron source R&D too challenging

• ERL-Ring:    2.5 A

• Circulator ring:      20 mA

• State-of-art: 0.1 mA

 Note we don’t have to have ERL in order to delivering high luminosity

 Key for high luminosity is high repetition, small beta* & short bunch 

 12 GeV CEBAF Upgrade polarized source/injector already meets beam 

requirement of ring-ring design 

 CEBAF-based R-R design still preserves high luminosity, high 

polarization (+polarized positrons…)

ELIC Baseline Design Choice



Achieving High Luminosity
ELIC design luminosity

L~ 4x1034 cm-2 s-1      for medium energy (60 GeV x 3 GeV)

L~ 1x1035 cm-2 s-1      for high energy (250 GeV x 10 GeV)

ELIC luminosity Concepts
• High bunch collision frequency   (0.5 GHz, can be up to 1.5 GHz)

• Short ion bunches   (σz ~ 5 mm) (also much smaller bunch charge)

• Relative long bunch (comparing to beta*) for very low ion energy

• Strong final focusing   (β*y ~ 5 mm)

• Large beam-beam parameters   (~0.01/0.1 per IP, 

0.025/0.1 largest achieved)

• Need electron cooling of ion beams

• Need crab crossing colliding beams

• Large synchrotron tunes to suppress synchrotron-betatron resonances

• Equal (fractional) betatron phase advance between IPs



ELIC Ring-Ring Design Features

 Unprecedented high luminosity

 Electron cooling is an essential part of ELIC

 Up to four IPs (detectors) for high science productivity

 “Figure-8” ion and lepton storage rings 

 Ensure spin preservation and ease of spin manipulation 

 No spin sensitivity to energy for all species.

 Present CEBAF injector meets storage-ring requirements

 12 GeV CEBAF can serve as a full energy injector to electron ring

 Simultaneous operation of collider & CEBAF fixed target program.

 Experiments with polarized positron beam are possible.



Figure-8 Straight Sections & 

Interaction Regions
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Interaction Regions and Detectors
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Offset IP

Add’l dipole field 
needed on ion side!

No need 
for add’l 
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Q > 10o

 ID ~ length solenoid

Magnetic Field in cold yoke 

around electron pass.

Ent’s talk on ELIC detector 

design in this Workshop

•

IP Energy Type Space

1 Medium General purpose 9+9 m

2 Medium Diffraction/low_Q2

3 Low DVCS-type

4 (polarimetry)
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Proton

1st SC FF quad for ion

(P. Brindza, ME)
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EIC@JLab Accelerator R&D

Level of 

R&D

Low-to-Medium Energy

(12x3 GeV/c)  &   (60x5 GeV/c)

High Energy

(up to 250x10 GeV)

Challenging Electron cooling

Semi 

Challenging

Electron cooling

Traveling focusing (for very low i energy)

Crab crossing/crab cavity

Likely Crab crossing/crab cavity

High intensity low energy i beam

Beam-beam

High intensity low energy i beam

Beam-beam

Know-how Spin tracking

IP design/chromaticity

Spin tracking

IP design/chromaticity

We have identified the following critical R&D for ELIC  

• Electron cooling

• Crab crossing and crab cavity

• Forming high intensity low energy ion beam

• Beam-beam effect

• Traveling focusing for very low energy ion beam

Will discuss issues/requirements/state-of-art/challenges/activities



Electron Cooling: ERL Circulator Cooler
Issues
• Essential for delivering ion bunches with small 

emittances and short length.

• Cooling electron energy

• up to 6.5 MeV for low energy ELIC

• up to 33 MeV for medium energy ELIC

• up to 136 MeV for high energy 

• Up to 3 A CW un-polarized beam (~nC bunch charge)

ERL Based Circulator Cooler
• SRF ERL able to provide high average current CW 

beam with minimum RF power

• Circulator ring for reducing average current from 

source/ERL

ERL Key technologies
• High intensity un-polarized electron source/injector

• Energy Recovery Linac (ERL)

• Fast kicker

Beam Dynamics R&D (staged cooling)

State-of-Art
Fermilab electron cooling 

demo. (4.34 MeV, 0.5 A DC)

Electron 

circulator ring



EC Enabling Technologies

Beam energy MeV 125

Kick angle 10-4 3

Integrated BdL GM 1.25 

Frequency BW GHz 2

Kicker Aperture Cm 2

Peak kicker field G 3

Kicker Repetition Rate MHz 15

Peak power/cell KW 10

Average power/cell W 15

Number of cells 20 20

High intensity e source/injector

• 30 mA, up to 136 MeV, 1 nC bunch charge

• Cathode lifetime is ok with circulator ring

• Conceptual design adopts light source 

(FEL) photo-injector

• Beam qualities should be OK

Fast kicker

• RF deflecting cavity

• High power ultra-short pulse 

(sub-ns, 20kW)

JLab FEL Gun R&D

(J. Musson JLab, EE)



EC Enabling Technology: ERL

• ERL based FEL 

• High average power up to14 kW (world record)

• mid-infrared region, extension to UV is planned

• Photocathode DC injector, 10 mA class CW 
beam, sub-nC bunch charge

• Beam energy up to 200 MeV, energy recovery

• Next step/proposal: 100kW average power, 100 
mA CW beam with ERL, nC-class bunch charge

JLab FEL Program

Energy Recovery

Energy MeV 80-200

Charge/bunch pC 135

Average current mA 10

Peak current A 270

Beam power MW 2

Energy spread % 0.5

Normalized emittance µm-rad <30

JLab is world leader in ERL technology !

We are considering using this facility to test ERL based 

circulator cooler ring and for beam dynamics studies



Crab Crossing & Crab Cavity
Issues
• High bunch repetition requires crab crossing 

colliding beams to avoid parasitic beam-beam 

• Crab cavities are needed to restore head-on 

collision and avoid luminosity reduction

• ELIC crossing angle: ~ 2x12 mrad (9+9 m IR)

Stage Beam 

Energy 

(GeV/c)

Integrated 

Kicking 

Voltage (MV)

R&D 

electron 10 ~ 1 State-of-art

Proton 12 ~ 1 State-of-art

Proton 60 5 Not too far away

Proton 250 21

State-of-art: 
KEKB Squashed cell@TM110 Mode 

Crossing angle = 2 x 11 mrad 

Vkick=1.4 MV, Esp= 21 MV/m

• Crab cavity development & gradient limits

• Phase & amplitude stability requirements

• Beam dynamics/luminosity dependence of 

crab crossing



JLab Crab Cavity Development

Crab Cavity Test #1

1.00E+08

1.00E+09

1.00E+10
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Q
o

RF System unstable

Elliptical squashed SRF cavity R&D for 

APS (JLab/LBNL/AL/Tsinghua Univ.)

Multi-cell TM110 and Loaded Structure of 

Crabbing Cavity (JLab/Cockcroft/Lancaster)

J. Delayen, H. Wang, PRST 2009 

J. Delayen, JLab seminar, 02/19/09 

Single cell

Multi cell

New (Innovative) Program

• Compact TEM-type, parallel-bar

• Deflecting  12 GeV CEBAF 

• Crabbing  ELIC

• Providing high transverse kinking

Single cell: 37x50cm, 4 MV@500MHz 

Multi-cell: ~ n x (37 cm), n x (4 MV)

H. Wang, R. Rimmer, 12/10/2008 

Moun Collider Design Workshop

E&M Fields



Great News From KEK

KEK Press Release (05/11/09)

“Using Crab Cavities, KEKB Breaks 

Luminosity World Record”

SymmetryBreaking (05/11/09)

“Record luminosity collisions due to 

“crab” crossing, 

Trick: 28 skew sextupoles



Forming High Intensity Ion Beam

Stacking/accumulation process

 Multi-turn (~20) pulse injection from SRF linac
into an accumulator-cooler ring

 Damping/cooling of injected beam

 Accumulation of 1 A coasted beam at space 
charge limited emittence

 Fill prebooster/large booster, then acceleration

 Switch to collider ring for energy booster, RF 
bunching and initial/continuous cooing 

Circumference M 100

Arc radius M 3

Crossing straights length M 2 x 15

Energy/u GeV 0.2 -0.4

Electron current A 1

Electron energy KeV 100-200

Cooling time for protons Ms 10

Stacked ion current A 1

Norm. emit. After stacking µm 16

Stacking proton beam in ACR

Length (m) Energy (GeV/c) Cooling Scheme Process

Source/SRF linac 0.2 Full stripping

Accumulator-cooler Ring 

/prebooster
100 3 DC electron

Stacking/accumulating

Energy booster

Low energy ring

(booster)
630 12 Electron

Fill ring/Energy boosting

RF bunching (for collision)

Medium energy ring

(large booster)
630 60 Electron

Energy boosting

RF bunching (for collision)

High energy ring 1800 250 Electron
Fill ring/energy boosting

RF bunching

In addition to simulation study, we are considering team 

up with ORNL to study space charge effect at SNS



Beam-Beam Interactions

Low-to-medium energy b-b problem

• Non-relativistic, space charge dominated

• Ring transport can’t be treated as a one-
turn map, coupling everywhere

• Long ion bunch (up to 20 x β*), 
longitudinal dynamics important

• Traveling focusing scheme introduces 
non-linear optics
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Simulation Model
• Single/multiple IP, head-on collisions

• Ideal rings for e & p, a linear one-turn map

• Radiation damping & quantum excitations  

Simulation Codes 
• BeamBeam3D by LBNL

Simulation Scope & Limitations
• 10k ~ 30k turns for a typical simulation run          

(multi-days of NERSC supercomputer)

• 0.15 s of storing time (12 damping times) 

• reveals short-time dynamics with accuracy 

• can’t predict long term (>min) dynamics

Coherent instability
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Boosting luminosity at low ion energy: 

Traveling Final Focusing/Crab Waist
Traveling Final Focusing

• Laslett tune-shift limits bunch charge for 

very low energy ions (space charge 

dominated)

• Long bunch length enables more bunch 

charges, therefore high luminosity

• Hour glass effect could kill luminosity if 

bunch length is much large than beta-star

• “Traveling Focusing” (Brinkmann/Dohlus), 

can mitigate hour-glass effect

• New realization: crab crossing beam with 

sextuples 

slice 2

F1

slice 2

slice 1

F2

sextuple

slice 1

Crab 

cavity

Crab Waist

• Proposed by P. Raimondi for Super-B 

factory for luminosity enhancement

• It deals with large Piwinski angle and 

low vertical beat-star

• Current Super-B design calls 0.2 mm 

beta-star while bunch length is 6 mm

• Recent proof-of-principle experiment 

done at DAΦNE very positive

Crabbed waist can be realized with a 
sextupole in with IP in x and at π/2 in y
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Summary
• EIC@JLab promises to accelerate and store a wide variety of polarized light ions 

and un-polarized heavy ions to collider with polarized electron or positron beam 

enabling a unique physics program.

• The ELIC covers a wide CM energy range (10 to 100 GeV) in a coherent way. 

However, the low-to-medium energy one (CM energy 10 to 50 GeV) is our 

immediate goal & R&D focus.

• EIC@JLab luminosity for e-p collisions should exceed 1x1035 cm-2s-1 at high energy 

end (250x10 GeV2), reach 4x1034 cm-2s-1 at medium energy (60x3~5 GeV2), and 

6x1033 cm-2s-1 at low energy end (12x3 GeV2)

• Positron beam can also be used for additional positron-ion and electron-positron 

collision programs. Both electron & positron beam possess high (>80%) polarization.

• We have identified the critical R&D topics for EIC@JLab. In general, R&D for the 

medium energy EIC is much easy than for high energy one, which also provides a 

nice staging approach for accelerator R&D. We are aggressively pushing R&D 

programs to validity and optimize ELIC design

ELIC is the primary future of JLab!
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ELIC Conceptual Design

12 GeV 

CEBAF

Upgrade

Green-field design of ion 

complex directly aimed at 

full exploitation of science 

program.



Electron Polarization
Producing/matching
 Polarized electron source of CEBAF

 Preserved in recirculated CEBAF 

 Injected into Figure-8 ring with vertical 

polarization

 Turn to longitudinal polarization at IP 

using vertical crossing bends and 

solenoid spin rotators

Maintaining in the ring
 electron self-polarization

 SC solenoids at IRs removes spin 

resonances & energy sensitivity. 
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Positrons in CEBAF/ELIC

• Non-polarized positron 
bunches generated from 
modified electron injector 
through a converter

• Polarization realized through 
self-polarization at ring arcs 

115 MeV

converter

e-
15 MeV

5 MeV

e+

10 MeV

15 MeV

e+

Polarized 

source 

dipole

Transverse 

emitt. filter 
Longitudinal 

emitt. filter

dipole dipole

e+

Unpolarized 

source

During positron production:

- Polarized source is off

- Dipoles are turned on

e-
e-

e-

• “CEPBAF”,    S. Golge (Ph. D thesis) / A. Freyberger

• Polarized Positron Source, J. Dumas (Ph.D thesis) /J. Grames

• Joint JLab/Idaho Univ. Position Program

International Workshop on 

Positrons at Jefferson Lab

March 25-27, 2009

(M. Polker)
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