An Electron-Ion Collider at JLab

Anthony W. Thomas

DIS09 Madrid : April30th 2009

Operated by Jefferson Science Associates for the U.S. Department of

Tefferson C

Long-term Landscape : ELIC

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of

Sefferson C

Consideration of Staging – Medium Energy

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of

Tefferson C

A High-Luminosity Medium-Energy Collider (MEIC) for Nuclear Physics at JLab

- Ring-ring collider with
 - electron energies ranging from 3 to 11 GeV
 - proton energies ranging from 12 to 60 GeV
- Luminosity L ~ few x 10^{34} , approaching 10^{35} cm⁻² s⁻¹
- Requires less R&D, parameters within reach
- Physics: Nucleon/nuclear structure in QCD

(Gluon and sea quark imaging of the nucleon, nucleon spin, nuclei in QCD, QCD vacuum and hadronic structure)

homas Jefferson National Accelerator Facility

- Natural extension of 12 GeV
- Consistent with NSAC Long-Range Plan

Operated by Jefferson Science Associates for the U.S. Department of

Merson

Scientific Opportunities with Medium Energy EIC

 12 GeV upgrade will map the spin and flavor dependence of pdfs in valence region

Medium Energy Collider

- Precise exploration of spin and flavor dependence in sea
- GPDs &transverse spin to investigate orbital angular momentum of quarks and gluons & spatial distribution
- Quark and gluon structure of nuclei (flavor & spin too) through the shadowing region
- J/Ψ production, fragmentation...

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of

(M)EIC@JLab: Present Status

MEIC Baseline Parameters

Plot assumptions:

- 1) Detector/DAQ/electronics limits the luminosity to 10³⁵
- 2) Scale to higher electron beam energies (up to 11 GeV) at fixed synchrotron limit
- 3) Luminosity for staged eRHIC at 2 on 250 is similar as for 4 GeV on 250 GeV (from EICAC meeting)

 Design provides excellent luminosity for 200 < s < 1200 (x = 0.0008 @ Q² = 1) (x = 0.01 @ Q² = 12)
Good luminosity (10³³ or more) down to s = 100 and up to s = 2640 (can access gluons down to x = 0.001 or so)
Jefferson Lab
Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of

ME		Parar	nete	r Ta	ble:	Med	ium	Ene	rgy	
Beam energy	GeV	60/5	60/4	60/3	45/5	45/4	45/3	30/5	30/4	30/3
Circumference	m	560	560	560	560	560	560	560	560	560
Beam current	Α	0.6/2	1.2/3.2	2.7/5	0.5/2	0.6/2.3	2.1/5	0.7/2	0.5/3.5	0.6/4
Repetition	GHz	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Particles/bunch	10 ¹⁰	0.7/2.5	1.5/4	3.4/6.3	0.6/2.5	0.7/2.9	2.6/6.25	0.9/2.5	0.7/4.4	0.8/5
Bunch Length	mm	5	5	5	5	5	5	5	5	5/5
Norm. hori. emit.	μm	1/147	1/120	0.8/75	0.7/147	0.5/85	0.6/75	0.5/147	0.4/85	0.4/75
Norm. vert. emit.	μm	0.1/15	0.2/24	0.8/75	0.14/29	0.17/28	0.6/7.5	0.5/147	0.4/85	0.4/75
Horizontal 6*	mm	5/5	5/5	5/5	5/5	5/5	5/5	5/5	5/5	5/5
Vertical 8*	mm	5/5	5/5	5/5	5/5	5/5	5/5	5/5	5/5	5/5
Size at IP (x/y)	μm	8.7/2.7	8.8/3.9	8	8.7/3.9	7.4/4.3	8	8.7	7.4	8
Hori. Beam-beam		.005/.002	.007/.04	.009/.1	.006/.01	.009/.02	.012/.08	.006/.01	.015/.02	.015/.02
Vert. beam-beam		.015/.05	.015/.09	.009/.1	.013/.03	.015/.04	.012/.08	.006/.01	.0`5/.02	.015/.02
Laslett tune shift	proton	0.1	0.1	0.055	0.1	0.1	0.1	0.1	0.1	0.1
Luminosity (10 ³⁴)	cm ⁻² s ⁻¹	3	6.8	13	1.8	2.7	10	1.2	2.1	3.1

Luminosity is given as a peak value per IP, may be reduced by other beam dynamics effects.
We assume maximum allowable synchrotron radiation (SR) power density is 20 kW/m.

We can allow 60x11 GeV/c (CM energy up to 51 GeV) with a luminosity of 1.3x10³⁴ cm⁻²s⁻¹.

- Case of 60x3 GeV/c provides highest luminosity (above 10³⁵) due to optimization of low electron energy (low SR power) and high proton energy (low space charge effect)
- Studies of new ideas/concepts for increasing luminosity for low proton energy are in progress.

Operated by Jefferson Science Associates for the U.S. Department of

Tellerson Pal

MEIC Accelerator R&D

- Key R&D for MEIC are
 - electron cooling for delivering low emittance/ultra short ion bunches
 - Traveling focusing for suppressing space charge effect & boosting luminosity
 - Crab cavity required for colliding high repetition beams
 - Forming high intensity low energy ion beam
 - Beam-beam effect
- There are other less critical/challenging R&D topics but required by ZDR

Level of R&D	MEIC	ELIC
Nearly impossible		
Very challenging		Electron cooling
Challenging	Electron cooling Traveling focusing	Crab crossing/crab cavity
Likely	Crab crossing/crab cavity High intensity low energy <i>i</i> beam Beam-beam	High intensity low energy <i>i</i> beam Beam-beam
Know-how	Spin tracking IP design/chromaticity	Spin tracking IP design/chromaticity

Operated by Jefferson Science Associates for the U.S. Department of

ellerson C

Back-up

Operated by Jefferson Science Associates for the U.S. Department of

Jefferson Jab

MEIC Design Features

- An ultra high luminosity collider, up to above 10³⁵ cm⁻²s⁻¹ per detector
- CM energy from 8 GeV (4x4 GeV/c) up to 51 GeV (60x11 GEV/c)
- Up to 4 IPs (1 for low proton energy, 3 for medium proton energy)
- High polarization for both electron and light ion beams (due to Figure-8 ring)
- Natural staging path to high energy ELIC (250x10 GeV)
- Can also be staged (1st stage with warm ion ring, up to 12 GeV/c)
- Possibility of polarized positron-ion collider in the same low to medium energy region with same high luminosity.
- Significant lower cost comparing full ELIC

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of

Tellerson C