Requirement Details
Electron Ion Collider
P-HSR-MAG-D5I.30
Requirement details, history, relationships and interfaces associated with requirement P-HSR-MAG-D5I.30
- CURRENT RECORD
- ARCHIVE RECORDS
- RELATIONSHIPS
- INTERFACES
Record Date: 12/06/2024 11:10 | |||
Identifier: | P-HSR-MAG-D5I.30 | WBS: | 6.05.02.01 |
Date Modified: | TBD: | FALSE | |
Status Date: | Status: | In Process | |
Description: | The Bore multipole content shall have a 13th order of Wirhin old RHIC Spec must confirm (10^-4) | ||
Comments: |
No archive versions
Parents | |
F-HSR-MAG.1 | The magnets shall meet the requirements defined by the physics lattice.   |
F-HSR-MAG.2 | The magnets shall have the required field quality to meet the operational needs. |
F-HSR-MAG.3 | The HSR sections consisting of Blue Ring segments shall provide the same quench protection functionality as Yellow Ring segments (diode polarity). |
F-HSR-MAG.4 | The maximum acceptable magnetic stray field at the beam pipe shall be TBD gauss. |
F-HSR-STR_IR02.2 | IR2 modifications shall affect the area between Q10 quadrupoles on the 1 and 2 o’clock side. |
F-HSR-STR_IR02.3 | Existing magnets, beam components and instrumentation in IR2 shall be moved as required to realize the IR2 lattice design. |
F-HSR-STR_IR02.4 | The existing superconducting magnets from RHIC shall be used in the new IR2 lattice, no new magnets are required for IR2. |
F-HSR-STR_IR04.2 | IR4 HSR modifications shall provide sufficient aperture for the injected and circulating beam. |
F-HSR-STR_IR04.3 | IR4 HSR modifications shall accommodate the crossing of ESR and HSR beamline. |
F-HSR.1 | The HSR proton beam shall be ramped from injection energy to an operation energy of up to 275 GeV. |
F-HSR.3 | The HSR beam at full energy shall be synchronized to the revolution frequency of the electron beam. |
F-HSR.4 | The HSR systems shall provide the capability to operate with at least +/-21 mm radial shift of beam orbit in all arcs. |
F-HSR.8 | The HSR shall provide a dynamic aperture of > 6σ under colliding beam conditions. |
F-HSR.9 | The physical aperture for the circulating hadron beam shall be > 10σ horizontal and vertical. |
F-HSR.10 | The HSR alignment requirements are established by dynamic aperture and polarization tracking. The HSR RMS alignment tolerances shall be such that all the beam parameters listed in the MPT [6.9] can be satisfied. |
F-HSR.11 | The operational availability design target for the IR shall be consistent with the operational availability target for the overall EIC as set forth in [Electron-Ion Collider Global Requirements, EIC-ORG-PLN-010]Â |
F-IR-HSR-LATTICE.2 | The hadron beamline lattice elements through the IR shall have a large enough aperture throughout to accommodate a minimum of 10σ spread in x and y of the incoming hadron beam at all energies without obstruction for all energies set forth in [5.8]. |
F-IR-HSR-LATTICE.14 | At the IP of the hadron lattice the dispersion, its derivative and alpha shall all be 0 ,and the beta βx βy shall be chosen to deliver the colliding beam parameters set forth in [5.8] |
F-IR.2 | The IR shall guide the hadron and electron beams to collide at the IP of IR6. |
F-IR.4 | The IR electron and hadron beam lines shall have the linear lattice functions matched to the incoming and outgoing arcs of the ESR and HSR respectively. |
F-IR.8 | The IR shall be designed to ensure the hadron and electron beam collisions at the IP meet all the performance requirements set forth in [5.8]. |
F-IR.9 | The IR shall be designed so that the electron and hadron beams have the same cross-sectional area and maximum overlap to achieve the high luminosities required in [5.8]. |
F-IR.11 | The IR operational uptime shall match the operational uptime requirements of the EIC. |
Children | |
No children. |
This function not yet implemented.