EIC capabilities for eA experiments

Pawel Nadel-Turonski
Jefferson Lab

Next generation nuclear physics with JLab 12 GeV and EIC, Florida International University, Miami, February 10-13, 2016
Outline

- Accelerator plans at BNL and JLab
- Ions, polarization, and polarimetry (ions and electrons)
- Interaction regions and small-angle hadron detection
- Central detectors
eRHIC linac-ring, “ultimate” version

- **FFAG Recirculating Electron Rings**
 - 1.3-5.3 GeV
 - 6.6-21.2 GeV
- **255 GeV protons**
- **ERL Cryomodules**
- **T. Roser, EIC UG meeting, Jan 2016**
- **Coherent Electron Cooler**
- **Energy Recovery Linac, 1.32 GeV**
- **Polarized Electron Source**
- **Beam Dump**

- Peak luminosity: 2×10^{34} cm$^{-2}$ s$^{-1}$
- ERL, permanent magnet arcs and strong cooling of proton beam

arXiv:1409.1633
eRHIC low-risk ring-ring design

T. Roser, EIC UG meeting, Jan 2016

- $\sim 5 \times 10^{32} \text{s}^{-1} \text{cm}^{-2}$ luminosity ring-ring option covering whole energy range of EIC science case is possible using mainly existing technologies

- Spin experiments need bunch-to-bunch spin sign control. For Ring-Ring this requires full energy injector and frequent electron bunch replacement: use CEBAF-like accelerator (same as ERL but no energy recovery) in RHIC tunnel.

- Electron storage ring needs to operate over wide energy range, maintain electron polarization, and include spin rotators. The storage ring is very similar to the final pass in the ERL-Ring option.

- Little or no hadron cooling needed.

- Limit synchrotron radiation power to 10 MW: lower risk and cost, but still a major cost driver

- Upgrade to the higher luminosity ultimate ERL-Ring design is possible by recovering the electron beam energy in the CEBAF-like injector, converting it into the ERL.
JLab EIC (JLEIC) and CEBAF 12 GeV

- CEBAF as 12 GeV injector
- e-ring from PEP-II
- Possible to run fixed-target program concurrently

- Figure-8 ion ring for polarized deuterium
- 100 GeV protons with inexpensive 3 T super-ferric magnets
 - Upgradable (e.g., 280 GeV with LHC-style 8.4 T magnets)
- Baseline is lowest-risk version (e.g., single-pass e-cooling)
 - Peak luminosity $\sim 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

Baseline is lowest-risk version (e.g., single-pass e-cooling)
- Peak luminosity $\sim 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

CEBAF as 12 GeV injector
- e-ring from PEP-II
- Possible to run fixed-target program concurrently

- Figure-8 ion ring for polarized deuterium
- 100 GeV protons with inexpensive 3 T super-ferric magnets
 - Upgradable (e.g., 280 GeV with LHC-style 8.4 T magnets)
- Baseline is lowest-risk version (e.g., single-pass e-cooling)
 - Peak luminosity $\sim 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

Baseline is lowest-risk version (e.g., single-pass e-cooling)
- Peak luminosity $\sim 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

CEBAF as 12 GeV injector
- e-ring from PEP-II
- Possible to run fixed-target program concurrently

- Figure-8 ion ring for polarized deuterium
- 100 GeV protons with inexpensive 3 T super-ferric magnets
 - Upgradable (e.g., 280 GeV with LHC-style 8.4 T magnets)
- Baseline is lowest-risk version (e.g., single-pass e-cooling)
 - Peak luminosity $\sim 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

Baseline is lowest-risk version (e.g., single-pass e-cooling)
- Peak luminosity $\sim 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

CEBAF as 12 GeV injector
- e-ring from PEP-II
- Possible to run fixed-target program concurrently

- Figure-8 ion ring for polarized deuterium
- 100 GeV protons with inexpensive 3 T super-ferric magnets
 - Upgradable (e.g., 280 GeV with LHC-style 8.4 T magnets)
- Baseline is lowest-risk version (e.g., single-pass e-cooling)
 - Peak luminosity $\sim 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

Baseline is lowest-risk version (e.g., single-pass e-cooling)
- Peak luminosity $\sim 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
Ions, polarization, and polarimetry

- Both JLab and BNL machines can accelerate and store most *unpolarized* ions (from ^1H to ^{238}U)
 - Limitations due to availability of (essentially site-independent) sources
 - BNL has a lot of experience with heavy-ion sources
- Operation with *polarized* beams is much more difficult
 - Polarization is lost during acceleration as resonances are crossed
 - The spin of ions with low g-2 is very difficult to control
- Hadron (proton) polarimetry at RHIC is well developed (few %)
 - Some R&D (*e.g.*, on H-jet) could be useful for EIC applications
 - Current methods are essentially site-independent
- JLab has great expertise in electron polarimetry (sub %)
 - JLab has a quite detailed EIC polarimeter implementation
 - BNL has started to investigate electron polarimetry for eRHIC
To improve proton polarization at high energy (250 GeV) from ~55% today to 70% for an EIC, BNL plans to dismantle one of the RHIC rings and add its spin manipulators (siberian snakes) to the remaining eRHIC ring.

A simpler solution to avoid polarization losses during acceleration is to use a figure-8 ring, which removed many of the depolarizing resonances.

A figure-8 shape is also required to manipulate the spin of ions with low g-2, such as the deuteron. Using such polarized ions is thus unique to JLab.
Ion sources

Polarized light Ions

Universal Atomic Beam Polarized Ion Sources (ABPIS)

Electron-Cyclotron Resonance Ion Source (ECR)

<table>
<thead>
<tr>
<th>Ions</th>
<th>Source Type</th>
<th>Pulse Width (µs)</th>
<th>Rep. Rate (Hz)</th>
<th>Pulsed current (mA)</th>
<th>Ions/pulse (10^{10})</th>
<th>Polarization (P_z)</th>
<th>Emittance (90%) ($π\cdot$mm·mrad)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>H⁺/D⁻</td>
<td>ABPIS</td>
<td>500</td>
<td>5</td>
<td>4 (10)</td>
<td>1000</td>
<td>>90% (95)</td>
<td>1.0 / 1.8 (1.2)</td>
<td></td>
</tr>
<tr>
<td>H⁺/D⁻</td>
<td>ABPIS</td>
<td>500</td>
<td>5</td>
<td>150 / 60</td>
<td>40000/15000</td>
<td>0</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>3He⁺⁺</td>
<td>ABPIS-RX</td>
<td>500</td>
<td>5</td>
<td>1</td>
<td>200</td>
<td>70%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3He⁺⁺</td>
<td>EBIS</td>
<td>10 to 40</td>
<td>5</td>
<td>1</td>
<td>5 (1)</td>
<td>70%</td>
<td>1</td>
<td>BNL</td>
</tr>
<tr>
<td>6Li⁺⁺⁺</td>
<td>ABPIS</td>
<td>500</td>
<td>5</td>
<td>0.1</td>
<td>20</td>
<td>70%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pb$^{30+}$</td>
<td>EBIS</td>
<td>10</td>
<td>5</td>
<td>1.3 (1.6)</td>
<td>0.3 (0.5)</td>
<td>0</td>
<td>1</td>
<td>BNL</td>
</tr>
<tr>
<td>Au$^{32+}$</td>
<td>EBIS</td>
<td>10 to 40</td>
<td>5</td>
<td>1.4 (1.7)</td>
<td>0.27 (0.34)</td>
<td>0</td>
<td>1</td>
<td>BNL</td>
</tr>
<tr>
<td>Pb$^{30+}$</td>
<td>ECR</td>
<td>500</td>
<td>5</td>
<td>0.5</td>
<td>0.5 (1)</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Au$^{32+}$</td>
<td>ECR</td>
<td>500</td>
<td>5</td>
<td>10.5</td>
<td>0.4 (0.6)</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- Numbers in red are “realistic extrapolation for future”; numbers in blue are performance requirements of BNL EBIS

V. Dudnikov
An EBIS source, like the one at BNL, can provide a wide range of *unpolarized* ions.

The EBIS source at BNL is being modified to support polarized 3He (blue part).

Future R&D may allow *polarized* heavy ions from an EBIS source.

EBIS Beams Run to Date

- 1H, 2H, 3H, 4He, 6Li, 7Li, 9Be, 10B
- 6Li, 7Li, 11B, 12C
- 13C, 14N, 15O
- 16O, 17F, 18Ne, 19F, 20Ne
- 21Na, 22Mg, 23Al, 24Si, 25Mn, 26Fe
- 27Co, 28Ni, 29Cu, 30Zn, 31Ga, 32Ge
- 33As, 34Se, 35Br, 36Kr, 37Xe
- 38Sr, 39Y, 40Zr, 41Nb, 42Mo, 43Tc, 44Ru
- 45Rh, 46Pd, 47Ag, 48Cd, 49In, 50Sn
- 51Sb, 52Te, 53I, 54Xe, 55Cs, 56Ba, 57La
- 58Ce, 59Pr, 60Nd, 61Pm, 62Sm, 63Eu
- 64Gd, 65Tb, 66Dy, 67Ho, 68Er, 69Tm
- 70Yb, 71Lu
- 72Hf, 73Ta, 74W, 75Re, 76Os, 77Ir
- 78Pt, 79Au, \ldots

Future R&D may allow polarized heavy ions from an EBIS source.

Figures from J. Maxwell, seminar, Oct 2015

- Ionized to 3He
- Ionized to 3He$^+$
- Collector

5T Solenoid

- Ion Acceleration
- 2×10^{11} 3He$^+$ per pulse

OP Laser

- New 5T
- Existing EBIS

- He$^+$ Cell
- Gun

- 3He$^+$
- 3He$^{++}$

- Next generation nuclear physics with JLab
- 12 GeV and EIC, Miami, 2/10/2016

Jefferson Lab
Proton (ion) polarimetry at RHIC

H-Jet Target

Carbon Ribbon Target

Average P_{ave}

Peak P_{peak}

Beam Cross Section

H. Huang, Oct 2015
Proton (ion) polarimetry at RHIC

- Due to the target orientation and thickness variation, the calibration of p–Carbon polarimeter with polarized H-jet can not be once and done.
- The polarized hydrogen jet needs to be running in parallel.
- With upgraded Si detectors, the H-jet can give polarization error of ±3% for 8 hour store. (PNT: main source of uncertainty)
- In sweep mode, a polarization of ±2% measurement can be done by p-Carbon polarimeter in about 30 sec
- Normally, four sets of polarization measurements are done at store: 0, 3, 6, and 8 hours into a store. Each set consists of two polarization measurements done with horizontal and vertical targets, respectively. Besides polarization information, polarization profile information is also obtained.

H. Huang, Oct 2015
- Two solenoid type spin rotators provide longitudinal polarization in two different energy regimes
- Integrated fields: $B \cdot l [\text{Tm}] = 5.24E[\text{GeV}]$; 26-53 and 52-105 Tm, resp.
eRHIC electron polarization

Perfect longitudinal polarization at 7.5 and 15 GeV, some transverse component at other energies

(relative to source, i.e., not always longitudinal)

C. Montag, seminar, Nov 2015
eRHIC linac-ring spin rotators with Compton polarimeter

- general schematic shown
- detailed lattice design in this region does not yet exist
JLab: electron spin rotator

- Schematic drawing and lattice of USR

Universal spin rotators allow full longitudinal polarization for all electron energies

USRs also allow a “spin dance” scanning procedure to experimentally determine the longitudinal beam spin alignment
JLab: integrated detection and polarimetry

1. Detection/identification of complete final state
2. Spectator p_T resolution $<<$ Fermi momentum
3. Low-Q^2 electron tagger for photoproduction
4. Compton polarimeter with e^- and γ detection

Design goals:

- Low-Q^2 electron detection and Compton polarimeter
- Spectator p_T resolution $<<$ Fermi momentum
- Low-Q^2 electron tagger for photoproduction
- Compton polarimeter with e^- and γ detection

(Electron Polarimetry Low-Q^2 tagger Lumi monitor)
JLab: Compton polarimeter and low-Q^2 tagger

- Experience from HERA: uncertainty \(~1.4\%\)
 - Limited to detection of Compton photon only
 - Accelerator limitations (non-colliding bunches)

- Experience from JLab and SLAC
 - SLD at SLAC reached 0.5\% detecting the Compton electron
 - Compton polarimeters in Halls A/C at JLab reach \(<<1\%\) detecting both γ and e
 - Polarization at center of chicane exactly that same as at IP!

$Laser \ at \ chicane \ center \ and \ symmetric \ dipoles \ can \ cancelling \ net \ spin \ precession$

Compton photon detector
- calorimeter and/or pair spectrometer

Low-Q^2 tagger for high-energy electrons

Low-Q^2 tagger for low-energy electrons

e^- beam to spin rotator

Compton electron tracking detector

γ_c from IP

Luminosity monitor (from SLAC?)

Compton- and low-Q^2 electrons are kinematically separated!

Laser at chicane center and symmetric dipoles can cancelling net spin precession

Photons from IP

JLab EIC Compton / low-Q^2 / luminosity chicane
JLab: Compton/low-Q2 chicane layout

Compton electron detector in Roman pot

Compton photon calorimeter or pair spectrometer

Very low Q2 electron detector in Roman pot

Optical table with cavity

Luminosity monitor Zero Degree calorimeter

Low Q2 tagger scintillator array

Low-Q2 tagger in GEANT4
Interaction regions and forward detection

- The JLab detector was built “outside-in,” starting with the IR, forward hadron detection, and accelerator integration
 - This has resulted in an stable IR concept

- The BNL detectors were built “inside-out,” starting with the central detector, while the IR was defined by accelerator boundaries
 - Several IR concepts were developed for the linac-ring eRHIC
 - Lately more were added for the ring-ring eRHIC
 - Can be a little confusing to an outsider...

- But most importantly, today both BNL and JLab agree on the importance of full acceptance and excellent forward detection
 - This is a good starting point!
PNT: Details of suitable detectors are not yet worked out, but note the huge space reserved for the central detector!

- Full dogleg and > 2 m space for Roman Pots
- 15 mrad crossing angle with crab cavities
- Proton quad aperture could be increased to accommodate low energy beams without cooling; peak field for apertures shown only 1.1 T
eRHIC ring-ring IR w/ better cooling

Required IR changes for moderate cooling
(Emittance reduction by factor 2 in all planes)

C. Montag, seminar, Nov 2015

PNT: good cooling is essential for coherent reactions on nuclei and low-t recoil baryon detection (e.g., DVCS)

Modified layout:
- 20 mrad crossing angle instead of 15 mrad
- larger electron triplet aperture
Cooling to even smaller emittances requires larger crossing angles; feasible if bunch length shrinks accordingly
Yellow boxes outline the cold beam tube apertures.

10 mrad additional electron bending

16 mrad hadron dogleg has spectrometer function for forward going particles

10 mrad total crossing angle

Electrons

Hadrons

±4.5m Region

ZDC

Warm Quad

Crab Cavities

Crab Cavities

Cryostat

Cryostat

Cryostat

Cryostat

Cryostat

Cryostat

Cryostat

(region)

B. Parker, ODU, March 2015

Next generation nuclear physics with JLab
12 GeV and EIC, Miami, 2/10/2016
Outline

B. Parker, ODU, March 2015

Measure as much as possible before the next cold accelerator region.
Extended IR region and by pass modeled in Geant

-6 < θ < -5 mrad
-5 < θ < -4 mrad
-4 < θ < -3 mrad
-3 < θ < -2 mrad
-2 < θ < -1 mrad
-1 < θ < 0 mrad
0 < θ < 1 mrad

• gain acceptance with a station very far down (>40m)
• still need to model this

E.C. Aschenauer, EIC UG meeting, Jan 2016
eRHIC linac-ring IR (alternative)

N. Feege, EIC UG meeting, Jan 2016
eRHIC linac-ring IR (alternative)

D. Trbojevic

U. Wienands, EIC UG meeting, Jan 2016
JLab: detector and interaction region

- Forward hadron spectrometer
- ZDC
- Extended detector: 70+ m
 - e⁻ crab cavities
 - Compton polarimetry
 - Forward e⁻ detection
 - Forward ion detection
 - Ion crab cavities
 - Ion crab cavities

low-\textbf{Q}^2 electron detection and Compton polarimeter
JLab: forward hadron spectrometer

- Large 20 Tm dipole provides excellent resolution
- Large dispersion and small beam size at secondary focus ensure good acceptance for recoil baryons
- Large quadrupole apertures (1/max beam energy) give good acceptance for hadronic and nuclear fragments, charged and neutral (high res. ZDC).
JLab: fragment acceptance and resolution

- Full acceptance for all partonic and nuclear fragments achieved!
 - Low gradient, large aperture magnets (quadrupoles)
- Detector resolution designed to be better than intrinsic momentum and angular spread of the beam
 - Longitudinal \(\frac{dp}{p} \): few \(10^{-4} \)
 - Angular \(\theta \), for all \(\phi \): < 0.3 mrad

- Full acceptance for all partonic and nuclear fragments achieved!

Forward charged-particle acceptance

- proton-rich fragments
 - “spectator protons from \(^2\text{H} \)”
- neutron-rich fragments
 - “tritons from N=Z nuclei”

Neutron acceptance (x and y): 25 mrad cone

Red: Detection before ion quadrupoles
Blue: Detection after ion quadrupoles
JLab: spectator tagging & neutron structure

MC Simulation / GEMC
- Deuterons: - magenta -
- \(e^- \): - cyan -
- Protons: - orange -

Tagged spectator protons
(no lower limit since rigidity is different than the beam)

On-shell extrapolation of \(F_{2n} \)
- Requires resolution better than Fermi momentum (< 20 MeV/c)
- Resolution scales with \(p \)
- JLab design can reach 20 MeV/c even with 50 GeV/A deuterium!

ZDC talk by K. Park
JLab: DVCS recoil proton acceptance

- **Kinematics:** 5 GeV e^- on 100 GeV p at a crossing angle of 50 mrad.
 - Cuts: $Q^2 > 1$ GeV2, $x < 0.1$, $E'_e > 1$ GeV, recoil proton 10σ outside of beam
- **GEANT4 simulation:** tracking through magnets done using GEMC

![Diagram showing low-t and high-t acceptance](image)

- Recoil proton angle is independent of electron beam energy: $\theta_p \approx p_T/E_p \approx \sqrt{(-t)/E_p}$
- The ion beam size (focusing, emittance, cooling) introduces a low-p_T (-t) cutoff
- Larger cone at lower E_p pushes the low-t cutoff lower, and make precise tracking easier
Central detectors

Today there are three relatively mature EIC concept detectors

- ePHENIX at BNL (based on the BaBar magnet)
- BeAST at BNL
- JLab IP1 (full-acceptance)
PHENIX upgrade (sPHENIX) at RHIC

N. Feege, EIC UG meeting, Jan 2016

- Objective: Study Quark Gluon Plasma with jet and Upsilon probes
- 1.5 T BaBar solenoid magnet with tracking, ECAL, and HCAL coverage $|\eta| < 1.1$
- Passed DOE Scientific Review in April 2015
- Completed preCDR document
- Collaboration formed in December 2015
Further sPHENIX upgrade ideas

N. Feege, EIC UG meeting, Jan 2016
Revised ePHENIX/CELESTE concept

N. Feege, EIC UG meeting, Jan 2016
-4<\eta<4: Tracking & e/m Calorimetry (hermetic coverage)
JLab: central detector design considerations

- Modular design, compatible with CLEO and BaBar 1.5 T solenoids, or a new 3 T solenoid
 - 4 m long coil, 3 m diameter
 - FOM ~ BR^2 for tracking in barrel
 - Central tracker resolution is not an issue if R is utilized well

- Luminosity ~ 1 / (total distance) between ion quadrupoles
 - Stat. error ~ √(distance)
 - Important, but not at the 10% level
 - Endcap space allocation should be driven by physics, not accelerator
 - Same conclusion for ring-ring eRHIC

- EIC physics requires very good PID
 - At least one detector must provide it!
 - Most challenging requirement - drives layout and size of the central detector

- Excellent reconstruction and identification of individual particles
 - Important for 3D structure (exclusive, SIDIS), heavy flavor (+ spectroscopy) low-multiplicity jets, etc

- 4π Hcal for high-multiplicity jets at IP1 possible but...
 - adding a smaller, calorimetric IP2 detector could be more cost-effective
JLab: central detector overview

- Doubly asymmetric: IP location within solenoid and different endcaps
 - Maximizes solid angle for electron endcap
 - More space for tracking and ID of high-momentum forward-going particles

- Makes full use of 50 mrad crossing angle and 2 Tm dipole

Diagram showing the central detector overview with key components such asMuon chambers, Sci-Fi EM calorimeter, Shashlyk EM cal, DIRC, modular aerogel RICH, TOF, PWO EM cal, shaping coils, and electron, central barrel, and hadron endcaps.
BNL & JLab staff and users actively participate in the program. JLab detector implements many of the projects in its baseline. Program is managed by T. Ullrich (BNL) and open to everyone.
Summary and Outlook

- The EIC is an electron–ion collider, and will regardless of implementation offer exciting opportunities for eA physics!
 - Many ion species
 - Polarized light ions
 - Excellent detection opportunities

- At the same time, now that the eA capabilities of the EIC are better understood, it is important to revisit the detailed requirements for various measurements and complementarity with JLab 12 GeV.

- This workshop could be a step in that direction!
Backup
Technical risk:

<table>
<thead>
<tr>
<th></th>
<th>Mitigation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>High energy fast hadron cooling</td>
<td>No cooling needed for protons for lower initial luminosity, existing stochastic cooling for heavy ions</td>
</tr>
<tr>
<td>Large pol. electron current: 50 mA</td>
<td>Backup: use two high current guns and switch frequently</td>
</tr>
<tr>
<td>High power multi-pass ERL: 20 GeV, 16 passes, up to 700 mA total current in the linac</td>
<td>Increased linac energy to reduce passes to 12, which gives lower total current in linac; BNL-Cornell eRHIC prototype</td>
</tr>
<tr>
<td>8kW/cavity of HOM power in SRF linac</td>
<td>Reduced total linac current; use RT ferrite dampers for high frequency HOM</td>
</tr>
<tr>
<td>10 different types of SRF cavities</td>
<td>Number of SRF cavity types reduced to 3 (no energy spread and loss compensation, single type of crab cavity)</td>
</tr>
</tbody>
</table>
JLab EIC (JLEIC) electron ring ring
The four “universal” ion beam energies

<table>
<thead>
<tr>
<th>GeV/A (or % of max proton energy)</th>
<th>p</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>66.7</td>
<td>3He</td>
<td>57.1 7Be</td>
</tr>
<tr>
<td>50</td>
<td>N=Z nuclei, incl. d, α, 6Li, 12C, 16O, 40Ca</td>
<td>44.4 9Be, 90Zr</td>
</tr>
<tr>
<td>41.6 48Ca</td>
<td>39.4 208Pb 238U</td>
<td>33.3 t</td>
</tr>
</tbody>
</table>

Interesting ions
- **Light nuclei**: d, 3He, 9Be
- **Mirror nuclei**: 7Be, 7Li
- **Magic nuclei**: α, 16O, 40Ca, 208Pb
- **Non-spherical heavy nuclei**: 238U

The baseline EIC program can be completed using only four energies
- Protons will be run at all four, ions at and/or below their max energy
JLab: Detector locations and backgrounds

- IP locations reduce synchrotron- and hadronic backgrounds
 - *Far* from arc where electrons exit (synchrotron)
 - *Close* to arc where ions exit (hadronic) – shown below

- Scaling from HERA (pp cross section, multiplicity, current) suggest comparable hadronic background at similar vacuum
 - But it should be possible to reach better vacuum! (early HERA: 10^{-7}, PEP-II: 10^{-9}, LHC 10^{-10} torr)
 - EIC luminosity is more than 100 times higher
 - *Signal-to-background (random hadronic)* should be 10^3-10^4 times better than HERA

- Crossing angle and soft bends reduce synchrotron radiation at IP
Bunch by Bunch Polarization is a Long Shot