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Abstract

In this note, we describe the measurements that one can perform
at the future EIC colliders based on jets in the final state. We put
emphasis on observables that are unique to the heavy-ion case and
provide valuable information on the structure of the nucleus.
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Figure 1: Generic kinematics of a DIS process.

1 Jet measurements

Give a list of the interesting measurements that one can do using

jets, put special emphasis on the ones that are specific to the eA

situation

• Jet quenching in cold medium:

• Gluon distribution from 2+1-jet:

Speak about what has been done at HERA

2 Generic DIS kinematics

Let us start the discussion by introducing the kinematic variables that we
shall use. Since a significant part of the discussion in this note concerns the
regions of phase-space that will hopefully be reached, we shall discuss later
on (see e.g. Section 4.1) the influence of various cuts we can put on the
different kinematic variables we introduce here.

We first introduce the traditional DIS variables (neglecting the beam
masses)

s = (p + k)2, (1)

W 2 = (p + q)2, (2)

Q2 = −q2, (3)

x =
Q2

2p.q
=

Q2

W 2 + Q2
, (4)

y =
p.q

p.k
=

Q2

sx
, (5)
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where k, p and q are the momenta of the incoming lepton, incoming proton
and exchanged virtual photon respectively.

Experimentally, we will have asymmetric collisions the laboratory frame.
If we denote by P and E the energy of the proton and lepton beam and by
k′ the outgoing lepton of energy E′ and scattering angle θ, we have

p ≡ (0, 0, P, P ), (6)

k ≡ (0, 0,−E,E), (7)

k′ ≡ (E′ sin(θ), 0,−E′ cos(θ), E′). (8)

The kinematic variables introduced here-above can thus be directly com-
puted by only measuring the energy and scattering angle of the outgoing
electron:

s = 4EP, (9)

W 2 = 4EP − 2E′ [P + E + (P − E) cos(θ)] , (10)

Q2 = 2EE′ [1 − cos(θ)] , (11)

x =
EE′ [1 − cos(θ)]

2EP − E′P [1 + cos(θ)]
. (12)

3 Jet reconstruction in DIS

Before discussing the physical measurements involving jets that we plan to
study at the EIC, we will make a few generic comments on jet clustering in
DIS experiments.

The first important point is that, in a vast majority of cases, the jet
reconstruction is conducted in the Breit frame. The latter is defined as the
frame where the proton moves along the positive z direction, the virtual
photon along the negative z direction and has a vanishing energy. In other
words, the only non-zero component of the photon momentum is qz = −Q
and, as a consequence, the longitudinal momentum of the proton will be
pz = Q/(2x).

The Breit frame is often seen as a natural choice to study the final state of
a hard scattering. The first reason for that is that a hard parton coming out
of the proton carries, in the Breit frame, a momentum pz = Q/2. The Breit
frame is thus (nearly) the centre-of-mass frame for the partonic interaction.
The fact that it is not exactly the partonic centre-of-mass frame — in which
the incoming parton would carry a momentum pz = Q — is actually the
main motivation for using the Breit frame. Because of the small asymmetry
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Figure 2: Scattering in the Breit frame at the two lowest orders of the
perturbation theory. The photon comes from the negative z axis and the
incoming parton from the positive z axis.

of the collision, the particles produced will tend to populate the region of
negative z momentum while the beam remnants will carry on with positive
z momentum. The Breit frame thus allows for a clear separation between
the products of the hard partonic interaction and the beam remnants. This
is illustrated in Fig. 2, first at lowest order of the perturbation theory
(Fig. 2(a)) where the final state is just a single parton going back along
the negative z direction with momentum pz = −Q/2, and then at the next
order (Fig. 2(b)) where we have two partons in the final state. Note that
in this last case, the two ooutgoing partons will have opposite transverse
momentum.

Another thing one needs to notice is that the boost required to go from
the laboratory frame to the Breit frame depends on x and Q2 and will thus
vary from one event to another. As a consequence, even if one has a clear
separation between the proton and the results of the hard scattering in the
Breit frame, this distinction might not be as clear in the laboratory frame.
In certain regions of the phase-space, this can also become an experimental
issue. Indeed, boosting the particles from the laboratory frame to the Breit
frame might amplify the uncertainties on the determination of their momen-
tum. For example, at small values of x, one needs to be aware that a large
boost in the longitudinal direction is required. Conversely, at large x, the
partonic system appears very close to the beam remnants in the laboratory
frame, therefore, if the two are not well distinguished because of experimen-
tal precision in the laboratory frame, that will still be the case in the Breit
frame.

Since jet analysis are usually interested in the jets resulting from the
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partonic interaction, it is natural to cluster the particles in the Breit fram1.
For that reasons, one usually labels an event as “n+1 jets” if it has n jets
coming from the hard partonic interaction, the “+1” standing for the beam
remnants. The lowest order diagram (Fig. 2(a)) is thus a 1+1-jet event,
while the one corresponding to Fig. 2(b) will always be a 2+1-jet event as
the outgoing partons have opposite transverse momenta.

The last point we need to discuss is the choice of the jet definition used
to perform the clustering. DIS events are usually reasonably quiet events
with low multiplicities, much closer to the multiplicities obtained in e+e−

collisions than to the ones reached in pp collisions. As a consequence, one
usually uses the longitudinally-invariant kt algorithm [3] with a distance pa-
rameter R = 1 to cluster the final-state particles. This algorithm is known to
be well-suited for perturbative computations and QCD resummations and is
thus often preferred to cone-type algorithms which have a more complicated
perturbative nehaviour and a a lower sensitivity to soft-radiation, making
them more justified at larger multiplicities.

4 Gluon distribution from 2+1 jets

4.1 Kinematics

As already emphasised, an important part of our concerns in the extraction
of the gluon distributino from jet measurements will be to figure out the
accessible regions of the phase-space. We shall thus begin our study with
a discussion of the kinematical variables introduced in Section 2 and, more
specifically, of the cuts one usually has to apply on these variables. Since
these are the variables that are the most commonly used, we will consider
the available phase-space in x and Q2.

The first constraint is comes directly from (11) and the fact that the
energy of the outgoing lepton cannot be larger that the one of the incoming
lepton leading to 0 ≤ Q2 ≤ 4EE′ ≤ 4E2. As a consequence, we realise that
in order to reach large values of Q2, we need back-scattered leptons (i.e.
large values of θ) with a large energy.

One of the constraints that will play a major role when we will discuss
the region of the phase-space where we should be able to extract the gluon
density, is the cut on the outgoing electron energy. In practice, it is not
possible to efficiently detect electrons above a threshold energy Ecut (we

1Though the clustering will be performed using a longitudineally invariant algorithm,
going from the laboratory frame to the Breit freame requires a boost and a rotation, hence
the result of the clustering will be different in the two frames.

5



jet
jet 1

jet 2

jet 1

jet 2

(a) (b) (c)

.

Figure 3: Parton-level processes that contribute (a) to the 1+1 and (b,c)
2+1 jet cross-section.

shall discuss practical values for this cut later on). Using (11), we can get
rid of θ in (12), leading to

x =
Q2

4P
(

E − E′ + Q2

4E

) .

We thus see that if we want to reach small values of x we want to minimise
the energy of the outgoing electron. Without the experimental cut on E′,
the minimal value we can reach is Q2/(4E), obtained from (11) when θ is
large, corresponding to xmin = Q2/(4PE). This is the common bound where
as Q2 decreases one has access to smaller and smaller values of x. This is
reminiscent of the fact that small x tends to prefer small outgoing electron
energies which also suggests small Q2. Once we also take into account the
cut on the outgoing electron energy, we have

x ≥
Q2

4P
(

E − E0 + Q2

4E

) , (13)

with E0 = max(Ecut, Q
2/(4E)). At small values of Q2, the minimal acces-

sible x is thus slightly shifted towards higher values.
We also need to mention the fact that going to small x while keeping

Q2 large enough means going to values of θ as large as possible. In that
case, the scattered electron hits the detector on the proton side, meaning
that it might be difficult experimentally to detect it in the middle of the
proton-beam remnants. For those reasons, a cut θmax is sometimes applied.
Its effect is similar to a cut on E′ so we will not discuss this option here.

Let us now turn to the more specific case of jets in the final state. At
lowest order of the perturbation theory, the virtual photon scatters from a
quark directly coming from the proton as depicted in Figure to be filled.
As discussed in Section 3, that lowest-order configuration is a 1+1 jet i.e.
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one jet from the proton remnants and one from the hard scattering. We
shall argue in the next section that jets become interesting to extract the
gluon distribution at the next order. There are two contributions to the
O(αs) corrections: a quark-initiated process with a gluon and a quark in
the final state, and a gluon-initiated process with a quark-antiquark pair
in the final state. In the Breit frame, these contributions will give rise to
two jets back-to-back in azimuth and well separated from the proton beam
remnants.

The whole idea behind the extraction of the gluon density is to identify
these configurations with 2+1 jets and use them to reconstruct the incoming
parton. If one finds a way to isolate the contribution from the gluon-initiated
processes from the quark-initiated ones, this would give a direct access to
the gluon density.

Practically speaking, if the incoming parton carries a fraction xp of
the proton’s longitudinal momentum (we shall also use xg in the case of
a gluon)m the centre-of-mass energy of the photon-incoming parton system
is ŝ = (xpp + q)2, from which one easily gets

xp = x

(

1 +
ŝ

Q2

)

. (14)

This is where the jet analysis of the final state will become the most inter-
esting: by identifying these 2+1-jet situations, we can reconstruct ŝ which is
also the invariant mass of the dijet system, hence get access to xp. The sys-
tem is thus fully specified by x and Q2, obtained from the outgoing electron,
and ŝ computed from the final state.

At the level of the kinematic, the one cut we need to discuss is a pt,cut

cut on the jets transverse momentum. The main motivation for this cut
is to ensure a clean separation between the “hard” jets coming from the
partonic interaction and the softer jets coming from the proton remains.
Since this cut will be imposed in the Breit frame where the jets go in opposite
directions, we have ŝ ≥ 4p2

t,cut. From (13) and (14) we deduce the lower limit
of the accessible value of xp

xp ≥
Q2E

P [Q2 + 4E(E − E0)]

(

1 +
4p2

t,cut

Q2

)

with E0 = max

(

Ecut,
Q2

4E

)

.

(15)
It is interesting to note that, to the contrary of the lowest bound on x, there
is a fixed limit on xp at small Q2

xp ≥
p2

t,cut

P (E − Ecut)
, (16)
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coming from the fact that at small Q2 it becomes increasingly difficult to
pass the pt,cut threshold.

4.2 Extraction of the gluon distribution

In this Section, we describe the method we suggest in order to extract the
gluon distribution from the 2+1-jet cross-section. We also emphasise in what
respect this could provide an information complementary (or even better)
than the traditional extraction of the gluon distribution through DGLAP
fit to the inclusive cross-section.

In the case of the inclusive measurements of the proton (or nuclear) struc-
ture functions, the quark and gluon parton distribution functions (PDF) are
extracted through a DGLAP evolution [1]. This means that one has to solve
the following set of equations2

Q2∂Q2Σ(x,Q2) =

∫ 1

x

dξ

ξ
Pqq

(

x

ξ
, αs

)

Σ(ξ,Q2) + 2nfPqg

(

x

ξ
, αs

)

g(ξ,Q2),

Q2∂Q2g(x,Q2) =

∫ 1

x

dξ

ξ
Pgq

(

x

ξ
, αs

)

Σ(ξ,Q2) + Pgg

(

x

ξ
, αs

)

g(ξ,Q2),(17)

where we have introduced the singlet distribution Σ(x,Q2) =
∑

q(q + q̄),
and the splitting functions Pab(x, αs) that can be computed perturbatively
in QCD

Pab(x, αs) =
αs

2π
P (0)(x) +

(αs

2π

)2
P (1)(x) + . . . (18)

and are known so far at NNLO i.e. at O(α3
s) [2].

The structure functions are then related to the parton distribution func-
tions by convolution through the Wilson coefficients:

F2(x,Q2) =

∫

dξ

ξ

[

∑

q

Cq

(

x

ξ
, αs

)

(q + q̄)(ξ,Q2) + Cg

(

x

ξ
, αs

)

g(ξ,Q2)

]

(19)
where, as for the splitting functions, the Wilson coefficients can be computed
in perturbative theory

Cq(x, αs) = e2
qxδ(1 − x) +

αs

2π
C(1)

q (x) + . . . (20)

Cq(x, αs) =
αs

2π
C(1)

g (x) + . . . (21)

2We omit other flavour non-singlet combinations of the quark distributions that do not
couple to the gluon.
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Figure 4: Accessible kinematic range in xp and Q2 for the 2+1 jets scenario.
The accessible region is plotted for different energies of the beam (100 and
250 GeV for the hadron beam, 5, 10 and 20 GeV for the lepton beam). We
also investigate the effects of varying the cuts Ecut and pt,cut.
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The whole message here is that the gluon distribution only enters the
structure functions one order later than the quark distribution and thus F2

will be dominated by the quark distribution. One thus typically constrain
the gluon distribution through the DGLAP evolution of the quarks distri-
bution functions. This suffers from two limitations: first, one does not get
direct access to the gluon distribution but rather to its convolution with
the splitting functions. Then, this will not be related to the quark distri-
bution but to its Q2-derivative which is less precisely known that the quark
distribution itself, especially at small x.

Let us now concentrate on the situations where we impose jets in the final
state. As already mentioned, the 1+1-jet case is dominated by the quark
distribution and does not present any advantage compared to the inclusive
measurement presented above. The case of 2+1 jets is more interesting
since the reconstruction of the final state allows to get rid of the convolution
present in the inclusive measurements. More precisely, we have

d2σ2+1

dxp dQ2
= Aq(xp, Q

2) q(xp, Q
2) + Ag(xp, Q

2) g(xp, Q
2), (22)

where the two terms correspond to the quark-initiated and gluon-initiated
processes respectively. The coefficients Aq and Ag are matrix elements that
can be computed at given order in perturbation theory. They also allow
to take into account non-perturbative effects like hadronisation. Note that
if various kinematical cuts are applied — like cuts on the energy of the
outgoing electron, cuts on its scattering angle or minimal transverse energy
for the outgoing jets — the coefficients will probably have to be computed
by Monte Carlo.

Even though at small x gluons will dominate over the quark, in general,
eq. (22) does not give direct access to the gluon distribution unless we
get rid of the contribution proportional to the quark distribution. In what
follows, we shall assume that the inclusive measurements give a good enough
measurement of the quark distribution so that we can simply assume the
quark part in (22) known and subtract it to be left with the gluon-initiated
processes. Of course, a more complete approach can include the 2+1-jet
cross-section directly in the global QCD fits, determining at the same time
the quark and gluon contributions.

A final note concerns the medium effects in e+A collisions. Since the
outgoing jets have to travel in the medium, the coefficients Aa and Ag will be
affected by in-medium propagation. We shall assume here that the measure-
ments of 1+1-jet cross-sections allow to control how jets propagate in the
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Figure 5: TBA

medium and hence to know the corrections to Aq and Ag. This is not com-
pletely trivial as 1+1-jet events will be highly dominated by quark-initiated
jets, while in the 2+1-jet case, we can have both quarks and gluons. As a
consequence, the medium effects on Aq and Ag will probably introduce an
additional systematic error coming from the uncertainty on the gluon-jet
propagation3.

4.3 Simulations and expected statistical errors

In this Section, we estimate the statistical error one may hope to reach at the
EIC and compare that to what one may expect from inclusive measurements.
For simplicity, we will take the case of e+pcollisions and run with a hadron-
beam energy of 100 GeV. We will discussd in the next Section the expected
sources of systematic uncertainties.

Our starting point is the central formula (22). As already mentionned,
we shall assume that the quark contribution is given from the inclusive
measurements and known. If we further assume that the coefficient Ag

is known from Monte-Carlo estimates, the statistical error on the 2+1-jet
cross-section directly gives a measure of the statistical error on the gluon
distribution.

To estimate the statistical error on the 2+1-jet cross-section, we need to
specify the integrated luminosity and fix the kinematic parameters presented
in Section 4.1. We will adopt a typical number of 1 fb−1 of integrated
luminosity, corresponding to about 4 months of data taking at a luminosity

3Unless one finds an independent way of studying gluon-jets propagation.
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of 1032 cm−2s−2. To investigate the effect of the lepton-beam energy, we
will consider two situations: a low-energy option of 2 GeV and a high-
energy option of 20 GeV. We will impose Ecut = 0.5 and 2 GeV for the
low- and high-energy options, respectively. In both cases, we will impose a
pt,cut cut-off on jets of 2 GeV, applied in the Breit frame. Jets have been
clustered with the kt algorithm [3] with a distance parameter R = 1 as this
is a common choice for DIS experiments.

Practically, we have used LEPTO [4] to generate events and FastJet
[5, 6] to perform the jet analysis. We have required exactly 2 jets above
pt,cut in the event. In order to minimise the background coming from events
with more than two jets or, more importantly, 1+1 jet with a jet coming
from the beam remnants passing the pt threshold, we have imposed on top
of the cuts previously introduced, the conditions that the azimuthal angle
between the two jets in the Breit frame has to be larger than π − φcut. We
fixed φcut = 0.1, though a complete study of its effects should be made for
the real experimental analysis.

Finally, we have studied the 2+1-jet cross-section in bins of x and Q2.
The obtained double-differential cross-section can be translated in a given
number of events, given the integrated luminosity. We have chosen to take
12 bins in log(Q2) between Q2 = 1 and Q2 = 1000 GeV2 and 12 bins in
log(x) spanning the kinematic range for x. Since the statistical error is
directly given by the square root of the number of events in each bin, one
can adapt the statistical error by changing the binning.

The results obtained with this setup are presented in Figure 4.3 for the
low-energy option (left plot) and the high-energy option (right plot). In both
cases, we see that the statistical error grows at the edges of the phase-space
as one might expect. One important point is that, in the bulk of the phase-
space, we may reach error of a few percents, i.e. comparable to — if not
smaller than — the precision obtained in global QCD fits. This means that
this dijet measurements can provide a valuable information on the gluon
distribution, either by itself, or combined with inclusive measurements.

It is interesting to notice that the uncertainty is minimal at intermediate
values. At large x, the statistical uncertainty comes from the fact that par-
tons, especially gluons, carrying a large fraction of teh proton’s momentum
are rare, i.e. has the same origin as the correcponding statistical uncertainty
on the structure function measurements. At small x, the main limitation
comes from the cuts we had to impose. The most important is certainly the
requirements that the jets have a transverse momentum larger than pt,cut, as
one can see from eq. (16). We thus want to lower pt,cut as much as possible,
a challenge that we shall discuss in the next Section.
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4.4 Systematic errors

So far, we have only been concerned by the statistical error. Though it is
not our aim to give precise estimates for the systematic errors in this note,
we shall list in this Section their sources and discuss how one can estimate
them in practice. The list presented here is probably not complete but
should at least consist in a good starting point for a complete study of this
measurement.

First of all, we have to deal with a series of uncertainties related to the
fact that dijets may not correspond to the hard process presented in Section
4.2. This is noticeably due to the following list of reasons:

• there is no one-to-one matching between a parton and a jet. There
will be corrections due to parton shower and hadronisation. Those
corrections will affect the matrix elements in equation (22) and they
can be studied, together with their uncertainties using Monte-Carlo
techniques. In the same spirit, one can vary the jet definition to study
systematic effects due to the clustering. Even though the kt algorithm
with R = 1 is the common choice in DIS experiments, varying R may
provide valuable information. One can also perform the clustering with
different algorithms, like the anti-kt [7] which defines jets with rigid
boundaries, a property that is known to ease the calibration process.
Since the efficiency to define jets properly will increase with the pt of
the jet, this question of optimising jet reconstruction is related to the
choice of the pt,cut cut. And we have seen (see Fig. 4) that pushing
pt,cut as low as possible is important if one wants to cover a large region
in x.

• the other effect that we want to study is the contamination from events
where one of the two hard jets is practically coming from the proton
remnants. In this study, we have asked that the two jets are back-to-
back within a certain tolerance φcut. Varying the value of that cut-off
can certainly give precious information on this background. Another
option might be to use the fact that, in the Breit frame, beam renmants
and “hard” partons are supposed to be well-separated in rapidity, and
then use an additional cut-off in rapidity.

Apart fromn the definition of jets, the other major source of theoretical
uncertainty lies probably in the matrix elements Aq,g. In this study, they
have been determined by Monte-Carlo and we have already mentioned that
parton showers and hadronisation will affect them. Using different Monte-
Carlo generators, varying the cuts and using different input PDF sets are
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as many methods that can be used to extimate the uncertainties on those
matrix elements. The other source of theoretical uncertainty is the choice of
the scale for the partonic distributions in (22): here we have used Q2 which
is most likely valid when Q is tha hard scale in the process. But at smaller
Q2, something proportional to p2

t,cut should be more appropriate.
On top of that, there will be a series of more experimental uncertainties.

Among them, the most obvious is probably the one characterised by the
requirement that the energy of the scattered electron is larger than Ecut.
The detection of this electron might for example be more difficult close to
the beam and, as a consequence, we may also want to impose a cut on
its scattering angle. Similarly, all the clustering has been done in the Breit
frame and we have discussed methods which allows clean separation between
the beam remnants and the hard partonic process. Even though we have
already impose cuts to gain confidence that the two reconstructed jets are
coming from the partonic process, going from the laboratory frame to the
Breit frame might be experimentally challenging, especially in some regions
of the phase-space that involve large boosts.

4.5 Conclusions and discussion

Let us conclude this study of the gluon distribution by summarising our
results and discussing a few points that have been left apart in the previous
parts.

We have seen that the study of the differential dijet cross-section allows
a direct access to the gluon density. We have estimated that this method
for extracting the gluon density has relatively small statistical uncertainties,
especially at intermediate values of x.

The main message is thus that this measurement can provide valuable
information of the gluon density, if not on its own, at least by combining it
with DGLAP fits of the inclusive structure function measurements.

The main motivation for using jets to access the gluon density comes
from two facts: first, for simple systems, i.e. 1+1 jet events, the gluon is
suppressed by a power of the strong coupling conpared to the quark and,
second, by measuring the dijet invariant mass, one can reconstruct the in-
coming parton. THhe whole discussion have been carried on at the leading
order of the perturbation theory. Since most of the global QCD fits used
to extract the gluon density are doing so at next-to-leading order (NLO)
or event at NNLO, it is legitimate to ask if this approach survives beyond
leading order. Obviously, the matrix elements Aq and Ag would suffer cor-
rections in αs due tu extra radiation inside the jets. But on top of that, we
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may have contamination from 3-jet events. However, the requirement that
the two hard jets are nearly back-to-back surely helps selecting a clear dijet
sample and limits the sensitivity to NLO corrections. Further studies of the
φcut dependence would help understanding this more quantatively.
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