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Why to cool hadron beams?

Measure Of Collider ﬁevents =0, 5L
Performance is the Luminosity ;o fcolit. ;vﬁl*(-gzvz oF o)

Main sources of luminosity limitation

Large or growing emittance
Hour-glass effect
Crossing angle
Beam Intensity & Instabilities
Beam-Beam effects
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Why to coherent electron cooling?

Traditional stochastic cooling does not have enough bandwidth to
cool modern-day proton beams

Efficiency of traditional electron cooling falls as a high power of
hadron's energy

Synchrotron radiation is too fable - event at LHC energy cooling
time is more than 10 hours

Optical stochastic cooling is not suitable for cooling hadrons with
large range of energies and has a couple of weak points:

Hadron do not like to radiate or absorb photons, the process
which OSC uses twice

Tunabity and power of laser amplifiers are limited
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Cantor for Acceleralor Science and Education

Examples of hadron beams cooling

Trad. Trad. Coherent
Machine | Soecies | EN€ray | Stochastic | Synchrotron Electron Electron
P Gev/n COO“ng, r'adia‘rion, hrs COO“ng Coolingl hr's
hrs hrs 1D/3D
RHIC | 4y 40 - - ~ 1 0.02/0.06
PoP
eRHIC Au 130 ~1 20,961 00 ~ 1 0.015/0.05
eRHIC p 325 ~100 40,246 © > 30 0.1/0.3
LHC p 7,000 ~ 1,000 13/26 o0 00 0.3/«<1

Potential increases in luminosities:
RHIC pp ~ 6 fold, eRHIC ~ 50 fold, LHC ~ 2 fold: LHeC ~ 10 fold
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Gains from coherent e-cooling: CisE

Coherent Electron Cooling vs. IBS

2
=(2_EJ ; Y=__ fcec 1 . g= feec \/ TiBsy $.
S. ? 3
gj | \/ Ts) s L \/ S\ (1 -2¢ L) Tissy \ Tissy (1 -2¢ l)
L1
1_2§L l; 8xn0 =2/le, O-SO :13 Cm; 050 :4.10_4 IBS in RHIC fOI" . “
Towe X eRHIC, 250 GeV, N,=210

Dynamics:

Takes 12 mins25

to reach
stationary
point

Norm emittance, pm

NATIONAL LABORATORY

Tps =4.6 hrs; T, =1.6 hrs Beta-cool, ©A.Fedotov

Norm emittance, um

— RMS bunch length, cm
, 15 — . —
; | | g,=02um; 0. =4.9 cm

—_
[\

cm down to 5 cm

7

3

9 T This allows

; s a) keep the luminosity as it is

; b)  reduce polarized beam current down to 50
6 & mA (10 mA for e-I)

5 c)  increase electron beam energy to 20 GeV
g (30 GeV for e-I)

§ 3 d)  increase luminosity by reducing p* from 25

0
0 0.05 0.1 0.15 0.2 0.25

Time, hours
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CeC is the key ingredient

eRHIC IR2

p/A e
Energy (max), GeV 325/130 20
Number of bunches 166 74 nsec
Bunch intensity (u) , 101! 2.0 0.24
Bunch charge, nC 32 4
Beam current, mA 420 50
Normalized emittance, 1e-6 m, 95% for p / rms for e 1.2 25
Polarization, % 70 80
rms bunch length, cm 4.9 0.2
B*, cm 5 5
Luminosity, cm-32s-! 1.4 x 1034

NATIONAL LABORATORY
V.N. Litvinenko, EICC meeting, CUA, Washington DC, July 29, 2010



Evolution of beam in LHC at 7 TeV _CASE

(assuming nominal LHC bunch intensity 1.15e11 p/bunch and 40% of CeC cooling capability)

O'E2 Nrczc f (;{m) g, Nrczc H J.LeDuff, "Single and Multiple Touschek effects",
- PEPSERTE ) = bk 7/3 372 172 f(Zm) k=1 Proceedings of CERN Accelerator School,
Tiss e oo\ By TipsL mye; "o, \p, Rhodes, Greece, 20 September - 1 October, 1993,
J 2 4 5 Editor: S.Turner, CERN 95-06, 22 November 1995,
_ rm-c _ e
f(x,)= J. Zl-\(l]e 2 X = —3bn =0 =——; (e—> Ze;m—> Am) Vol. I, p. 573
X m bmax E mc
2 2
X_i'S_[GS] _[&J_ IBS rates in LHC from
2 , Oy, O ’ E,0= 3_75m; O, = 7.55cm LHCJD.’;E”§|(‘.3'§~§EPORT
ax_ 1. 1 e 1 T =80 hrs, 7,.,=61 hrs Table 2.2
- 3/2 al/2 > IBS1 > YIBS//
dt T X778 Teee S

ds 1 1 1-2£ 1

. 32a1/2 L
dt Tigsy XS Tewe X Beam evolution in LHC

=—RMS5 bunch lenght, cm

Stationary solution for 1...= 0.8 hrs P
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Layout for ERL based LHC

==
- — YN —a_

00000
Hadrons

R=700 10 GeV linac
e R=700m
- 1.15e11 per bunch

- Cooled by CeC 10 GeV linac
Electron = 0TI
- Accelerated in the ERL - 60 GeV — L W=a oum

- Polarized electron beam current - 8 mA ERLomjector

Number of passes - 3

AC power consumption - 100 MW
Crab-crossing

B*=12 cm

L = 2103* cm2 sec’!
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Coherent Electron Cooler

At a half of plasma oscillation

A
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Analytical formula for damping decrement

o 7’ r,- o
<§cec>:§ == =K-2G, - - e 2 |
Gr,h A gJ_n (05 . cT’r,h)
|
<§C€C> ~
gl ong,h gtrans, h

Note that damping decrement

a) Does not depend on the energy of particles !
b) Improves as cooling goes on

It makes it realistic to think about cooling intense proton
beam in RHIC & LHC at 100s of GeV and 7 TeV energies
Even though LHC needs one more trick (back up slides)
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Effects of the surrounding particles  —*

Each charged particle CUAses generation of an electric field wave-packet
proportional to its charge and synchronized with its initial position in the bunch

B, (O)=E, Im X- Y KC-&)"— YkE-& )€ B, =2, 70 g
i,hadrons Jelectrons Y= g o= Z(l— COS(DI) 7
Evolution of the RMS value resembles stochastic cooling!
Best cooling rate achievable is ~ 1/N,¢, N+ is effective
number of hadrons in coherent sample (A=NA)

Amplitude
25

Phase/m

(&) =28+ D p- ke-oac

Ne Ak

! \/47[(7 . X /4 7o.,

N;

£=—g(8mE A" NS ) D=g'N,, /2;

ARG A 2 1
g=G, —— 2f(g02)(1 COSQ,)—= L fcec (max) = = (kDGg)OC —
4 ¢, p 20, N N
/4 eff eff
Fortunately, thesbandwidth of FELs Af ~ 1013-10%5 Hz is so large that this limitation does not play any practical role in most HE cases
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Transverse cooling T

Non-achromatic chicane installed at the
Tran;verse coqling can .be . exit of the FEL before the kicker section
obtained by using coupling with  4rns the wave-fronts of the charged planes

longitudinal motion via in elect b
transverse dispersion In electron beam

Sharing of cooling decrements

R,¢#0
is similar to sum of decrements _// \M
theorem for synchrotron

radiation damping, i.e. )=—R. . x
decrement of longitudinal 5( ) 26

cooling can be split into ) E_E

appropriate portions to cool ~ AE=—eZ"-E, -l Sin{/{D P +R16x'—R26x+R36y'+RM]};
both transversely and ’

longitudinally: J+J,+J,=1
Vertical (better to say the
second eigen mode) cooling is cr=JiSccs 6y =027 )sccs
coming from transverse de g, do,’

X X

coupling dt Tecr Al Teec

>

Ac=-D.-eZ’ E, -L,-kRx+..

1 1
T =—— Teoel = ;
20 G T 20020 ) e
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e-Density modulation CUAsed by a hadron (co-moving frame) ~ C4SE
Induces charge: ¢g=—Z/e- (l—COSG)pt) “ Ny

+Ze
A nGIYT I CC(I v for kappa-2 anisotropic electron plasma, /' ‘-
6. Wang and M. Blaskiewicz, Phys Rev E 78, 026413 (2008) P f X
S0 Znw) w:f’rsin ‘[2+[X—thr/a)p]2+ Yy -y /o, 2+ z-v,7/0, ’ _zdr -
(9= 7’0,,0,,0,. T Ty " Density plots for a quarter

of plasma oscillation

Ton moves in c.m. with

Ton rests in c.m.

(0,0) is the location of the ion Vi, = loavze

(0,0) is the location of the ion
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Figure 4: A longitudinal cross section of the wake behind
a gold ion, with the color denoting density enhancement.
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Figure 3: A transverse cross section of the wake behind a
gold ion, with the color denoting density enhancement.



Numerical simulations (VORPAL @ TechX)

‘Canter for Accelerator Science and Education

Provides for simulation with arbitrary distributions and

finite electron beam size
VORPAL Simulations Relevant to Coherent Electron Cooling, 6.I. Bell et al., EPAC'08, (2008)
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3D FEL response C/iSE
calculated Genesis 1.3, confirmed by RON
Main FEL parameters for eRHIC with 250 GeV protons
Energy, MeV 1362 |7 266.45
Peak current, A 100 Lo, M 700
Bunchlength, psec 50 Aw, CM 5
Emittance, norm | 5 mm mrad | aq, 0.994
Energy spread 0.03% | Wiggler Helical
Amplitude G(O)=G,Re(K() ) ¢=z—w;k=2"  Phase/
The amplitude (blue line) and 25p| O GREQ F)eemek =T alsezn
the phase (red line, in the —— Amplitude |
units of n) of the FEL gain |
envelope after 7.5 gain- 115
lengths (300 period). Total
slippage in the FEL is 3002, |

2=0.5 um. A clip shows the
central part of the full gain
function for the range of
£={B0x, 601},

NATIONAL LABORATORY
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The Kicker

Cantor for Acceleralor Science and Education

A hadron with central energy (E,) phased with the hill where longitudinal electric field is zero, a hadron with higher
energy (E > E,) arrives earlier and is decelerated, while hadron with lower energy (E < E,) arrives later and is

accelerated by the collective field of electrons

Analytical estimation

8G~Ze. 8G- Ze

I r
Ap=4mp= ¢=—”ﬂgnkcm k,z)y E=-Vp=-2 ,, -sin(k,,2)
E<E, Mg
< > <« >
Periodical longitudinal electric field
& EE kDo, ~ 1
—=—ek ,,-sinykD >0
dz " E, Og
05 _—
EO
oo AE e-E -1, Z7°
CEC =~ ~ 7 '
E-E, ymc -0, A
BROOKHFAVEN
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Simulations: only started

Step 1: use 3D FEL code out output + tracking
First simulation indicate that equations on the left
significantly underestimate the kick, i.e. the
density modulation continues to grow after beam
leaves the FEL

Bunching in the Kicker, 700 nm

Output from 0s
Genesis propagated 9y
for 25 m g
2 03

©TI.Ben Zvi 0.1

0 5 10 15 20 25
Distance, m

Step 2:
use VORPAL with input from Genesis, in preparation

CUA, Washington DC, July 29, 2010



New theoretical developments beyond 1D ¢

Inserting (8) into (5) generates

% Rls,£..¢)- —z'j' az'(2-2)expl{¢ - 2 ) 22)- @(f'—f}]{ﬁ(f-, FLC)vind %E(f'j ;El,é)} (©)

0z 5
. which is similar to 1D FEL theory (equation (6.68)~ (6.69) of Gang’s thesis) of except E :f
- . P 4 g
that C there is replaced by C,; =C —k;. Thus equation (9) can be reduced to a third 2 E
order ODE the same way as what is done in 1D FEL theory, i.e. § g
3 2 % ?::
~n _n NdT o= - = - d w5y ma = = : : :
d?R(:)Jr 2(zc3d+q)¢7R(:)+[A;+(:c”+qﬂ de(:)—rR(:)=0. (10) =D 0 0
y ¥y
Figure 3. Transverse profile for an initial Gaussian perturbation as calculated from
equation (30). The left plot shows the amplitude and the right plot shows the real part.
cAryyt 1 il HiaE -
bl ‘ z - —ik,
jl(xpjhfrf)_ Ve o g 4 g ki)

47°6,p £(2.1)

. T Zjl 4; (éad ])”:' (éw )’91’ {é”}fe 27 ek d (‘33 4

T il

©

Figure 2. Amplitude and phase of the growth mode radial distribution factor in eq. (28)
for (a) én =0, §=0, Ap =0and Z=6: (b) Z=15 L (c) plots the real part of the radial

Figure 8. Comparison of equation (46) with 20 terms expansion and equation (37) by distribution for Z=15.
direct integration. (a) calculation done by (37): (b) calculation by (46). For both plots,

6,=2,6,=0.1and £=0 are used.

©V Litvinenko, G.Wang, S.Webb - will be presented in details at FEL'2010

V.N. Litvinenko, EICC meeting, CUA, Washington DC, July 29, 2010
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Polarizing Hadron Beams —
with Coherent Electron Cooling
New LDRD proposal at BNL: VL & V.Ptitsyn | '

Hadrons Modulator Delay for hadrons Kicker A

»
»

- -
HW1 HW2 High gain FEL (for electrons)
left helicity  right helicity i

Electrons - — -I/W : o) |
— - dn/dy —

o fr— VWV i i2 1L
Modulation of the electron Hadrons with z-component
beam density around a hadron is Th : : f spin will h

! e high aain of spin will have an energy
CUAsed by value of spin 9 9 kick proportional fo the
;:omponden‘rI along y dThe FEL ampllfy value and the sigh if the
ongitudinal axis, z. Hardons the impbrinted  projection. Placing the
with spin projection onto z-axis mp . kicker in spin dispersion will
will attract electrons while modulation. result in reduction of z-
traveling through helical wiggler component of the spin and
with left helicity and repel in the increase of the
them in the helical wiggler with vertical one.
right helicity.

BROOKHAVEN This process will polarize the hadron beam

NATIONAL LABORATORY
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Shot-Noise Suppressor CsE
(in time) o=k ct

N

6@’1 - g” . Imze"(‘t”u’q’m); go _
m=1
Buncher

kD-ea, L, -K,
2y*mc?

Wiggler 2

Wiggler 1

o¢,/<<1  +o0 HG FEL

. N . . . N
E — Re(aet(!)f) = a()zeﬂﬁﬂ Laser‘ amp"f'er 5E =—eq L . & Imzei(q.‘”—q;m)
“ n o 'w 2]/

=Z€I(W = ;ew (1+iop,) Such system will reduce the
N NN N amplitude of shot-noise by the
_ E o ~Pp) 80 E o = factor N 2 and the power of
short-noise (spontaneous
A’:‘= n=lm=l radiation, SASE) by a factor of N.
E E i(20,-¢)) go _ 2 / N
n=1m=1
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1 Layout for Coherent Electron Cooling _CisE
proof-of-principle experiment in RHIC IR 2
Collaboration between BNL & JLab
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Beam Parameters in CeC

FEL gain set at a realistic value of about 100, local cooling time is estimated at 10.3 seconds,

and 20 minutes for cooling entire bunch.

Parameter Units
Species in RHIC Au ions
Ion’s energy GeV/u 40
Electron beam energy MeV 21.8
Rep-rate kHz 78.3
e-beam power kW 1.7
Length of the CeC straight section m 14
Length of the modulator straight section m 3
Length of the kicker straight section m 3
Length of FEL wiggler m 7
Type of wiggler Helical
Wiggler period cm 4
Wiggler parameter, a,, 0.437
FEL wavelength um 10
BROOKHEVEN

NATIONAL LABORATORY
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2010
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Optics (preliminary)

Parameter Units

lon’s energy GeV/u 40
RMS normalized emittance, x,y mm mrad 2
Ion per bunch 1x10°
Longitudinal emittance eV sec 0.5
RMS bunch-length nsec 1.5
RMS momentum spread, relative 3.5x107
p* m 5.5
s* m 0

Parameter Units

Electron beam energy MeV 21.8
Charge per bunch nC 0.5-1
Normalized emittance mm mrad 5
Peak current in FEL A 60-100
RMS energy spread, relative 1x10°

BHME" Electrons per bunch 3.1-6.2 x10°
NATIONAL LABORATORY
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Cantor for Acceleralor Science and Education

CeC: Economic option

Kicker

Hadrons Modulator High gain FEL (for electrons) / Dispersion section ( for hadrons)

A
v

,. /,
Electrons | —— '-./W_ e . “*

———

Electrons Modulator:region 1 Amplifier of the e-beam ;1. region 2
a quarter to a half modulation via High Gain
of plasma oscillation FEL and
Longitudinal dispersion
for hadrons

Electron density modulation is amplified in the FEL and made into a train with duration
of N, ~ Lg.n/A, alternating hills (high density) and valleys (low density) with period of
FEL wavelength A. Maximum gain for the electron density of HG FEL is ~ 103

Economic option requires: 2q,2 < 1 lll

V.N. Litvinenko, EICC meeting, CUA, Washington DC, July 29, 2010
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Genesis 3D FEL for CeC PoP ==
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*  The phase velocity in the FEL depends on the peak current through its gain length

- Expected beam-current profile for the beer-can bunch, and corresponding FEL gain (in amplitude) and
phase in the kicker. Right graph: The strength of cooling/anti-cooling along the e-bunch.
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Conclusions e

Coherent electron cooling has potential of cooling high intensity
TeV scale proton and ion beams with reasonable (under an hour)
cooling time

Electron accelerator of choice for such cooler is energy recovery
linac (ERL)

ERL seems to be capable of providing required beam quality for
such coolers

Majority of the technical limitation and requirements on the beam
and magnets stability are well within limit of current technology,
even though satisfying all of them in nontrivial fit

We plan a proof of principle experiment of coherent electron
cooling with Au ions in RHIC at ~ 40 GeV/n
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