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Measure of Collider
Performance is the Luminosity
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Main sources of luminosity limitation

Large or growing emittance
Hour-glass effect

Crossing angle
Beam Intensity & Instabilities

Beam-Beam effects

Why to cool hadron beams?
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Why to coherent electron cooling?

• Traditional stochastic cooling does not have enough bandwidth to 
cool modern-day proton beams

• Efficiency of traditional electron cooling falls as a high power of 
hadron’s energy

• Synchrotron radiation is too fable – event at LHC energy cooling 
time is more than 10 hours

• Optical stochastic cooling is not suitable for cooling hadrons with 
large range of energies and has a couple of weak points:

• Hadron do not like to radiate or absorb photons, the process 
which OSC uses twice

• Tunabity and power of laser amplifiers are limited
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Examples of hadron beams cooling

Machine Species
Energy 
GeV/n

Trad.

Stochastic

Cooling, 
hrs

Synchrotron 
radiation, hrs

Trad.

Electron 
cooling

hrs

Coherent

Electron

Cooling, hrs 

1D/3D

RHIC 
PoP

Au 40 - - ~ 1 0.02/0.06

eRHIC Au 130 ~1 20,961 ~ 1 0.015/0.05

eRHIC p 325 ~100 40,246 > 30 0.1/0.3

LHC p 7,000 ~ 1,000 13/26 0.3/<1

Potential increases in luminosities:

RHIC pp ~ 6 fold, eRHIC ~ 50 fold, LHC ~ 2 fold; LHeC ~ 10 fold  
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  x n 0.2 m; s 4.9  cm  

This allows
a) keep the luminosity as it is 
b) reduce polarized beam current down to 50 

mA (10 mA for e-I)
c) increase electron beam energy to 20 GeV

(30 GeV for e-I)
d) increase luminosity by reducing * from 25 
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Gains from coherent e-cooling: 
Coherent Electron Cooling vs. IBS
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eRHIC: ERL or ring for electrons?
CeC is the key ingredient

– Ring-ring:

– Linac-ring:

RHIC

Electron storage ring

RHIC

Electron linear accelerator

Takes full advantage of CeC
Natural staging strategy
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eRHIC IR2

p /A e

Energy (max), GeV 325/130 20

Number of bunches 166 74 nsec

Bunch intensity (u) , 1011 2.0 0.24

Bunch charge, nC 32 4

Beam current, mA 420 50

Normalized emittance, 1e-6 m, 95% for p / rms for e 1.2 25

Polarization, % 70 80

rms bunch length, cm 4.9 0.2

β*, cm 5 5

Luminosity, cm-2s-1
1.4 x 1034
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(assuming nominal LHC bunch intensity 1.15e11 p/bunch and 40% of CeC cooling capability) 
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Stationary solution for τCeC = 0.8 hrs 

  x n 0.19 m; s 0.87 cm  

J.LeDuff, "Single and Multiple Touschek effects", 
Proceedings of CERN Accelerator School, 
Rhodes, Greece, 20 September - 1 October, 1993, 
Editor: S.Turner, CERN 95-06, 22 November 1995,
Vol. II, p. 573 
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Layout for ERL based LHC

• Hadrons 
– 1.15e11 per bunch

– Cooled by CeC

• Electron
– Accelerated in the ERL - 60 GeV

– Polarized electron beam current - 8 mA

• Number of passes – 3

• AC power consumption – 100 MW

• Crab-crossing

• β*=12 cm

• L = 2.1034 cm-2 sec-1

R=700m
R=700m

10 GeV linac  

10 GeV linac  

0.5 GeV
ERL-injector

Dump
Gun
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Coherent Electron Cooler 

Amplifier of the e-beam modulation
in an FEL with gain GFEL~10
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Note that damping decrement

a) Does not depend on the energy of particles ! 
b) Improves as cooling goes on

It makes it realistic to think about cooling  intense proton 
beam in RHIC & LHC at 100s of GeV and 7 TeV energies 

Even though LHC needs one more trick (back up slides)

CeC ~
1

long,h trans,h

CeC
,e

,h

2Go

Z 2

A

rp ,e

n ,h

; ~ 1

Analytical formula for damping decrement

V.N. Litvinenko, EICC meeting, CUA, Washington DC, July 29, 2010



Effects of the surrounding particles

Each charged particle CUAses generation of an electric field wave-packet 
proportional to its charge and synchronized with its initial position in the bunch 

Evolution of the RMS value resembles stochastic cooling!
Best cooling rate achievable is ~ 1/Neff, Neff is effective 

number of hadrons in  coherent sample (Λk=Nc ) 
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Fortunately, the bandwidth of FELs f ~ 1013-1015 Hz  is so large that this limitation does not play any practical role in most HE cases 

Λk ~ 38 λfel
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Transverse cooling

• Transverse cooling can be 
obtained by using coupling with 
longitudinal motion via 
transverse dispersion 

• Sharing of cooling decrements 
is similar to sum of decrements 
theorem for synchrotron 
radiation damping, i.e. 
decrement of longitudinal 
cooling can be split into 
appropriate portions to cool 
both transversely and 
longitudinally: Js+Jh+Jv=1

• Vertical (better to say the 
second eigen mode) cooling is 
coming from transverse 
coupling 

Non-achromatic chicane installed at the
exit of the FEL before the kicker section
turns the wave-fronts of the charged planes
in electron beam 
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e-Density modulation CUAsed by a hadron (co-moving frame)

Analytical: for kappa-2 anisotropic electron plasma,

G. Wang and M. Blaskiewicz, Phys Rev E 78, 026413 (2008)
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Numerical simulations (VORPAL @ TechX)
Provides for simulation with arbitrary distributions and

finite electron beam size
VORPAL Simulations Relevant to Coherent Electron Cooling, G.I. Bell et al., EPAC'08, (2008) 
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© TechX
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3D FEL response
calculated Genesis 1.3, confirmed by RON  

Main FEL parameters for eRHIC with 250 GeV protons

Energy, MeV 136.2 266.45

Peak current, A 100 o, nm 700

Bunchlength, psec 50 w, cm 5

Emittance, norm 5 mm mrad aw 0.994

Energy spread 0.03% Wiggler Helical

The amplitude ( ) and 
the phase ( , in the 
units of ) of the FEL gain 
envelope after 7.5 gain-
lengths (300 period). Total 
slippage in the FEL is 300 , 
=0.5 m. A clip shows the 

central part of the full gain 
function for the range of 
={50 , 60 }. 

G Go Re K eik ; z vt; k =
2

k K z -
2

d
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The Kicker
A hadron with central energy (Eo) phased with the hill where longitudinal electric field is zero, a hadron with higher 
energy (E > Eo) arrives earlier and is decelerated, while hadron with lower energy (E < Eo) arrives later and is 
accelerated by the collective field of electrons 
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Analytical estimation
Simulations: only started

Step 1: use 3D FEL code out output + tracking
First simulation indicate that equations on the left 
significantly underestimate the kick, i.e. the 
density modulation continues to grow after beam 
leaves the FEL  

©I.Ben Zvi

Output from 
Genesis propagated 
for 25 m

0m 5m 10m

25m15m 20m

Step 2: 
use VORPAL with input from Genesis, in preparation 
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New theoretical developments beyond 1D 

©V.Litvinenko, G.Wang,  S.Webb – will be presented in details at FEL’2010
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Polarizing Hadron Beams 
with Coherent Electron Cooling

New LDRD proposal at BNL: VL & V.Ptitsyn

Modulator KickerDelay for hadrons

Electrons

Hadrons

l2
High gain FEL (for electrons)HW1

left helicity
HW2

right helicity

Modulation of the electron
beam density around a hadron is
CUAsed by value of spin
component along the
longitudinal axis, z. Hardons
with spin projection onto z-axis
will attract electrons while
traveling through helical wiggler
with left helicity and repel
them in the helical wiggler with
right helicity.

The high gain 
FEL amplify 
the imprinted 
modulation. 

Hadrons with z-component 
of spin will have an energy 
kick proportional to the 
value and the sigh if the 
projection. Placing the 
kicker in spin dispersion will 
result in reduction of z-
component of the spin and 
in the increase of the 
vertical one. 

d
r 
n /d

This process will polarize the hadron beam
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Shot-Noise Suppressor
(in time)

Laser amplifier

Wiggler 1 Wiggler 2

Buncher

to HG FEL

ho ei n

n 1

N

;  ho
2

N

Such system will reduce the 
amplitude of shot-noise by the 
factor N 1/2 , and the power of 
short-noise (spontaneous 
radiation, SASE) by a factor of N.

V.N. Litvinenko, FLS 2010, SLAC, March 4, 2010
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Proposal to NP DoE, 5 years, $5.9M

V.N. Litvinenko, EICC meeting, CUA, Washington DC, July 29, 2010



Layout for Coherent Electron Cooling
proof-of-principle experiment in RHIC IR 2

Collaboration between BNL & JLab

DX
DX

19.6 m

Modulator, 4 mWiggler 7mKicker, 3 m

Parameter

Species in RHIC Au ions, 40 GeV/u

Electron energy 21.8 MeV

Charge per bunch 1 nC

Rep-rate 78.3 kHz

e-beam current 0.078 mA

e-beam power 1.7 kW

V.N. Litvinenko, IPAC’11, Kyoto, May 26, 2010
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Beam Parameters in CeC
FEL gain set at a realistic value of about 100, local cooling time is estimated at 10.3 seconds, 

and 20 minutes for cooling entire bunch. 
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Optics (preliminary)
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Amplifier of the e-beam 
modulation via High Gain 
FEL and
Longitudinal dispersion 
for hadrons

Modulator:region 1
a quarter to a half 
of plasma oscillation

Kicker:  region 2Electrons

Electron density modulation is amplified in the FEL and made into a train with duration 
of Nc ~ Lgain/ w alternating hills (high density) and valleys (low density) with period of 
FEL wavelength . Maximum gain for the electron density of HG FEL is ~ 103.
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Economic option requires: 2aw
2 < 1 !!!

Modulator Kicker

Electrons

Hadrons

l2
l1

High gain FEL (for electrons) / Dispersion section ( for hadrons)

CeC: Economic option
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Genesis 3D FEL for CeC PoP

Evolution of the maximum bunching in the e-beam 
and the FEL power simulated by Genesis.

Evolution of the maxima locations in the e-beam
bunching and the FEL power simulated by Genesis.
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Profile effect

• The phase velocity in the FEL depends on the peak current through its gain length 

• Expected beam-current profile for the beer-can bunch, and corresponding FEL gain (in amplitude) and 
phase in the kicker. Right graph: The strength of cooling/anti-cooling along the e-bunch. 
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Conclusions
• Coherent electron cooling has potential of cooling high intensity 

TeV scale proton and ion beams with reasonable (under an hour) 
cooling time

• Electron accelerator of choice for such cooler is energy recovery 
linac (ERL)

• ERL seems to be capable of providing required beam quality for 
such coolers

• Majority of the technical limitation and requirements on the beam 
and magnets stability are well within limit of current technology, 
even though satisfying all of them in nontrivial fit 

• We plan a proof of principle experiment of coherent electron 
cooling with Au ions in RHIC at ~ 40 GeV/n
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