EIC Requirements
Electron Ion Collider

Global EIC System Requirements
Global requirements associated with the Electron Ion Collider.
- NameWBSDescriptionUpdatedStatusTBD
GBL
GBL-BACKGRDS
- 6.0Backgrounds in the detector system must be kept to a very low level to extract the signals of interest05/16/2025In ProcessFALSE
- 6.0The central and far-forward detectors must be integrated into the accelerator and IR lattice, including the vacuum, controls, and beam protection systems, in such a way as to minimize backgrounds from scattered particles, such as beam-gas05/16/2025In ProcessFALSE
- 6.0The detectors must be well protected against background created by the beam. This implies that there must not be particle background from the electron and hadron beams hitting the interaction region vacuum walls. Unavoidable lost particles05/16/2025In ProcessFALSE
- 6.0Residual pressure levels must remain within limits defined by the background level which can be accepted by the detector.05/16/2025In ProcessFALSE
GBL-BEAMPOL
- 6.0Polarization is required for (i) double-spin asymmetries, requiring both electron and hadron beams to be polarized, and (ii) single-spin asymmetries, requiring only the electron or hadron beam to05/16/2025In ProcessFALSE
- 6.0High beam polarizations, ≥70%, are mandatory to reduce the statistical uncertainties.05/16/2025In ProcessFALSE
- 6.0Electron- and proton beams as well as light ion beams such as He-3 need to be spin polarized accordingly in collisions with a polarization degree of 70% on average (over time).05/16/2025In ProcessFALSE
- 6.0The accelerator chain and the injection systems for electron must be able to provide beams with sufficiently high polarization at a sufficiently high injection frequency to maintain high electron polarization.05/16/2025In ProcessFALSE
- 6.0The polarization direction in collisions needs to be adjustable in the longitudinal direction and the transverse direction with respect to the hadron beam direction05/16/2025In ProcessFALSE
- 6.0The polarization direction in collisions needs to be adjustable in the longitudinal direction for the electron beam.05/16/2025In ProcessFALSE
- 6.0The polarimeters are required to be able to measure the beam polarization on a bunch-by bunch level.05/16/2025In ProcessFALSE
GBL-BUNCHPARAMS
- 6.0Good Control of luminosity and polarization is essential for the EIC. The EIC measurements require that the instantaneous luminosity L be measurable to 1%.05/16/2025In ProcessFALSE
- 6.0The precision of double spin asymmetries is dependent on the relative luminosity measurement R = (L++/--)/(L+-/-+), which shall be determined with an accuracy <10-4.05/16/2025In ProcessFALSE
- 6.0The collider shall be constructed and operated such that bunch polarization and polarization orientation in the interaction point can be measured for each electron and proton bunch,05/16/2025In ProcessFALSE
- 6.0The collider shall be constructed and operated such that luminosity per bunch crossing and relative luminosity for the spin different spin direction combinations (++, --, +- and -+)05/16/2025In ProcessFALSE
GBL-CENMASSENG
- 6.0The EIC must cover a large range of center of mass energy's. The collider shall be designed for center of mass energies in the range of 29 GeV to 140 GeV (electrons and protons)05/16/2025In ProcessFALSE
- 6.0The corresponding requirement for the maximum proton beam energy is 275 GeV and for maximum electron energy is 18 GeV.05/16/2025In ProcessFALSE
- 6.0The corresponding crequirment for minimum proton beam energy is 41 GeV and for minimum electron energy is 5 GeV.05/16/2025In ProcessFALSE
- 6.0The center of mass energy range for Electron-Ion collisions shall be (in case of electron gold collisions, a representative case) 29 GeV to 89 GeV (collisions of electrons with gold ions).05/16/2025In ProcessFALSE
- 6.0The corresponding requirment for Au ion energies are 110 GeV/nucleon and 41 GeV per nucleon.05/16/2025In ProcessFALSE
- 6.0The electron storage ring must be designed such that the revolution frequency of the electron beam equals the revolution frequency of a 133 GeV proton beam in the hadron storage ring.05/16/2025In ProcessFALSE
- 6.0For low energy hadron operations, the hadron storage ring lattice must include an option of a bypass such that the path length for protons with an energy of 41 GeV - or any ion species with05/16/2025In ProcessFALSE
GBL-DETACCEPT
- 6.0the scattered electron alone must be precisely measured, including a range of angles within a few milliradians of the beam; semi-inclusive measurements, which require detection of at least one hadron in coincidence with the scattered electron; and exclusive processes, which require the05/16/2025In ProcessFALSE
- 6.0the detector must be “hermetic”, with an acceptance that includes all angles, up to those of particles scattered within a few milliradians of the colliding beam directions.05/16/2025In ProcessFALSE
- 6.0The main detector, comprising tracking, calorimetry, and particle identification for scattered particles with pseudorapidity in the range η = -4 to +4 must fit within a space -4.5 to +5 meters from the collision point.05/16/2025In ProcessFALSE
- 6.0For scattered particles whose energy and momentum are very close to those of the circulating beams, far forward and backward detectors must be integrated with the accelerator components of the IR.05/16/2025In ProcessFALSE
- 6.0The required experimental equipment includes:Very forward detectors to complete the hermetic coverage, such as Roman pots to detect scattered protons that remain inside the beam pipe, and large acceptance zero-degree calorimetry to effectively detect neutrons from the break-up of nuclei05/16/2025In ProcessFALSE
- 6.0Polarized beams require the implementation of electron, proton, and light-ion polarimetry.05/16/2025In ProcessFALSE
- 6.0The EIC detector will have to cope with collision rates up to ~500 kHz at full luminosity.05/16/2025In ProcessFALSE
GBL-EFFICIENCY_REDUNDANCY
- 6.0The facility shall be planned and designed preferably with standardized components that can be used in several hardware systems of the collider.05/16/2025In ProcessFALSE
- 6.0Multipurpose components shall be used wherever they are not compromising performance, cost or schedule.05/16/2025In ProcessFALSE
- 6.0To minimize performance risks, commissioning and collider maturing periods and to reduce initial trouble shooting efforts, existing and proven technology shall be used wherever possible.05/16/2025In ProcessFALSE
- 6.0Use of new technology must be motivated by substantial increase in performance, tolerances, service friendliness, maintainability, manufacturability, availability on the market, cost, and schedule and reasonable research and development effort.05/16/2025In ProcessFALSE
GBL-ENVIRON
- 6.0Ecologically and environmentally sensitive areas such as the Peconic River that crosses the EIC facility must not be affected by EIC construction activities.05/16/2025In ProcessFALSE
- 6.0Precautions shall be taken at locations with expected high beam loss, that activation of oil, ground water, and cooling water is kept within level defined by the document C-AD OPM 9.1.12.05/16/2025In ProcessFALSE
- 6.0The inefficient use of electrical power shall be avoided by appropriate energy conscientious design.05/16/2025In ProcessFALSE
- 6.0Precautions shall be taken at locations with expected high beam loss, that activation of soil, ground water, and cooling water is kept ALARA, and that controls are implemented to minimize environmental impacts and exposure to personnel.05/16/2025In ProcessFALSE
- 6.0In addition, DOE buildings are subject to the requirements for efficiency and sustainability in DOE O 436.1, Departmental Sustainability.05/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the environment, the facility must comply to the National Environmental Policy Act (NEPA)Implementing Procedures, 10 CFR 102105/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the Compliance with Floodplain/Wetlands Environmental Review Requirements, 10 CFR 102205/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the Endangered Species Act (Title 16 - Conservation: Chapter 35-Endangered Species, 16 USC 153105/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the Historic Sites Act of 1935, 16 USC 461-46705/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the Archaeological and Historic Preservation Act, 16 USC 46905/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the National Historic Preservation Act, 16 USC 47005/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the Archaeological Resources Protection Act of 1979, 16 USC 470aa-470ll05/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the Migratory Bird Treaty Act, 16 USC 703-71205/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the Protection of Historic Resources, 36 CFR 80005/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the Protection of Environment /Protection of Stratospheric Ozone, 40 CFR 8205/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the Resource Conservation and Recovery Act (RCRA), 40 CFR 239 – 28205/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the National Environmental Policy Act of 1969, et seq., as amended, 42 USC 4321-434705/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the Trees and Plants/Protected Native Plants, 6 NYCRR 193.305/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the Environmental Remediation Programs, 6 NYCRR 37505/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the Article 15, Title 5 - Protection of Waters, 6 NYCRR 60805/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the Article 24 - Freshwater Wetlands, 6 NYCRR 662 & 66305/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the Article 15, Title 27 - Wild, Scenic, Recreational River Systems Act, 6 NYCRR 66605/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the New York State Environmental Quality Review Act, 8 NYCRR Part 10105/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the Notification Requirements under CERCLA and Title III of the Superfund Amendments and Reauthorization Act of 1986, 40 CFR 302.605/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the Transportation/Hazardous Materials Regulations/ Hazardous Materials Table, Special Provisions, Hazardous Materials Communications, Emergency Response Information, and Training Requirements, 49 CFR 17205/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the Solid Wastes, 6 NYCRR 360-364.905/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the Hazardous Waste Management System: General, 6 NYCRR 37005/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the Identification and Listing of Hazardous Wastes, 6 NYCRR 37105/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the Standards for the Management of Special Hazardous Wastes and Specific Types of Hazardous Waste Management Facilities, 6 NYCRR 37405/16/2025In ProcessFALSE
- 6.0In order to minimize the impact of the EIC on the Standards for the Management of Used Oil, New York State Department of Environmental Conservation, 6 NYCRR 374-205/16/2025In ProcessFALSE
- 6.0New York State Department of Health, State Sanitary Code, Drinking Water Supplies , 10 NYCRR 505/16/2025In ProcessFALSE
- 6.0The Bald and Golden Eagle Protection Act., 16 USC 668 a-d05/16/2025In ProcessFALSE
- 6.0Discharge of Oil, 40 CFR 110.605/16/2025In ProcessFALSE
- 6.0Protection of Environment/Oil Pollution Prevention, 40 CFR 11205/16/2025In ProcessFALSE
- 6.0Code of Federal Regulations, National Pollutant Discharge Elimination System, 40 CFR 122-131, 13305/16/2025In ProcessFALSE
- 6.0National Primary and Secondary Drinking Water Standards, 40 CFR 141-14305/16/2025In ProcessFALSE
- 6.0Underground Injection Control, 40 CFR 144 - 14805/16/2025In ProcessFALSE
- 6.0November 1978, "Regulations for Implementing the Procedural Provisions of the National Environmental Policy Act," Council on Environmental Quality, U.S. Code of Federal Regulations, 40 CFR 1500-150805/16/2025In ProcessFALSE
- 6.0Resource Conservation and Recovery Act/Standards Applicable to Generators of Hazardous Waste, 40 CFR 262 & 264-26505/16/2025In ProcessFALSE
- 6.0Standards for the Management of Used Oil, 40 CFR 27905/16/2025In ProcessFALSE
- 6.0Protection of the Environment/National Oil and Hazardous Substances Pollution Contingency Plan, 40 CFR 30005/16/2025In ProcessFALSE
- 6.0Standards of Performance for New Stationary Sources (NSPS), 40 CFR 60 - Subpart A05/16/2025In ProcessFALSE
- 6.0Standards of Performance for Stationary Compression Ignition Internal Combustion Engine, 40 CFR 60 Subpart IIII (as amended June 28, 2011)05/16/2025In ProcessFALSE
- 6.0National Emissions Standards for Hazardous Air Pollutants (NESHAPs)- General Provisions, 40 CFR 61 - Subpart A05/16/2025In ProcessFALSE
- 6.0National Emission Standards for Hazardous Air Pollutants (NESHAPs) - National Emission Standards for Emissions of Radionuclides Other Than Radon from Department of Energy Facilities, 40 CFR 61 - Subpart H05/16/2025In ProcessFALSE
- 6.0Mandatory Greenhouse Gas Reporting, 40 CFR 9805/16/2025In ProcessFALSE
- 6.0USC 1996. July 1983, "CEQ Regulations for Implementing the Procedural Provisions of the National Environmental Policy Act," Council on Environmental Quality, Federal Register, 48 FR 3426305/16/2025In ProcessFALSE
- 6.0Endanger and Threatened Wildlife and Plants; Listing the Northern Long-Eared Bat as an Endangered Species - Proposed Rule, 50 CFR 17 Dept. of Interior, Fish and Wild Life Service [Fed. Reg. Vol.78 No.191, Oct 2, 2013]05/16/2025In ProcessFALSE
- 6.0New York State Department of Environmental Conservation/Prevention and Control of Air contamination and Air Pollution, 6 NYCRR 200 - 23405/16/2025In ProcessFALSE
- 6.0New York State Department of Environmental Conservation, "Hazardous Substance Bulk Storage Regulations,", 6 NYCRR 595-59905/16/2025In ProcessFALSE
- 6.0New York State Department of Environmental Conservation, Storage and Handling of Petroleum/Petroleum Clean-up and Removal, 6 NYCRR 611 and 61305/16/2025In ProcessFALSE
- 6.0State Pollutant Discharge Elimination System (SPDES) Permits, 6 NYCRR 75005/16/2025In ProcessFALSE
- 6.0Sustainable Acquisition Program (Oct 2010)(SC Alternate 1)(Sep 2018), BSA Contract No. DE-SC0012704 - Clause I.134 (DEAR 970.5223-7)05/16/2025In ProcessFALSE
- 6.0Pollution Prevention And Right-to-know Information (May 2011) ( Alternate I), BSA Contract No. DE-SC0012704 - Clause I.52 — FAR 52.223-505/16/2025In ProcessFALSE
- 6.0Estimate Of Percentage Of Recovered Material Content For EPA Designated Items (May 2008), BSA Contract No. DE-SC0012704 - Clause I.54 — FAR 52.223-905/16/2025In ProcessFALSE
- 6.0Ozone-Depleting Substances and High Global Warming Potential Hydrofluorocarbons (Jun 2016), BSA Contract No. DE-SC0012704 - Clause I.56 (FAR 52.223-11)05/16/2025In ProcessFALSE
- 6.0Compliance With Environmental Management Systems (May 2011), BSA Contract No. DE-SC0012704 - Clause I.62 — FAR 52.223-1905/16/2025In ProcessFALSE
- 6.0Aerosols (Jun 2016), BSA Contract No. DE-SC0012704 - Clause I.62A - FAR 52.223-2005/16/2025In ProcessFALSE
- 6.0Foams (Jun 2016), BSA Contract No. DE-SC0012704 - Clause I.62B - FAR 52.223-2105/16/2025In ProcessFALSE
- 6.0EO 13990: Climate Crisis; Efforts to Protect Public Health and Environment and Restore Science, January 20, 2021 (EO 13693 was revoked by EO 13990, EO 14008, EO 14057, EO 14082)05/16/2025In ProcessFALSE
- 6.0EO 14008: Tackling the Climate Crisis at Home and Abroad, January 27, 202105/16/2025In ProcessFALSE
- 6.0(EO 13693 was revoked by EO 13990, EO 14008, EO 14057, EO 14082)05/16/2025In ProcessFALSE
- 6.0EO 14057: Catalyzing Clean Energy Industries and Jobs Through Federal Sustainability, December 8, 2021 (EO 13693 was revoked by EO 13990, EO 14008, EO 14057, EO 14082)05/16/2025In ProcessFALSE
- 6.0EO 14082: Implementation of the Energy and Infrastructure Provisions of the Inflation Reduction Act of 2022, September 12, 2022 (EO 13693 was revoked by EO 13990, EO 14008, EO 14057, EO 14082)05/16/2025In ProcessFALSE
- 6.0CRD – Radioactive Waste Management, O 435.1 Chg 2 (AdminChg)05/16/2025In ProcessFALSE
- 6.0Departmental Sustainability, O 436.1 (May 2, 2011)05/16/2025In ProcessFALSE
- 6.0Radiation Protection of the Public and the Environment, O 458.1 Chg 4 (LtdChg)9-15-202005/16/2025In ProcessFALSE
- 6.0Toxic and Hazardous Materials Storage and Handling Controls, Suffolk County Sanitary Code - Article 1205/16/2025In ProcessFALSE
GBL-INTEGRAT
- 6.0The EIC shall be designed such as to seamlessly integrate into the existing RHIC systems05/16/2025In ProcessFALSE
- 6.0Duplication of existing functionality and infrastructure previously used for RHIC must be avoided.05/16/2025In ProcessFALSE
- 6.0RHIC components which are becoming part of the EIC shall remain unaltered wherever possible.05/16/2025In ProcessFALSE
- 6.0The Electron-Ion collider rings shall use the existing RHIC tunnel and major changes of the present RHIC accelerator tunnel and the experimental halls must be avoided05/16/2025In ProcessFALSE
- 6.0Present shielding measures of RHIC, in particular the RHIC berm must stay in place and its integrity as a radiation shielding measure must not be compromised.05/16/2025In ProcessFALSE
- 6.0Existing RHIC buildings (service buildings) must be used wherever possible.05/16/2025In ProcessFALSE
- 6.0New accelerator controls systems must be designed such as to interface to the existing or upgraded existing hadron accelerator control system without major additional05/16/2025In ProcessFALSE
- 6.0The EIC hadron ring must be able to accept beam from the AGS via the AtE (former AtR) transfer line.05/16/2025In ProcessFALSE
GBL-IONSPEC
- 6.0The EIC collider shall include the capacity to produce ion beams of a large range in A from protons to uranium.05/16/2025In ProcessFALSE
- 6.0The EIC injector complex must be configured such that polarized deuteron beams can be added with a minimum of additional hardware (such as a polarized deuteron source and deuteron polarimetry).05/16/2025In ProcessFALSE
GBL-LUMI
- 6.0The EIC shall be designed to achieve peak electron-proton luminosities between 1033cm-2s-1 and 1034 cm-2s-1. Comment: With strong hadron cooling (Lpeak = Lavg), 1033 cm-2s-1 yields an integrated luminosity of 1.5 fb-1 per month.05/16/2025In ProcessFALSE
- 6.0The peak electron-proton luminosity of the EIC shall reach values between one and ten times 1033 cm-2 s-1 in the range 29 to 140 GeV of center of mass energies, Lpeak= (1-10) ∙ 1033 cm-2 s-1 for 29 GeV< Ecm<140 GeV.05/16/2025In ProcessFALSE
- 6.0The design shall aim to maximize the range of center of mass energies where the peak electron-proton luminosity reaches values close to Lpeak=1034 cm-2 s-1.05/16/2025In ProcessFALSE
- 6.0The luminosity averaged between two subsequent injections of hadron beams Lavg shall be close to 90% of the peak luminosity.05/16/2025In ProcessFALSE
- 6.0The collider shall be designed such that these luminosity goals can be achieved within the first five years of operations.05/16/2025In ProcessFALSE
- 6.0Studies of the spatial distributions of quarks and gluons in the proton with polarized beams; Shall require an integrated luminosity of up to 100 fb-105/16/2025In ProcessFALSE
- 6.0The choice of beam species, energies, and spin orientation shall allow multiple measurements simultaneously per operating period.05/16/2025In ProcessFALSE
GBL-OPEREFF
- 6.0The EIC collider design choices must consider high levels of operational efficiency and reliability to maximize the physics outcome.05/16/2025In ProcessFALSE
- 6.0Operating procedures which minimize the time between collision runs which includes the time for beam injection, collision adjustment and tuning shall be required to achieve high levels of operational efficiency and reliability to maximize the physics outcome.05/16/2025In ProcessFALSE
- 6.0Consistently achieving good performance parameters near the anticipated design goals shall be required to achieve high levels of operational efficiency and reliability to maximize the physics outcome.05/16/2025In ProcessFALSE
- 6.0Minimizing unscheduled downtime by technically reliable accelerator hardware (thus large mean time between failure, MTBF) and short repair and replacement times (which implies short times between repairs, MTTR) shall be required to achieve high levels of operational efficiency and reliability to maximize the physics outcome.05/16/2025In ProcessFALSE
- 6.0Switching center of mass energy shall not require changing or major moving accelerator components (rewiring maybe unavoidable but shall be designed such as to minimize tie and effort)05/16/2025In ProcessFALSE
- 6.0All components need to be removeable/exchangeable without modifications to buildings and access to tunnels and service buildings.05/16/2025In ProcessFALSE
- 6.0Reliability is defined as time when beam is available as a fraction of scheduled time with beam. The difference between delivered and scheduled time is failure time. The EIC shall meet or exceeded a target of 80% reliability .05/16/2025In ProcessFALSE
GBL-SAFETY_BUILDINGS&FIRE
- 6.0The new Buildings needed for the EIC will be constructed to meet the building and fire protection code that is outlined in the New York State Uniform Fire Prevention and Building Code (2020 Edition) (Division of Code Enforcement and Administration (ny.gov)).05/16/2025In ProcessFALSE
- 6.0This is compliant with the DOE Order 420.lC "Facility Safety," construction of new facilities and significant modifications of existing facilities shall meet the applicable parts of the latest edition of the International Building Code (IBC, 2018 edition) and remains in compliance with DOE Orders and Standards directions in particular with DOE-STD-1066 section 2.2.4.05/16/2025In ProcessFALSE
- 6.0The amended and updated version of the NYS Code Books incorporates by reference the 2020 Building Code of New York State Chapters 2 to 3505/16/2025In ProcessFALSE
- 6.0The amended and updated version of the NYS Code Books incorporates by reference the 2020 Existing Building Code of New York State, Chapters 2 to 1605/16/2025In ProcessFALSE
- 6.0The amended and updated version of the NYS Code Books incorporates by reference the 2020 Fire Code of New York State, Chapters 2 to 6705/16/2025In ProcessFALSE
- 6.0The amended and updated version of the NYS Code Books incorporates by reference the 2020 Fuel Gas Code of New York State, Chapters 2 to 605/16/2025In ProcessFALSE
- 6.0The amended and updated version of the NYS Code Books incorporates by reference the 2020 Mechanical Code of New York State, Chapters 2 to 1505/16/2025In ProcessFALSE
- 6.0The amended and updated version of the NYS Code Books incorporates by reference the 2020 Plumbing Code of New York State, Chapters 2 to 1505/16/2025In ProcessFALSE
- 6.0The amended and updated version of the NYS Code Books incorporates by reference the 2020 Property Maintenance Code of New York State, Chapters 2 to 805/16/2025In ProcessFALSE
- 6.0The amended and updated version of the NYS Code Books incorporates by reference the 2020 Residential Code of New York State, Chapters 2 to 4405/16/2025In ProcessFALSE
- 6.0Rules on fire protection include 29 CFR 1910 Sub Part L Fire Protection05/16/2025In ProcessFALSE
- 6.0Rules on fire protection include ANSI Z 535.1 Safety Color Code05/16/2025In ProcessFALSE
- 6.0Rules on fire protection include DOE-STD-1066 Fire Protection Design Criteria05/16/2025In ProcessFALSE
GBL-SAFETY_CRYO&PRESS
- 6.0The completed collider complex must comply to ASME BPVC Section VIII - Rules for Construction of Pressure Vessels, Division 1‚ Rules for Construction of Pressure Vessels and Division 2‚ Alternative05/16/2025In ProcessFALSE
- 6.0The completed collider complex must comply to ASME B31.3 Process Piping05/16/2025In ProcessFALSE
- 6.0The completed collider complex must comply to BNL-8715-2008-IR Vacuum Systems Consensus Guidelines for DOE Accelerator Laboratories05/16/2025In ProcessFALSE
- 6.0The completed collider complex must comply to Compressed Gas Association (CGA) Standard S-1.3, Pressure Relief Device Standards Part 3 – Stationary Storage Containers for Compressed Gases05/16/2025In ProcessFALSE
- 6.0The completed collider complex must comply to ISO 21013-3 Cryogenic vessels - Pressure-relief accessories for cryogenic service Part 3: Sizing capacity determination05/16/2025In ProcessFALSE
GBL-SAFETY_EGRESS
- 6.0New construction in the collider complex must be constructed such as to avoid confined space in areas that must be entered by personnel for maintenance and repair. GBL SAFETY_EGRESS.02 Shall avoiding confined space in areas that must be entered by personnel not be possible or lead to unreasonable conditions, the collider design must include mitigation of the corresponding hazard.05/16/2025In ProcessFALSE
- 6.0Any work locations in the collider tunnel shall not be further away than 400 ft from the next tunnel exit when the tunnel has sprinkler protection.05/16/2025In ProcessFALSE
- 6.0The exit path from any work location in the collider tunnel to the next exit must be unobstructed by accelerator components and shall not require underpasses with less than 36 inches width and 36 inches height.05/16/2025In ProcessFALSE
- 6.0Markings shall be provided to denote and preserve access to the duck under.05/16/2025In ProcessFALSE
- 6.0In certain regions a ladder or stair shall be used to access a platform on top of the magnets for egress.05/16/2025In ProcessFALSE
- 6.0Emergency lighting and illuminated exit signs will be provided.05/16/2025In ProcessFALSE
GBL-SAFETY_ELEC
- 6.0Electrical equipment purchased for the accelerator will be certified by a Nationally Recognized Testing Laboratory (NRTL) whenever possible. GBL_SAFETY_ELEC All equipment05/16/2025In ProcessFALSE
- 6.0All equipment will adhere to Classification of Flammable Liquids, Gases, or Vapors and of Hazardous (Classified) Locations for Electrical Installations in Chemical Process05/16/2025In ProcessFALSE
- 6.0All equipment will adhere to National Electrical Code, NFPA 7005/16/2025In ProcessFALSE
- 6.0All equipment will adhere to Electrical Standard for Industrial Machinery, NFPA 7905/16/2025In ProcessFALSE
- 6.0All equipment will adhere to Standard for Competency of Third-Party Field Evaluation Bodies, NFPA 79005/16/2025In ProcessFALSE
GBL-SAFETY_GEN
- 6.0The elements EIC collider complex must be designed and built to meet the BNL Subject Based Management System (https://sbms.bnl.gov/).05/16/2025In ProcessFALSE
- 6.0The elements EIC collider complex must be designed and built to meet the DOE 10CFR851Worker Safety and Health Program.05/16/2025In ProcessFALSE
GBL-SAFETY_LASERS
- 6.0Lasers and laser enclosures will be designed to comply with ANSI Z136.1, American National Standard for the Safe Use of Lasers.05/16/2025In ProcessFALSE
GBL-SAFETY_MAGFIELDS
- 6.0Magnetic fields may be present in accelerator components and personnel exposure will not exceed the thresholds set in ACGIH05/16/2025In ProcessFALSE
GBL-SAFETY_ODH
- 6.0Oxygen deficiency hazards must be avoided by providing oxygen monitoring, ventilation, adequate warning systems and corresponding training of operating and maintenance staff.05/16/2025In ProcessFALSE
- 6.0Oxygen deficiency hazards are evaluated using the methodology in SBMS, Oxygen Deficiency Hazards (ODH), System Classification and Controls.05/16/2025In ProcessFALSE
GBL-SAFETY_RAD
- 6.0The radiation safety measures of the EIC shall be compliant with the DOE order 10 CFR 835, Energy/Occupational Radiation Protection and the more stringent requirements set forth in the BNL SBMS.05/16/2025In ProcessFALSE
- 6.0All exposures shall be As Low as Reasonably Achievable.05/16/2025In ProcessFALSE
- 6.0Radiation emitted by the EIC accelerator beams and due particle losses must be shielded such that dose limits outside the accelerator enclosures are 25 mrem annually for an inadvertently exposed person05/16/2025In ProcessFALSE
- 6.0Radiation emitted by the EIC accelerator beams and due particle losses must be shielded such that dose limits outside the accelerator enclosures are 5 mrem annually at the site boundary05/16/2025In ProcessFALSE
- 6.0Radiation emitted by the EIC accelerator beams and due particle losses must be shielded such that dose limits outside the accelerator enclosures are 20 mrem during a fault condition05/16/2025In ProcessFALSE
- 6.0Radiation emitted by the EIC accelerator beams and due particle losses must be shielded such that dose limits outside the accelerator enclosures are 0.5 mrem in 1 hour or 20 mrem in one week for continuously05/16/2025In ProcessFALSE
GBL-SAFETY_RF
- 6.0The RF systems must comply to the ASME BPVC, https://www.asme.org/codes-standards/find-codes-standards/bpvc-complete-code-boiler-pressure-vessel-code-complete-set.05/16/2025In ProcessFALSE
- 6.0The operating EIC has to following the review, inspection and maintenance requirements of the ASME BPVC.05/16/2025In ProcessFALSE
- 6.0The RF exposure to personnel will not exceed the thresholds set in ACGIH Threshold Limit Values – 2016.05/16/2025In ProcessFALSE
GBL-SAFETY_VACUUM
- 6.0Vacuum systems will comply to guidelines set forth in the publication, Vacuum Systems Consensus Guideline for Department of Energy Accelerator Laboratories”, BNL-81715-2008-IR https://intranet.bnl.gov/esh/shsd/seg/refdoc/pressuresafety/vacuum_standard.doc05/16/2025In ProcessFALSE
GBL-SAFETY_WATERCOOL
- 6.0In the design of water-cooling systems, precaution need to be taken to avoid endangering the staff by dangerous bacterial infections. GBL_SAFETY_WATERCOOL.02 The suppression of unwanted effects such as algae in open water circuits must avoid aggressive chemicals.05/16/2025In ProcessFALSE
- 6.0The guideline for design of cooling water systems must obey the ANSI/ASHRAE Standard 188. Legionellosis: Risk Management for Building Water Systems. establishes minimum legionellosis risk management requirements for building water systems. (This is also in the BNL SBMS.)05/16/2025In ProcessFALSE
- 6.0The guideline for design of cooling water systems must obey the State Requirement Protection Against Legionella. 10 NYCRR Part 4 – Protection Against Legionella: Subpart 4-1, Cooling Towers.05/16/2025In ProcessFALSE
GBL-UPGRADES
- 6.0The EIC plans to include previsions to allow future a upgrade that is (but is not limited to) two interaction regions and two colliding beam detectors.05/16/2025In ProcessFALSE
- 6.0The EIC must be planned such that a second interaction region and a second detector can be integrated in the collider with a minimum of cost and effort.05/16/2025In ProcessFALSE
- 6.0Integrating a second detector is achieved by designing the present beam trajectories in the possible area for the next IR around IP8 such that a second IR can be introduced without imposing a difference05/16/2025In ProcessFALSE
- 6.0The design of the electron and hadron beam optics and their higher order correction must offer sufficient margin so that the accelerator performance is not compromised by the 2nd IR.05/16/2025In ProcessFALSE
- 6.0Obsolete detector or equipment in the hall around IP8 shall be removed to avoid impeding the construction of a possible 2nd IR05/16/2025In ProcessFALSE
- 6.0The facility must be upgradable to operation with colliding electron and polarized deuteron beams.05/16/2025In ProcessFALSE

Electron Injector System Requirements
General, functional and performance requirements associated with the Electron Injector Systems of the Electron Ion Collider.
- NameWBSDescriptionUpdatedStatusTBD
EIS : Electron Injector System
EIS-RCS : Rapid Cycling Synchrotron (WBS 6.03.02)
EIS-RCS-MAG : EIS RCS Magnet (WBS 6.03.02.02)
EIS-RCS-MAG-C0 : EIS RCS Magnet C0 (WBS 6.03.02.01)
EIS-RCS-MAG-Q0 : EIS RCS Magnet Q0 (WBS 6.03.02.01)
EIS-RCS-MAG-Q0_6 : EIS RCS Magnet Q0_6 (WBS 6.03.02.01)
EIS-RCS-MAG-S0 : EIS RCS Magnet S0 (WBS 6.03.02.01)
EIS-RCS-MAG-D0 : EIS RCS Magnet D0 (WBS 6.03.02.02)
EIS-RCS-MAG-CORR : RCS Corrector Magnet
EIS-RCS-MAG-DIP : RCS Dipole Magnet
EIS-RCS-MAG-PS : RCS Magnet Power Supply
EIS-RCS-MAG-QUAD : RCS Quadrupole Magnet
EIS-RCS-MAG-SEXT : RCS Sextupole Magnet
EIS-RCS-PS : EIS RCS Magnet Power Supply (WBS 6.03.02.03)
EIS-RCS-PS-C0 : EIS RCS Magnet Power Supply C0 (WBS 6.03.02.03)
EIS-RCS-PS-CO : EIS RCS Magnet Power Supply CO (WBS 6.03.02.03)
EIS-RCS-PS-D0 : EIS RCS Magnet Power Supply D0 (WBS 6.03.02.03)
EIS-RCS-PS-Q0 : EIS RCS Magnet Power Supply Q0 (WBS 6.03.02.03)
EIS-RCS-PS-Q0_6 : EIS RCS Magnet Power Supply Q0_6 (WBS 6.03.02.03)
EIS-RCS-PS-S0 : EIS RCS Magnet Power Supply S0 (WBS 6.03.02.03)
EIS-RCS-PS-SXT : EIS RCS Magnet Power Supply SXT (WBS 6.03.02.03)
EIS-RCS-VAC : EIS RCS Vacuum (WBS 6.03.02.04)
EIS-RCS-INST : EIS RCS Instrumentation (WBS 6.03.02.05)
EIS-RCS-INST-BPM : EIS RCS Instrumentation Beam Position Monitor (WBS 6.03.02.05)
EIS-RCS-INST-BPM-ELEC : EIS HETL Instrumentation Beam Profile Monitor Electronic (WBS 6.03.02.05.01)
EIS-RCS-INST-BPM-PU : EIS RCS Instrumentation Beam Profile Monitor Pick-Up (WBS 6.03.02.05.01)
EIS-RCS-INST-CM : EIS RCS Instrumentation Current and Charge Monitor (WBS 6.03.02.05)
EIS-RCS-INST-SLM : EIS RCS Instrumentation Synchrotron Light Monitor (WBS 6.03.02.05)
EIS-RCS-INST-TM : EIS RCS Instrumentation Tune Monitor (WBS 6.03.02.05)
EIS-RCS-INST-TPM : EIS RCS Instrumentation Transverse Profile Monitor (WBS 6.03.02.05)
EIS-RCS-INST-BBA : RCS Beam Based Alignment Monitor
EIS-RCS-INST-BC : RCS Bunch Charge Monitor
EIS-RCS-INST-BCM : RCS Beam Current Monitor
EIS-RCS-INST-BLM : RCS Beam Loss Monitor
EIS-RCS-INST-BP : RCS Bunch Profile Monitor
EIS-RCS-INST-TUNE : RCS Tune Monitor
EIS-RCS-PPD : EIS Pulsed Power Device System (WBS 6.03.03.05)
EIS-RCS-PPD-INJ_PULSE_KICK : EIS RCS Injection Pulse Power Kicker System (WBS 6.03.03.05.01)
EIS-RCS-PPD-INJ_PULSE_SEPT : EIS RCS Injection Pulsed Power Septum System (WBS 6.03.03.05.02)
EIS-RCS-PPD-EXT_PULSE_KICK : EIS RCS Extraction Pulse Power Kicker System (WBS 6.03.03.05.03)
EIS-RCS-PPD-EXT_RF_KICK : EIS RCS Extraction Pulse Power System (WBS 6.03.03.05.04)
EIS-RCS-PPD-INJ_RF_KICK : EIS RCS Injection Pulse Power System (WBS 6.03.03.05.04)
EIS-RCS-PPD-EXT_PULSE_SEPT : EIS RCS Extraction Pulsed Power Septum System (WBS 6.03.03.05.05)
EIS-RCS-PPD-BUMP : RCS Extraction System Bump Magnet
EIS-RCS-PPD-FKICK : RCS Extraction System Fast Kicker Magnet
EIS-RCS-PPD-SEPT : RCS Extraction System Septum Magnet
EIS-RCS-CONT : EIS RCS Controls (WBS 6.07.02)
EIS-RCS-CONT-INJ : EIS RCS Controls System Injection Tuning (WBS 6.07.02)
EIS-RCS-RF : EIS RCS RF System (WBS 6.08)
EIS-RCS-RF-ACAV:591M
EIS-HETL : EIS High Energy Transfer Line (HETL) System (WBS 6.03.03)
EIS-HETL-MAG : EIS HETL Magnet (WBS 6.03.03.01)
EIS-HETL-MAG-B1 : EIS HETL Magnet B1 (WBS 6.03.03.01)
EIS-HETL-MAG-B2 : EIS HETL Magnet B2 (WBS 6.03.03.01)
EIS-HETL-MAG-D1 : EIS HETL Magnet D1 (WBS 6.03.03.01)
EIS-HETL-MAG-D2 : EIS HETL Magnet D2 (WBS 6.03.03.01)
EIS-HETL-MAG-D3 : EIS HETL Magnet D3 (WBS 6.03.03.01)
EIS-HETL-MAG-INDSEPT1 : EIS HETL Magnet INDSEPT1 (WBS 6.03.03.01)
EIS-HETL-MAG-KH1 : EIS HETL Magnet KH1 (WBS 6.03.03.01)
EIS-HETL-MAG-KV1 : EIS HETL Magnet KV1 (WBS 6.03.03.01)
EIS-HETL-MAG-Q1 : EIS HETL Magnet Q1 (WBS 6.03.03.01)
EIS-HETL-MAG-Q2 : EIS HETL Magnet Q2 (WBS 6.03.03.01)
EIS-HETL-MAG-SEPT1 : EIS HETL Magnet SEPT1 (WBS 6.03.03.01)
EIS-HETL-MAG-SEPT2 : EIS HETL Magnet SEPT2 (WBS 6.03.03.01)
EIS-HETL-MAG-ESR_INJ_BMP : EIS HETL Injection Bump ESR Magnet (WBS 6.03.03.05.08)
EIS-HETL-MAG-BUMP : High Energy Transfer Line Bump Magnet
EIS-HETL-MAG-SEPT : High Energy Transfer Line Septum Magnets
EIS-HETL-PS : EIS HETL Magnet Power Supply (WBS 6.03.03.02)
EIS-HETL-PS-B1 : EIS HETL Magnet Power Supply B1 (WBS 6.03.03.02)
EIS-HETL-PS-B2 : EIS HETL Magnet Power Supply B2 (WBS 6.03.03.02)
EIS-HETL-PS-D1 : EIS HETL Magnet Power Supply D1 (WBS 6.03.03.02)
EIS-HETL-PS-D2 : EIS HETL Magnet Power Supply D2 (WBS 6.03.03.02)
EIS-HETL-PS-D3 : EIS HETL Magnet Power Supply D3 (WBS 6.03.03.02)
EIS-HETL-PS-INDSEPT1 : EIS HETL Magnet Power Supply INDSEPT1 (WBS 6.03.03.02)
EIS-HETL-PS-KH1 : EIS HETL Magnet Power Supply KH1 (WBS 6.03.03.02)
EIS-HETL-PS-KV1 : EIS HETL Magnet Power Supply KV1 (WBS 6.03.03.02)
EIS-HETL-PS-Q1 : EIS HETL Magnet Power Supply Q1 (WBS 6.03.03.02)
EIS-HETL-PS-Q2 : EIS HETL Magnet Power Supply Q2 (WBS 6.03.03.02)
EIS-HETL-PS-SEPT1 : EIS HETL Magnet Power Supply SEPT1 (WBS 6.03.03.02)
EIS-HETL-PS-SEPT2 : EIS HETL Magnet Power Supply SEPT2 (WBS 6.03.03.02)
EIS-HETL-PS-ESR_INJ_BMP : EIS HETL Injection Bump ESR Power Supply (WBS 6.03.03.05)
EIS-HETL-VAC : EIS HETL Vacuum (WBS 6.03.03.03)
EIS-HETL-INST : EIS HETL Instrumentation System (WBS 6.03.03.04)
EIS-HETL-INST-BPM : EIS HETL Instrumentation Beam Profile Monitor (WBS 6.03.03.04)
EIS-HETL-INST-BPM-ELEC : EIS HETL Instrumentation Beam Profile Monitor Electronic (WBS 6.03.03.04.01)
EIS-HETL-INST-BPM-PU : EIS HETL Instrumentation Beam Profile Monitor Pick-Up (WBS 6.03.03.04.01)
EIS-HETL-INST-CM : EIS HETL Instrumentation Charge Monitor (WBS 6.03.03.04)
EIS-HETL-INST-PM : EIS HETL Instrumentation Profile Monitor (WBS 6.03.03.04)
EIS-HETL-INST-IC : High Energy Transfer Line Integrating Current Monitor
EIS-HETL-INST-POL : High Energy Transfer Line Polarization Measurement System
EIS-HETL-ESR : High Energy Transfer Line ESR
EIS-HETL-ESR-INJ : High Energy Transfer Line ESR Injection Section
EIS-HETL-SLINE : High Energy Transfer Stripline
EIS-HETL-SLINE-FKICK : High Energy Transfer Fast Stripline Kicker
EIS-METL : EIS Medium Energy Transfer Line (METL) (WBS 6.03.03)
EIS-METL-MAG : EIS METL Magnet (WBS 6.03.03.01)
EIS-METL-MAG-BMP1 : EIS METL Magnet BMP1 (WBS 6.03.03.01)
EIS-METL-MAG-DH1 : EIS METL Magnet DH1 (WBS 6.03.03.01)
EIS-METL-MAG-DH2 : EIS METL Magnet DH2 (WBS 6.03.03.01)
EIS-METL-MAG-DH3 : EIS METL Magnet DH3 (WBS 6.03.03.01)
EIS-METL-MAG-DV1 : EIS METL Magnet DV1 (WBS 6.03.03.01)
EIS-METL-MAG-KH1 : EIS METL Magnet KH1 (WBS 6.03.03.01)
EIS-METL-MAG-KV1 : EIS METL Magnet KV1 (WBS 6.03.03.01)
EIS-METL-MAG-Q1 : EIS METL Magnet Q1 (WBS 6.03.03.01)
EIS-METL-MAG-Q_BATES : EIS METL Magnet BATES (WBS 6.03.03.01)
EIS-METL-MAG-SEPTUM : EIS METL Magnet SEP1 (WBS 6.03.03.01)
EIS-METL-MAG-SPINSOL : EIS METL Magnet SOL1 (WBS 6.03.03.01)
EIS-METL-MAG-DIP : Medium Energy Transfer Line Dipole Magnet
EIS-METL-MAG-QUAD : Medium Energy Transfer Line Quadrupole Magnet
EIS-METL-PS : EIS METL Magnet Power Supply (WBS 6.03.03.02)
EIS-METL-PS-BMP1 : EIS METL Magnet Power Supply BMP1 (WBS 6.03.03.02)
EIS-METL-PS-DH1 : EIS METL Magnet Power Supply DH1 (WBS 6.03.03.02)
EIS-METL-PS-DH2 : EIS METL Magnet Power Supply DH2 (WBS 6.03.03.02)
EIS-METL-PS-DH3 : EIS METL Magnet Power Supply DH3 (WBS 6.03.03.02)
EIS-METL-PS-DV1 : EIS METL Magnet Power Supply DV1 (WBS 6.03.03.02)
EIS-METL-PS-KH1 : EIS METL Magnet Power Supply KH1 (WBS 6.03.03.02)
EIS-METL-PS-KV1 : EIS METL Magnet Power Supply KV1 (WBS 6.03.03.02)
EIS-METL-PS-Q1 : EIS METL Magnet Power Supply Q1 (WBS 6.03.03.02)
EIS-METL-PS-Q2 : EIS METL Magnet Power Supply Q2 (WBS 6.03.03.02)
EIS-METL-PS-Q3 : EIS METL Magnet Power Supply Q3 (WBS 6.03.03.02)
EIS-METL-PS-Q4 : EIS METL Magnet Power Supply Q4 (WBS 6.03.03.02)
EIS-METL-PS-Q_BATES : EIS METL Magnet Power Supply BATES (WBS 6.03.03.02)
EIS-METL-PS-SEPTUM : EIS METL Magnet Power Supply SEP1 (WBS 6.03.03.02)
EIS-METL-PS-SPINSOL : EIS METL Magnet Power Supply SOL1 (WBS 6.03.03.02)
EIS-METL-VAC : EIS METL Vacuum (WBS 6.03.03.03)
EIS-METL-INST : EIS METL Instrumentation (WBS 6.03.03.04)
EIS-METL-INST-BPM : EIS METL Instrumentation Beam Profile Monitor (WBS 6.03.03.04)
EIS-METL-INST-BPM-ELEC : EIS METL Instrumentation Beam Profile Monitor Electronic (WBS 6.03.03.04.01)
EIS-METL-INST-BPM-PU : EIS METL Instrumentation Beam Profile Monitor Pick-Up (WBS 6.03.03.04.01)
EIS-METL-INST-CM : EIS METL Instrumentation Charge Monitor (WBS 6.03.03.04)
EIS-METL-INST-PM : EIS METL Instrumentation Profile Monitor (WBS 6.03.03.04)
EIS-METL-INJ : Medium Energy Transfer Line Electron Injector Injection Section
EIS-METL-INJ-MAG : Medium Energy Transfer Line Electron Injector Injection Section Magnet
EIS-METL-INJ-MAG-FKICK : Medium Energy Transfer Line Electron Injector Injection Section Fast Kicker Magnet
EIS-METL-INJ-MAG-SEP : Medium Energy Transfer Line Electron Injector Injection Section Septum Magnet
EIS-METL-RCS : Medium Energy Transfer Line RCS
EIS-METL-RCS-INJ : Medium Energy Transfer Line RCS Injection Section
EIS-METL-RCS-INJ-MAG : Medium Energy Transfer Line RCS Injection Section Magnet
EIS-METL-RCS-INJ-MAG-BUMP : Medium Energy Transfer Line RCS Injection Section Bump Magnet
EIS-METL-RF : Medium Energy Transfer Line RF
EIS-METL-RF-FKICK : Medium Energy Transfer Line Fast RF Kicker
EIS-GUN : EIS Electron Source Gun (WBS 6.03.04.01)
EIS-GUN-TIMING : EIS Electron Source Gun Timing (WBS 6.03.04.01)
EIS-GUN-VAC : EIS Electron Source Gun Vacuum (WBS 6.03.04.01.02)
EIS-GUN-ESOURCE : EIS Electron Source Gun Electron Beam (WBS 6.03.04.02)
EIS-GUN-LASER : EIS Electron Source Gun Laser (WBS 6.03.04.02)
EIS-GUN-INST : EIS Electron Source Gun Instrumentation (WBS 6.03.04.02.06)
EIS-GUN-INST-EM : EIS Electron Source Gun Instrumentation Emittance Monitor (WBS 6.03.04.02.06)
EIS-GUN-INST-F_Cup : EIS Electron Source Gun Instrumentation Faraday Cup (WBS 6.03.04.02.06)
EIS-GUN-INST-MOT : EIS Electron Source Gun Instrumentation Mott Polarimeter (WBS 6.03.04.02.06)
EIS-GUN-INST-SR : EIS Electron Source Gun Instrumentation Spin Rotator (WBS 6.03.04.02.06)
EIS-GUN-CONT : EIS Electron Source Gun Controls System (WBS 6.07.02)
EIS-GUN-MAG : Gun Diagnostic Line Magnet
EIS-LINAC : EIS Electron Source LINAC (WBS 6.03.04.01)
EIS-LINAC-ACCEL : EIS Electron Source LINAC Accelerating System (WBS 6.03.04.01)
EIS-LINAC-BEAM : EIS Electron Source LINAC Beamline Electron Bunch (WBS 6.03.04.01)
EIS-LINAC-BUNCH_118MHZ : EIS Electron Source LINAC Buncher 118MHz (WBS 6.03.04.01)
EIS-LINAC-BUNCH_2856MHZ : EIS Electron Source LINAC Buncher 2856MHz (WBS 6.03.04.01)
EIS-LINAC-BUNCH_560MHZ : EIS Electron Source LINAC Buncher 560MHz (WBS 6.03.04.01)
EIS-LINAC-CONT : EIS Electron Source LINAC Controls (WBS 6.03.04.01)
EIS-LINAC-DECHIRP : EIS Electron Source LINAC De Chirp System (WBS 6.03.04.01)
EIS-LINAC-INST : EIS Electron Source LINAC Instrumentation (WBS 6.03.04.01)
EIS-LINAC-INST-BLM : EIS Electron Source LINAC Bunch Length Monitor (WBS 6.03.04.01)
EIS-LINAC-INST-BPM : EIS Electron Source LINAC Beam Position Monitor (WBS 6.03.04.01)
EIS-LINAC-INST-CM : EIS Electron Source LINAC Bunch Charge Monitors (ICT, WCM, FC) (WBS 6.03.04.01)
EIS-LINAC-INST-PM : EIS Electron Source LINAC Transverse Profile Monitor (PM) (WBS 6.03.04.01)
EIS-LINAC-VAC : EIS Electron Source LINAC Vacuum (WBS 6.03.04.01)
EIS-LINAC-ZIGZAG : EIS Electron Source LINAC Zigzag (WBS 6.03.04.01)
EIS-LINAC-ZIGZAG-MAG : Zigzag Section Magnet
EIS-LINAC-ZIGZAG-MAG-CHIRP : Zigzag Section De-Chirp Cavity
EIS-LINAC-ZIGZAG-MAG-DIP : Zigzag Section Dipole Magnet
EIS-LINAC-ZIGZAG-MAG-QUAD : Zigzag Section Quadrupole Magnet
EIS-LINAC-BNCHR : Buncher Section
EIS-LINAC-BNCHR-INST : Buncher Section Instrumentation
EIS-LINAC-BNCHR-INST-BLM : Buncher Section Bunch Length Monitor
EIS-LINAC-BNCHR-INST-BPM : Buncher Section Beam Position Monitor
EIS-LINAC-BNCHR-INST-EM : Buncher Section Emittance Monitor
EIS-LINAC-BNCHR-INST-ICT : Buncher Section Integrating Current Transformer Monitor
EIS-LINAC-BNCHR-INST-LM : Buncher Section Beam Loss Monitor
EIS-LINAC-BNCHR-INST-TPM : Buncher Section Transverse Profile Monitor
EIS-LINAC-BNCHR-MAG : Buncher Section Magnet
EIS-LINAC-BNCHR-MAG-CORR : Buncher Section Corrector Magnet
EIS-LINAC-BNCHR-MAG-HELM : Buncher Section Helmholtz Magnet
EIS-LINAC-BNCHR-MAG-SOL : Buncher Section Solenoid Magnet
EIS-LINAC-BNCHR-RF : Buncher Section RF System
EIS-LINAC-BNCHR-VAC : Buncher Section Vacuum
EIS-LINAC-CAV : LINAC RF Cavity
EIS-LINAC-DUMP : LINAC Beam Dump
EIS-LINAC-DUMP-INST : LINAC Dump Line
EIS-LINAC-MAG : LINAC Magnet
EIS-LINAC-MAG-QUAD : LINAC Quadrupole Magnet
EIS-LINAC-MAG-WF : LINAC Window Frame Steering Magnet
EIS-LETL : Gun Low Energy Transfer Line
EIS-PROT : Protection System
EIS-PROT-ABORT : Protection System Beam Abort
EIS-PROT-COLL : Protection System Collimator
EIS-PROT-DUMP : Protection System Beam Dump
EIS-TLINE
Electron Storage Ring Requirements
General, functional and performance requirements associated with the Electron Storage Ring of the Electron Ion Collider.
- NameWBSDescriptionUpdatedStatusTBD
ESR : Electron Storage Ring
- 6.02.02The ESR shall be able to accept single bunches of spin-polarized electrons as injected from the RCS at the energies specified in the Master Parameter Table (MPT). [Document#:EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.02.02All ESR quadrupoles shall be designed to facilitate beam based alignment.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- 50 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02The ESR main arc quadrupoles shall be powered to accommodate the Lattice requirements having the appropriate number of circuits to power the focusing and defocusing quadrupoles in each sextant of the ESR.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02The ESR alignment requirements are established by dynamic aperture and polarization tracking. The ESR RMS alignment tolerances shall be such that all the beam parameter listed in the MPT can be satisfied. [Document#:EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet install center and install alignment must be within a translational value of +/- 150 (um) and a rotational alignment value of +/- 0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- 50 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet install center and install alignment must be within a translational value of +/-500 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet install center and install alignment must be within a translational value of +/- 500(um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-500 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- 500 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02The ESR lattice shall provide a minimum dynamic aperture of 10 sigma with respect to Gaussian electron beam distribution in all three dimensions (horizontal, vertical, and longitudinal) having a vertical emittance of half the horizontal design emittance.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The field harmonic measurements shall be measured at the reference radius of 25mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet reference radius for field homogeneity shall be 15 (mm).02/09/2026ApprovedFALSE
- 6.02.02.06The maximum beam excursion orbit shall be TBD02/09/2026In ProcessFALSE
- 6.02.02.03.05.01The magnet reference radius for homogeneity shall be 17 (mm).02/09/2026ApprovedFALSE
- 6.02.02.06The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.02/09/2026ApprovedFALSE
- 6.02.02The ESR Lattice shall contain provisions for correctors such as skew quadrupoles, Dipole correctors etc. as needed.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.02/09/2026ApprovedFALSE
- 6.02.02The ESR shall have a depolarization time long enough to ensure an average polarization of 70%, assuming an injected polarization level of 80% and a bunch replacement rate of up to two bunches per second.02/09/2026ApprovedFALSE
- 6.02.02The ESR vacuum chamber shall provide sufficient horizontal and vertical aperture to accommodate; a +/-15 sigma beam, where the vertical RMS beam size is based on the emittance of a fully coupled beam, plus an additional 10 mm horizontal and 5 mm vertical margin to account for expected orbit errors.02/09/2026ApprovedFALSE
- 6.02.02.06The typical (standard) vacuum chamber aperture shall be 80 x 36 mm.02/09/2026ApprovedFALSE
- 6.02.02.06Special aperture requirements and/or aperture file shall be provided by or approved by physics.02/09/2026ApprovedFALSE
- 6.02.02The dynamic pressure around the ESR shall be consistent with a beam gas lifetime of >10[hrs] with the design currents after an integrated beam current of 1000 [A.h].02/09/2026ApprovedFALSE
- 6.02.02.06There shall be no upper pressure limit as long as the average pressure is maintained.02/09/2026ApprovedFALSE
- 6.02.02.06The average vacuum level in the ESR Arc sections after conditioning (for 1000Ahrs) shall be <5x10-9 Torr.02/09/2026ApprovedFALSE
- 6.02.02.06On 15 m on each side (or one vacuum sector) of the SRF cavities shall be processed to class ISO 5.02/09/2026ApprovedFALSE
- 6.02.02There shall be no pressure bumps in the ESR exceeding (TBD)[Torr]02/09/2026ApprovedFALSE
- 6.02.02The ESR vacuum chamber and all its components shall be designed to withstand a total synchrotron radiation load of 10 MW, considering the uneven linear load particularly related to the super-bends.02/09/2026ApprovedFALSE
- 6.02.02.05.04The ESR shall have two synchrotron light monitors (SLM) and one X-ray pin hole monitor02/09/2026In ProcessFALSE
- 6.02.02.05.04The longitudinal bunch profile monitor shall have a turn-by-turn capability based on a single bunch in the fully filled bunch train.02/09/2026In ProcessFALSE
- 6.02.02.05.04TThe SLM systems shall measure the crabbing angle, longitudinal bunch parameters, H & V beam size and global coupling.02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure a crabbing angle of 12.5 mrad with accuracy of 10 %02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the Longitudinal bunch parameters with accuracy of TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the H & V beam size with accuracy of H=?? V=?? units02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the Global coupling with accuracy of TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04One SLM port shall be located downstream of a dipole in an appropriate location in the ESR, exact location not critical.02/09/2026In ProcessFALSE
- 6.02.02.05.04The second SLM port shall be located in a complimentary location in the lattice to ensure all the necessary SLM measurements can be made. TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM light extraction port mirrors shall be good quality, having a surface finish better than 1/10 Lambda02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM light extraction port mirrors shall be water cooled to avoid image distortion.02/09/2026In ProcessFALSE
- 6.02.02.05.04There shall be an enclosed SL transport from the light extraction port to the SLM optical lab rooms. Length to be determined by the distance to optical lab room, should be minimized to reduce vibration problems.02/09/2026In ProcessFALSE
- 6.02.02.05.04The locations of the SLM optical lab rooms shall be TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The double-slit interferometer method shall be used to measure transverse beam size02/09/2026In ProcessFALSE
- 6.02.02.05.04The standard transverse resolution of an SLM using visible light shall be ~60 um02/09/2026In ProcessFALSE
- 6.02.02.05.04The resolution using the double-slit method shall equal to 10 um02/09/2026In ProcessFALSE
- 6.02.02.05.04A streak camera shall be used to measure the bunch longitudinal profiles02/09/2026In ProcessFALSE
- 6.02.02.05.04A position sensitive photo-diode will provide photon beam centroid information which shall supplement the orbit stability measurements by the BPMs02/09/2026In ProcessFALSE
- 6.02.02.05.04A GigE CCD/CMOS camera, externally triggerable with exposure times ranging from 10 nsec to 5 sec, shall be used to image the visible radiation02/09/2026In ProcessFALSE
- 6.02.02.05.04A commercially available gated camera with gate width of <2 nsec (compared to a minimum bunch spacing of 10 nsec) shall be used to detect injection oscillations and for beam studies.02/09/2026In ProcessFALSE
- 6.02.02.05.04The location of the X-ray pinhole monitoring system shall be TBD02/09/2026In ProcessFALSE
- 6.02.02.05.04The target resolution of the X-ray pin hole monitoring system shall be ~ 5 um (or as best that can be achieved with the machine parameters and commercial equipment) 5 um02/09/2026In ProcessFALSE
- 6.02.02.05.04The X-ray pin hole monitor shall provide independent measurement of the energy spread and horizontal/vertical emittance. H=V=15.4 nm02/09/2026In ProcessFALSE
- 6.02.02.05.04The X-ray pinhole photon beamline shall be equipped with gated cameras that will be employed to provide high resolution turn-by-turn profile measurements02/09/2026In ProcessFALSE
- 6.02.02.05.04Several different size pinholes sizes shall be incorporated to allow easy alignment and measurements at different beam currents and energies.02/09/2026In ProcessFALSE
- 6.02.02.05.04A pinhole assembly including tungsten slits shall provide sufficient resolution to precisely measure the beam size02/09/2026In ProcessFALSE
- 6.02.02.06The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.02/09/2026ApprovedFALSE
- 6.02.02The ESR vacuum chamber material shall be chosen such that the SR power can be intercepted by the arc chambers and in addition good radiation shielding will be provided to prevent damage to other components.02/09/2026ApprovedFALSE
- 6.02.02.06The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.02/09/2026ApprovedFALSE
- 6.04.05The impedance of the entire ESR vacuum system, including the interaction regions in IR06 and IR08, shall allow for the bunch intensities, beam currents, and bunch numbers contained in the Master Parameter Table (MPT). [Document#:EIC-SEG-RSI-005]05/16/2025ApprovedFALSE
- 6.02.02.06The vacuum system global impedance shall be less than the impedance budget as provided by accelerator physics.02/09/2026ApprovedFALSE
- 6.02.02The ESR shall deliver a spin polarized electron beam with time-averaged polarization of at least 70 percent.02/09/2026ApprovedFALSE
- 6.02.04.02The ESR controls system shall be capable of producing arbitrary spin pattern at injection02/09/2026In ProcessFALSE
- 6.02.04.02The number of bunches @ 18GeV shall be 290 cnt02/09/2026In ProcessFALSE
- 6.02.04.02The Spin pattern control granularity shall be 1 bunch02/09/2026In ProcessFALSE
- 6.02.04.02The number of bunches @ 10GeV and below shall be 1160 cnt02/09/2026In ProcessFALSE
- 6.02.02The polarization lifetime of the beam in the ESR shall be maximized to maximize time-averaged polarization based on the given replacement frequency and polarization degree of the bunches provided by the injector.02/09/2026ApprovedFALSE
- 6.02.02The polarization lifetime maximum optimization in the ESR shall be accomplished by proper spin matching which minimizes the spin diffusion.02/09/2026ApprovedFALSE
- 6.02.04.02The ESR controls system shall be capable of producing arbitrary spin pattern at injection02/09/2026In ProcessFALSE
- 6.02.04.02The number of bunches @ 18GeV shall be 290 cnt02/09/2026In ProcessFALSE
- 6.02.04.02The Spin pattern control granularity shall be 1 bunch02/09/2026In ProcessFALSE
- 6.02.04.02The number of bunches @ 10GeV and below shall be 1160 cnt02/09/2026In ProcessFALSE
- 6.02.02The ESR shall include a system to absorb the energy of bunches which are periodically and continually ejected from the ESR to accommodate freshly polarized bunches.02/09/2026ApprovedFALSE
- 6.02.02The ESR shall be capable of having all polarized electron bunches in the ring continually replaced while the electron beam is in collision with a hadron beam, thus allowing for arbitrary spin patterns for the collider experiments.02/09/2026ApprovedFALSE
- 6.02.04.02The ESR controls system shall be capable of producing arbitrary spin pattern at injection02/09/2026In ProcessFALSE
- 6.02.04.02The number of bunches @ 18GeV shall be 290 cnt02/09/2026In ProcessFALSE
- 6.02.04.02The Spin pattern control granularity shall be 1 bunch02/09/2026In ProcessFALSE
- 6.02.04.02The number of bunches @ 10GeV and below shall be 1160 cnt02/09/2026In ProcessFALSE
- 6.02.02The ESR shall be capable of delivering bunches with longitudinal spins to the IP.02/09/2026ApprovedFALSE
- 6.02.02The ESR shall provide electron bunches having the bunch parameters specified in the MPT. [Document#:EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.02.02The ESR lattice arc magnet structure shall contain an array of regular FODO cells02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.02/09/2026ApprovedFALSE
- 6.02.02The ESR lattice arc magnet structure shall consists of a quadrupole, a sextupole, a bending section, and a dipole corrector in each arc half-cell.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.02/09/2026ApprovedFALSE
- 6.02.02The ESR lattice arc magnet structure shall accommodate slightly different average arc radii in the individual arcs by adjusting the drift spaces between individual elements in each FODO cell.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The ESR beamline bending sections shall contain three individual dipole magnets, referred to as “super-bends”.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The ESR super-bends shall generate additional synchrotron radiation damping to support a large beam-beam parameter of 0.1 and to create the required horizontal design emittance in the Master Parameter Table (MPT) when the ESR is operated at energies below 10 GeV. [Document: EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.02.02.05.04The ESR shall have two synchrotron light monitors (SLM) and one X-ray pin hole monitor02/09/2026In ProcessFALSE
- 6.02.02.05.04The longitudinal bunch profile monitor shall have a turn-by-turn capability based on a single bunch in the fully filled bunch train.02/09/2026In ProcessFALSE
- 6.02.02.05.04TThe SLM systems shall measure the crabbing angle, longitudinal bunch parameters, H & V beam size and global coupling.02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure a crabbing angle of 12.5 mrad with accuracy of 10 %02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the Longitudinal bunch parameters with accuracy of TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the H & V beam size with accuracy of H=?? V=?? units02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the Global coupling with accuracy of TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04One SLM port shall be located downstream of a dipole in an appropriate location in the ESR, exact location not critical.02/09/2026In ProcessFALSE
- 6.02.02.05.04The second SLM port shall be located in a complimentary location in the lattice to ensure all the necessary SLM measurements can be made. TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM light extraction port mirrors shall be good quality, having a surface finish better than 1/10 Lambda02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM light extraction port mirrors shall be water cooled to avoid image distortion.02/09/2026In ProcessFALSE
- 6.02.02.05.04There shall be an enclosed SL transport from the light extraction port to the SLM optical lab rooms. Length to be determined by the distance to optical lab room, should be minimized to reduce vibration problems.02/09/2026In ProcessFALSE
- 6.02.02.05.04The locations of the SLM optical lab rooms shall be TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The double-slit interferometer method shall be used to measure transverse beam size02/09/2026In ProcessFALSE
- 6.02.02.05.04The standard transverse resolution of an SLM using visible light shall be ~60 um02/09/2026In ProcessFALSE
- 6.02.02.05.04The resolution using the double-slit method shall equal to 10 um02/09/2026In ProcessFALSE
- 6.02.02.05.04A streak camera shall be used to measure the bunch longitudinal profiles02/09/2026In ProcessFALSE
- 6.02.02.05.04A position sensitive photo-diode will provide photon beam centroid information which shall supplement the orbit stability measurements by the BPMs02/09/2026In ProcessFALSE
- 6.02.02.05.04A GigE CCD/CMOS camera, externally triggerable with exposure times ranging from 10 nsec to 5 sec, shall be used to image the visible radiation02/09/2026In ProcessFALSE
- 6.02.02.05.04A commercially available gated camera with gate width of <2 nsec (compared to a minimum bunch spacing of 10 nsec) shall be used to detect injection oscillations and for beam studies.02/09/2026In ProcessFALSE
- 6.02.02.05.04The location of the X-ray pinhole monitoring system shall be TBD02/09/2026In ProcessFALSE
- 6.02.02.05.04The target resolution of the X-ray pin hole monitoring system shall be ~ 5 um (or as best that can be achieved with the machine parameters and commercial equipment) 5 um02/09/2026In ProcessFALSE
- 6.02.02.05.04The X-ray pin hole monitor shall provide independent measurement of the energy spread and horizontal/vertical emittance. H=V=15.4 nm02/09/2026In ProcessFALSE
- 6.02.02.05.04The X-ray pinhole photon beamline shall be equipped with gated cameras that will be employed to provide high resolution turn-by-turn profile measurements02/09/2026In ProcessFALSE
- 6.02.02.05.04A pinhole assembly including tungsten slits shall provide sufficient resolution to precisely measure the beam size02/09/2026In ProcessFALSE
- 6.02.02.05.04Several different size pinholes sizes shall be incorporated to allow easy alignment and measurements at different beam currents and energies.02/09/2026In ProcessFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The polarity of the ESR center bending magnet shall be capable of being wired in reverse to control the beam emittance and to damp the beam. The polarity will be dictated by the beam energy.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The FODO cell shall operate with a horizontal and vertical betatron phase advance of 60 degrees per arc section at beam energies of 10 GeV and below.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02The ESR Sextupole wiring scheme shall create the required sextupole families needed per arc to maximize dynamic aperture at the 60 degrees per FODO cell phase advance at < 10 GeV.02/09/2026ApprovedFALSE
- 6.02.02The FODO cell shall operate with a horizontal and vertical betatron phase advance of 90 degrees per arc section to maintain the required horizontal beam emittance defined in the MPT at 18 GeV. [Document#: EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.02.02The vertical emittance shall be controlled by appropriate beam orbit manipulations and horizontal-vertical cross coupling.02/09/2026ApprovedFALSE
- 6.02.02The ESR instrumentation system shall include dual-plane Beam Position Monitors (BPMs) adjacent to each vertically focusing quadrupole. Provisions shall be made in the vacuum chamber design to install additional dual-plane BPMs at the horizontally focusing quadrupoles, if needed.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The ESR beam position monitor pick-up shall provide dual plane (horizontal and vertical) beam positional measurements.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The roll angle error of the ESR BPM pickup, given as the horizontal measurement plane defined by the BPM fiducials witrh respect to. the horizontal plane of the ESR ring shall be less than +/- 20 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The ESR BPM system shall fulfill resolution and accuracy requirements over the following two defined transverse beam position ranges with respect vacuum chamber center, referenced to the mechanical fiducials on the BPM pickups.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The beam position monitor pick-up assembly shall operate in ultra-high vacuum.02/09/2026ApprovedFALSE
- 6.02.02The ESR BPMs shall have turn-by-turn orbit measurement capability based on a single, remotely selectable bunch out of the fully filled bunch train to enable injection optimization.02/09/2026ApprovedFALSE
- 6.02.02.05.01.01The ESR Beam Position Monitor (BPM) Electronics shall have the following capabilities defined for the low intensity pilot injection energies and high intensity collision energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR Beam Position Monitor (BPM) Electronics shall have the following time resolutions for data refresh defined for the beam energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]:02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM Electronics shall have the following time resolutions for data logging defined for the beam energies:02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM Electronics shall have the following measurement resolutions defined for beam energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]:02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM Electronics shall be designed to operate reliability with capability to withstand a lifetime radiation dose of TBD MGy.02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM Electronics shall be designed to operate in an ambient temperature degree from X (C) to X (C).02/09/2026ReviewedFALSE
- 6.02.02.05.01.02The ESR beam position monitor pick-up shall provide dual plane (horizontal and vertical) beam positional measurements.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The roll angle error of the ESR BPM pickup, given as the horizontal measurement plane defined by the BPM fiducials witrh respect to. the horizontal plane of the ESR ring shall be less than +/- 20 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The ESR BPM system shall fulfill resolution and accuracy requirements over the following two defined transverse beam position ranges with respect vacuum chamber center, referenced to the mechanical fiducials on the BPM pickups.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The beam position monitor pick-up assembly shall operate in ultra-high vacuum.02/09/2026ApprovedFALSE
- 6.02.02The ESR instrumentation system shall include a beam current monitor to measure average beam current.02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer shall have the ability to measure the average beam current over a range of 0.15 (mA) to 2500 (mA).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer shall provide an average current measurement with a resolution of less than 5 (uA /√Hz).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer measurement drift tolerance shall be less than 10 (uA) over 1 (hr).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer system average beam current measurement shall have an absolute accuracy of better than +/- 1 (%) at 250 (mA).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer system average beam current measurement shall have an absolute accuracy between the range of 250 (mA) to 2.5 (A) at +/- 0.5 (%).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer system shall operate in ultra-high vacuum.02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer Calibration system shall be capable of providing an equivalent ESR DC current over the full operating range within 0.25% over the beam current range of 0.15 (mA) to 2500 (mA).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer system shall have a remote controlled self calibration system02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer measured average current shall be archived at a rate of 1 Hz02/09/2026ApprovedFALSE
- 6.02.02The ESR instrumentation system shall include a system to measure individual bunch charges and bunch pattern.02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR fast charge monitor shall be capable of measuring bunch patterns ranging from a single bunch, to a filled ring with 1,160 bunches.02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR fast charge monitor shall be capable of measuring witness bunch for 1/e for a fixed gain over the beam lifetime.02/09/2026ApprovedFALSE
- 6.02.02The ESR instrumentation system shall include a system to measure transverse beam profiles.02/09/2026ApprovedFALSE
- 6.02.02.05.05.01The transverse feedback systems shall be capable of counteracting single-bunch rise times of 1 ms02/09/2026In ProcessFALSE
- 6.02.02.05.05.01Placeholder, Input needed TBD02/09/2026In ProcessFALSE
- 6.02.02.05.05.01Placeholder, Input needed TBD02/09/2026In ProcessFALSE
- 6.02.02The ESR instrumentation system shall include a system to measure longitudinal beam profiles.02/09/2026ApprovedFALSE
- 6.02.02.05.05.02The requirements for longitudinal feedback are ??? TBD02/09/2026In ProcessFALSE
- 6.02.02.05.05.02The Longitudinal feedback systems shall be capable of counteracting single-bunch rise times of 1 ms02/09/2026In ProcessFALSE
- 6.02.02The ESR longitudinal bunch profile monitor needs turn-by-turn capability based on a single bunch in the fully filled bunch train to allow timing and energy adjustment for injection optimization.02/09/2026ApprovedFALSE
- 6.02.02.05.05.02The requirements for longitudinal feedback are ??? TBD02/09/2026In ProcessFALSE
- 6.02.02.05.05.02The Longitudinal feedback systems shall be capable of counteracting single-bunch rise times of 1 ms02/09/2026In ProcessFALSE
- 6.02.02The ESR instrumentation system shall include system to measure H & V betatron tunes.02/09/2026ApprovedFALSE
- 6.02.02.05.03Stripline kickers (H & V) shall be used to excite the beam so tunes can be measured using turn-by-turn BPM data.02/09/2026In ProcessFALSE
- 6.02.02.05.03The magnitude of the kick required for the horizontal kicker shall be TBD units02/09/2026In ProcessFALSE
- 6.02.02.05.03The magnitude of the kick required for the vertical kicker shall be TBD units02/09/2026In ProcessFALSE
- 6.02.02.05.03The location of the tune meter kicker striplines in the ESR shall be TBD units02/09/2026In ProcessFALSE
- 6.02.02.05.03The kicker waveform (risetime and shape) requirements shall be TBD units02/09/2026In ProcessFALSE
- 6.02.02.05.03The impedance of the kicker beamline device shall be approved by beam Physics.02/09/2026In ProcessFALSE
- 6.02.02The ESR instrumentation system shall facilitate all required feedback systems (slow transverse, longitudinal and transverse bunch-by-bunch)02/09/2026ApprovedFALSE
- 6.02.04.02The slow orbit feedback correction output rate shall be 10 Hz02/09/2026In ProcessFALSE
- 6.02.04.02The slow orbit feedback BPM data averaging period shall be tbd -02/09/2026In ProcessFALSE
- 6.02.02.05.05.01The transverse slow feedback system bandwidth shall bs 10 Hz02/09/2026In ProcessFALSE
- 6.02.02The ESR instrumentation system shall include beam loss monitor system with detectors located only at select regions of the ESR.02/09/2026ApprovedFALSE
- 6.02.02.05.02BLM shall be needed to needed to protect sensitive equipment.02/09/2026In ProcessFALSE
- 6.02.02.05.02The number of BLM installed in the ESR shall be TBD ea02/09/2026In ProcessFALSE
- 6.02.02.05.02BLM shall be installed at the following locations in the ESR TBD02/09/2026In ProcessFALSE
- 6.02.02.05.02The sensitivity of the BLM detectors shall be TBD units?02/09/2026In ProcessFALSE
- 6.02.02.05.02Where possible existing RHIC BLM's can be relocated to identify ESR & HSR losses02/09/2026In ProcessFALSE
- 6.02.02.05.02The response time from loss detection to abort shall be TBD us02/09/2026In ProcessFALSE
- 6.02.02The ESR magnets shall meet the requirements defined by the physics lattice.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet install center and install alignment must be within a translational value of +/- 150 (um) and a rotational alignment value of +/- 0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet-to-magnet field variability between magnets shall be less than 0.25%.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- 50 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The integrated field over the length of the magnet at the reference radius shall meet the following harmonic multipole content:02/09/2026ApprovedFALSE
- 6.02.02.03.04.01b2=10000, a2 = N/A02/09/2026ApprovedFALSE
- 6.02.02.03.04.01-2.00 < b3 < 2.00, -1.00 < a3 < 1.0002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b4 < 1.75, -0.47 < a4 < 0.4602/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.50 < b5 < 0.50, -0.30 < a5 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b6 < 1.75, -0.20 < a6 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b7 < 1.00, -0.50 < a7 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b8 < 1.00, -0.50 < a8 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b9 < 1.00, -0.50 < a9 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b10 < 1.00, -0.20 < a10 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b11 < 1.00, -0.40 < a11 < 0.4002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b12 < 1.00, -0.30 < a12 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b13 < 1.00, -0.20 < a13 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.30 < b14 < 0.30, -0.02 < a14 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b15 < 1.00, -0.20 < a15 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b16 < 1.00, -0.20 < a16 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum physical magnet length shall be 0.2 m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet install center and install alignment must be within a translational value of +/-500 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum magnet-to-magnet variability shall be 0.5%.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within reference radius at half and full field excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b15 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum physical magnet length shall be 0.2 m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet install center and install alignment must be within a translational value of +/- 500(um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum magnet-to-magnet variability shall be 0.5%.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within the reference radius at half and full excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01a1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a15 < 2502/09/2026ApprovedFALSE
- 6.02.02The ESR magnets shall have the required field quality to meet the operational needs.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The integrated field over the length of the magnet at the reference radius shall meet the following harmonic multipole content:02/09/2026ApprovedFALSE
- 6.02.02.03.04.01b2=10000, a2 = N/A02/09/2026ApprovedFALSE
- 6.02.02.03.04.01-2.00 < b3 < 2.00, -1.00 < a3 < 1.0002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b4 < 1.75, -0.47 < a4 < 0.4602/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.50 < b5 < 0.50, -0.30 < a5 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b6 < 1.75, -0.20 < a6 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b7 < 1.00, -0.50 < a7 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b8 < 1.00, -0.50 < a8 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b9 < 1.00, -0.50 < a9 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b10 < 1.00, -0.20 < a10 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b11 < 1.00, -0.40 < a11 < 0.4002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b12 < 1.00, -0.30 < a12 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b13 < 1.00, -0.20 < a13 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.30 < b14 < 0.30, -0.02 < a14 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b15 < 1.00, -0.20 < a15 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b16 < 1.00, -0.20 < a16 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within reference radius at half and full field excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b15 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within the reference radius at half and full excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01a1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a15 < 2502/09/2026ApprovedFALSE
- 6.02.02The “super-bends” in the ESR ARC sections shall consist of two long dipoles on either end of a short dipole.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The good field region of the ESR dipoles shall extend over a horizontal range of at least 4 centimeters in the radial direction, for all operational beam energies from 5 to 18 GeV. This will take into account the orbit changes due to the reverse bends.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02All ESR quadrupoles shall be designed to facilitate beam based alignment.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- 50 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02The maximum integrated field strength of the ESR FODO sextupoles needs to be sufficient to provide chromatic correction at all energies from 5 to 18 GeV with two low-beta interaction regions.02/09/2026ApprovedFALSE
- 6.02.04.02The BBA quad strength command output rate shall be 1 Hz02/09/2026In ProcessFALSE
- 6.02.02The aperture of all ESR magnets shall be large enough to accommodate the ESR vacuum chamber.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be designed to have a splitable yoke.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The minimal magnet bore gap and width shall be 52 and 150 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet pole tip radius shall be 40 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The minimal magnet bore gap and width shall be 150 and 52 mm.02/09/2026ApprovedFALSE
- 6.02.02The ESR Shall have a conventional orbit corrector scheme, with single-plane correctors located at the respective quadrupoles. The strength of these correctors needs to be chosen to correct for any source of orbit distortion and should have enough margin for beam based diagnostic purposes, Harmonic Spin bumps and emittance generating bumps.02/09/2026ApprovedFALSE
- 6.02.02All dipoles in the ESR, including those in IRs 6 and 8, shall be connected in series to a single main power supply.02/09/2026ApprovedFALSE
- 6.02.02The ESR main arc quadrupoles shall be powered to accommodate the Lattice requirements having the appropriate number of circuits to power the focusing and defocusing quadrupoles in each sextant of the ESR.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02The ESR quadrupoles in the straight sections IR02, IR04, IR10 and IR12 and in the transition from the arc to the straight section structure shall be wired to provide the optimized betatron phase advance across each straight section, as required for dynamic aperture optimization.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The ESR quadrupoles shall have provisions to vary individual strengths by approximately 1% for beam-based alignment purposes.02/09/2026ApprovedFALSE
- 6.02.02The ESR sextupole power supply scheme shall be laid out such that the sextupole family structure can be configured for both the 60 and the 90 degree lattice along with a small number of individually powered sextupoles in the transition regions between arcs and straight sections with minimal effort, cost and minimizing any risk of error.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The ESR magnets shall be fed by a system of power supplies matched in voltage and maximum current to the specifications and requirements of the respective magnets02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02The ESR magnet power supplies shall be capable of providing the stability the ESR needs to operate02/09/2026ApprovedFALSE
- 6.02.02The ESR RF Systems shall be designed to fulfill all necessary parameters as set by the Master Parameter Table (MPT). [Document#: EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured voltage shall be 4 MV.05/29/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to operate with a beam current up to 2.5 A.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity shall be designed to handle a minimum forward power of 800 kW.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF System shall utilize superconductivity.02/09/2026ApprovedFALSE
- 6.08.04.01The cavity helium bath maximum designed operational temperature shall be 2 K.05/16/2025ApprovedFALSE
- 6.08.04.01The cavity helium bath maximum designed operational pressure shall be 30 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The cavity helium bath designed operational pressure stability shall be ±0.1 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cavity helium jacket shall have a minimum helium bath vapor surface area of 0.049 m^2.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed helium supply operational temperature shall be 5.5 K.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed helium supply operational pressure shall be 3 to 3.5 bar.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed combined helium return temperature shall be 20 to 100 K.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed combined helium return pressure shall be 2.4 to 2.6 bar.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed sub-atmospheric helium return temperature shall be 4.5 K.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed sub-atmospheric helium return pressure shall be 30 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity maximum Niobium temperature shall be 5 K during operation.05/16/2025ApprovedFALSE
- 6.08.04.01The warm beamline maximum vacuum shall be 5.0e-7 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The cold beamline maximum vacuum shall be 1.0e-9 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The beamline vacuum maximum leak rate shall be 5e-10 mbar L/s.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems shall conform to the ESR lattice.02/09/2026ApprovedFALSE
- 6.02.02.05.04The ESR shall have two synchrotron light monitors (SLM) and one X-ray pin hole monitor02/09/2026In ProcessFALSE
- 6.02.02.05.04The longitudinal bunch profile monitor shall have a turn-by-turn capability based on a single bunch in the fully filled bunch train.02/09/2026In ProcessFALSE
- 6.02.02.05.04TThe SLM systems shall measure the crabbing angle, longitudinal bunch parameters, H & V beam size and global coupling.02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure a crabbing angle of 12.5 mrad with accuracy of 10 %02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the Longitudinal bunch parameters with accuracy of TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the H & V beam size with accuracy of H=?? V=?? units02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the Global coupling with accuracy of TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04One SLM port shall be located downstream of a dipole in an appropriate location in the ESR, exact location not critical.02/09/2026In ProcessFALSE
- 6.02.02.05.04The second SLM port shall be located in a complimentary location in the lattice to ensure all the necessary SLM measurements can be made. TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM light extraction port mirrors shall be good quality, having a surface finish better than 1/10 Lambda02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM light extraction port mirrors shall be water cooled to avoid image distortion.02/09/2026In ProcessFALSE
- 6.02.02.05.04There shall be an enclosed SL transport from the light extraction port to the SLM optical lab rooms. Length to be determined by the distance to optical lab room, should be minimized to reduce vibration problems.02/09/2026In ProcessFALSE
- 6.02.02.05.04The locations of the SLM optical lab rooms shall be TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The double-slit interferometer method shall be used to measure transverse beam size02/09/2026In ProcessFALSE
- 6.02.02.05.04The standard transverse resolution of an SLM using visible light shall be ~60 um02/09/2026In ProcessFALSE
- 6.02.02.05.04The resolution using the double-slit method shall equal to 10 um02/09/2026In ProcessFALSE
- 6.02.02.05.04A streak camera shall be used to measure the bunch longitudinal profiles02/09/2026In ProcessFALSE
- 6.02.02.05.04A position sensitive photo-diode will provide photon beam centroid information which shall supplement the orbit stability measurements by the BPMs02/09/2026In ProcessFALSE
- 6.02.02.05.04A GigE CCD/CMOS camera, externally triggerable with exposure times ranging from 10 nsec to 5 sec, shall be used to image the visible radiation02/09/2026In ProcessFALSE
- 6.02.02.05.04A commercially available gated camera with gate width of <2 nsec (compared to a minimum bunch spacing of 10 nsec) shall be used to detect injection oscillations and for beam studies.02/09/2026In ProcessFALSE
- 6.02.02.05.04The location of the X-ray pinhole monitoring system shall be TBD02/09/2026In ProcessFALSE
- 6.02.02.05.04The target resolution of the X-ray pin hole monitoring system shall be ~ 5 um (or as best that can be achieved with the machine parameters and commercial equipment) 5 um02/09/2026In ProcessFALSE
- 6.02.02.05.04The X-ray pin hole monitor shall provide independent measurement of the energy spread and horizontal/vertical emittance. H=V=15.4 nm02/09/2026In ProcessFALSE
- 6.02.02.05.04The X-ray pinhole photon beamline shall be equipped with gated cameras that will be employed to provide high resolution turn-by-turn profile measurements02/09/2026In ProcessFALSE
- 6.02.02.05.04A pinhole assembly including tungsten slits shall provide sufficient resolution to precisely measure the beam size02/09/2026In ProcessFALSE
- 6.02.02.05.04Several different size pinholes sizes shall be incorporated to allow easy alignment and measurements at different beam currents and energies.02/09/2026In ProcessFALSE
- 6.08.04.01The SRF cryomodule cavity beam axis to the tunnel floor shall be vertically alignable to 1381.09 ± 20 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in X shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Y shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Z shall be ± 5 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the pitch shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the roll shall be ± 0.04 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the yaw shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems shall be installed in the straight sections of the ESR lattice within the existing RHIC tunnel in IR10.02/09/2026ApprovedFALSE
- 6.02.02.05.04The ESR shall have two synchrotron light monitors (SLM) and one X-ray pin hole monitor02/09/2026In ProcessFALSE
- 6.02.02.05.04The longitudinal bunch profile monitor shall have a turn-by-turn capability based on a single bunch in the fully filled bunch train.02/09/2026In ProcessFALSE
- 6.02.02.05.04TThe SLM systems shall measure the crabbing angle, longitudinal bunch parameters, H & V beam size and global coupling.02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure a crabbing angle of 12.5 mrad with accuracy of 10 %02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the Longitudinal bunch parameters with accuracy of TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the H & V beam size with accuracy of H=?? V=?? units02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the Global coupling with accuracy of TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04One SLM port shall be located downstream of a dipole in an appropriate location in the ESR, exact location not critical.02/09/2026In ProcessFALSE
- 6.02.02.05.04The second SLM port shall be located in a complimentary location in the lattice to ensure all the necessary SLM measurements can be made. TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM light extraction port mirrors shall be good quality, having a surface finish better than 1/10 Lambda02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM light extraction port mirrors shall be water cooled to avoid image distortion.02/09/2026In ProcessFALSE
- 6.02.02.05.04There shall be an enclosed SL transport from the light extraction port to the SLM optical lab rooms. Length to be determined by the distance to optical lab room, should be minimized to reduce vibration problems.02/09/2026In ProcessFALSE
- 6.02.02.05.04The locations of the SLM optical lab rooms shall be TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The double-slit interferometer method shall be used to measure transverse beam size02/09/2026In ProcessFALSE
- 6.02.02.05.04The standard transverse resolution of an SLM using visible light shall be ~60 um02/09/2026In ProcessFALSE
- 6.02.02.05.04The resolution using the double-slit method shall equal to 10 um02/09/2026In ProcessFALSE
- 6.02.02.05.04A streak camera shall be used to measure the bunch longitudinal profiles02/09/2026In ProcessFALSE
- 6.02.02.05.04A position sensitive photo-diode will provide photon beam centroid information which shall supplement the orbit stability measurements by the BPMs02/09/2026In ProcessFALSE
- 6.02.02.05.04A GigE CCD/CMOS camera, externally triggerable with exposure times ranging from 10 nsec to 5 sec, shall be used to image the visible radiation02/09/2026In ProcessFALSE
- 6.02.02.05.04A commercially available gated camera with gate width of <2 nsec (compared to a minimum bunch spacing of 10 nsec) shall be used to detect injection oscillations and for beam studies.02/09/2026In ProcessFALSE
- 6.02.02.05.04The location of the X-ray pinhole monitoring system shall be TBD02/09/2026In ProcessFALSE
- 6.02.02.05.04The target resolution of the X-ray pin hole monitoring system shall be ~ 5 um (or as best that can be achieved with the machine parameters and commercial equipment) 5 um02/09/2026In ProcessFALSE
- 6.02.02.05.04The X-ray pin hole monitor shall provide independent measurement of the energy spread and horizontal/vertical emittance. H=V=15.4 nm02/09/2026In ProcessFALSE
- 6.02.02.05.04The X-ray pinhole photon beamline shall be equipped with gated cameras that will be employed to provide high resolution turn-by-turn profile measurements02/09/2026In ProcessFALSE
- 6.02.02.05.04A pinhole assembly including tungsten slits shall provide sufficient resolution to precisely measure the beam size02/09/2026In ProcessFALSE
- 6.02.02.05.04Several different size pinholes sizes shall be incorporated to allow easy alignment and measurements at different beam currents and energies.02/09/2026In ProcessFALSE
- 6.08.04.01The SRF Cryomodule maximum length shall be 7.2 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule maximum width shall be 2.15 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule maximum height shall be 1.7 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cryomodule cavity beam axis to the tunnel floor shall be vertically alignable to 1381.09 ± 20 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in X shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Y shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Z shall be ± 5 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the roll shall be ± 0.04 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the pitch shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the yaw shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic box maximum height shall be 2.1m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic box maximum length (not including vacuum jacketed lines) shall be 1.5 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic box maximum width shall be 1.0 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic valve box minimum vertical stay clear height above the cryomodule shall be 0.92 m.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems shall conform to the EIC Code of Record.02/09/2026ApprovedFALSE
- 6.08.04.01All cryomodule surfaces accessible to workers shall be within the temperature range of 283 to 333 K.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by ASME B31.3.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by ASME BPVC.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by ASTM C1055.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by NFPA 70.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by NFPA 70E.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by API 520 & API 521.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by AWS.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by CGA S1.3.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards as directed by the DOE Vacuum Vessel Consensus Standards.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to meet or exceed the maximum working pressures defined by the EIC pressure document (Document No. TBD).05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems within the tunnel shall operate within its yearly radiation exposure budget.02/09/2026ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that cannot be maintained in-situ shall be designed with a minimum lifetime radiation tolerance of 1 MGy.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems shall have a minimum operating lifetime of 20 years02/09/2026ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall operate through a minimum of 200 thermal cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner 1% range tuning cycles shall be 100,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner full range tuning cycles shall be 1,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that cannot be maintained in-situ shall be designed with a minimum lifetime radiation tolerance of 1 MGy.05/16/2025ApprovedFALSE
- 6.08.04.01All critical monitoring and control instruments that cannot be maintained in-situ shall utilize a back-up instrument.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF System shall be designed to minimize unscheduled downtime, maintenance time and repair time to achieve ESR operational availability.02/09/2026ApprovedFALSE
- 6.02.04.02The ESR controls system shall be capable of producing arbitrary spin pattern at injection02/09/2026In ProcessFALSE
- 6.02.04.02The Spin pattern control granularity shall be 1 bunch02/09/2026In ProcessFALSE
- 6.02.04.02The number of bunches @ 18GeV shall be 290 cnt02/09/2026In ProcessFALSE
- 6.02.04.02The number of bunches @ 10GeV and below shall be 1160 cnt02/09/2026In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 300K to 150K shall be 10 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 150K to 50K shall be 30 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 50K to 4.5K shall be 10 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 4.5K to 2K shall be 0.5 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum warmup rate of the SRF cavity between 50K to 150K shall be 30 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall achieve steady state temperature with the cavity bath at 4K in a maximum of 2 days.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall achieve a full warm-up cycle from 4K to 295K in a maximum of 2 days.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall operate through a minimum of 200 thermal cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner 1% range tuning cycles shall be 100,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner full range tuning cycles shall be 1,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The manufactured SRF Cryomodule Cavity shall produce no field emission at 4 MV.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that cannot be maintained in-situ shall be designed with a minimum lifetime radiation tolerance of 1 MGy.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.08.04.01All critical monitoring and control instruments that cannot be maintained in-situ shall utilize a back-up instrument.05/16/2025ApprovedFALSE
- 6.08.04.01The active SRF cavity tuning mechanism components (motor/gearbox/drive mechanism) shall be replaceable and maintainable in-situ.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cavity slow tuner tuning rate shall be 800 Hz/s.05/16/2025ApprovedFALSE
- 6.02.02The ESR Storage RF System shall be designed to accelerate electrons.02/09/2026ApprovedFALSE
- 6.08.04.01The total SRF maximum RF longitudinal impedance (accelerator definition) shall be 52 MΩ Ghz.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF horizontal impedance (accelerator definition) shall be 24 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF vertical impedance (accelerator definition) shall be 24 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum broadband RF power emitted from the cryomodule shall be 30 kW for all EIC design energies and currents.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to operate with a beam current up to 2.5 A.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured voltage shall be 4 MV.05/29/2025ApprovedFALSE
- 6.08.04.01The SRF cavity nominal cold frequency shall be 591.149 MHz.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity field probe Qext range shall be 1.00E11 to 2.00E11.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity shall be designed to handle a minimum forward power of 800 kW.05/16/2025ApprovedFALSE
- 6.02.02The phase advance of each straight section shall be tunable in order to optimize the dynamic aperture of the ESR.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet-to-magnet field variability between magnets shall be less than 0.25%.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The field harmonic measurements shall be measured at the reference radius of 25mm.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The reference integrated field for the measurement shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The integrated field over the length of the magnet at the reference radius shall meet the following harmonic multipole content:02/09/2026ApprovedFALSE
- 6.02.02.03.04.01b2=10000, a2 = N/A02/09/2026ApprovedFALSE
- 6.02.02.03.04.01-2.00 < b3 < 2.00, -1.00 < a3 < 1.0002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b4 < 1.75, -0.47 < a4 < 0.4602/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.50 < b5 < 0.50, -0.30 < a5 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b6 < 1.75, -0.20 < a6 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b7 < 1.00, -0.50 < a7 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b8 < 1.00, -0.50 < a8 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b9 < 1.00, -0.50 < a9 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b10 < 1.00, -0.20 < a10 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b11 < 1.00, -0.40 < a11 < 0.4002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b12 < 1.00, -0.30 < a12 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b13 < 1.00, -0.20 < a13 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.30 < b14 < 0.30, -0.02 < a14 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b15 < 1.00, -0.20 < a15 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b16 < 1.00, -0.20 < a16 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum magnet-to-magnet variability shall be 0.5%.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within reference radius at half and full field excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b15 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum magnet-to-magnet variability shall be 0.5%.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within the reference radius at half and full excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01a1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a15 < 2502/09/2026ApprovedFALSE
- 6.02.02The ESR straight sections IR02, IR04, IR10 and IR12 shall be based on FODO cells.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The reference integrated field for the measurement shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.02/09/2026ApprovedFALSE
- 6.02.02Ther ESR shall have matching sections at the ends of each of the straight sections to compensate for the different FODO cell lengths with respect to the arc FODO cells imposed by geometric constraints.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The maximum physical magnet length shall be 0.88 m.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be designed to fit within the following envelope:02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The maximum magnet axial dimensions shall be X = 45 cm and Y = 45 cm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum physical magnet length shall be 0.2 m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum physical magnet length shall be 0.2 m.02/09/2026ApprovedFALSE
- 6.02.02The ESR vacuum chamber shall provide sufficient horizontal and vertical aperture to accommodate; a +/-15 sigma beam, where the vertical RMS beam size is based on the emittance of a fully coupled beam, plus an additional 10 mm horizontal and 5 mm vertical margin to account for expected orbit errors.02/09/2026ApprovedFALSE
- 6.02.02.06The typical (standard) vacuum chamber aperture shall be 80 x 36 mm.02/09/2026ApprovedFALSE
- 6.02.02.06Special aperture requirements and/or aperture file shall be provided by or approved by physics.02/09/2026ApprovedFALSE
- 6.02.02The dynamic pressure around the ESR shall be consistent with a beam gas lifetime of >10[hrs] with the design currents after an integrated beam current of 1000 [A.h].02/09/2026ApprovedFALSE
- 6.02.02.06There shall be no upper pressure limit as long as the average pressure is maintained.02/09/2026ApprovedFALSE
- 6.02.02.06The average vacuum level in the ESR Arc sections after conditioning (for 1000Ahrs) shall be <5x10-9 Torr.02/09/2026ApprovedFALSE
- 6.02.02.06On 15 m on each side (or one vacuum sector) of the SRF cavities shall be processed to class ISO 5.02/09/2026ApprovedFALSE
- 6.02.02There shall be no pressure bumps in the ESR exceeding (TBD)[Torr]02/09/2026ApprovedFALSE
- 6.02.02The ESR vacuum chamber and all its components shall be designed to withstand a total synchrotron radiation load of 10 MW, considering the uneven linear load particularly related to the super-bends.02/09/2026ApprovedFALSE
- 6.02.02.05.04The ESR shall have two synchrotron light monitors (SLM) and one X-ray pin hole monitor02/09/2026In ProcessFALSE
- 6.02.02.05.04The longitudinal bunch profile monitor shall have a turn-by-turn capability based on a single bunch in the fully filled bunch train.02/09/2026In ProcessFALSE
- 6.02.02.05.04TThe SLM systems shall measure the crabbing angle, longitudinal bunch parameters, H & V beam size and global coupling.02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure a crabbing angle of 12.5 mrad with accuracy of 10 %02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the Longitudinal bunch parameters with accuracy of TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the H & V beam size with accuracy of H=?? V=?? units02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the Global coupling with accuracy of TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04One SLM port shall be located downstream of a dipole in an appropriate location in the ESR, exact location not critical.02/09/2026In ProcessFALSE
- 6.02.02.05.04The second SLM port shall be located in a complimentary location in the lattice to ensure all the necessary SLM measurements can be made. TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM light extraction port mirrors shall be good quality, having a surface finish better than 1/10 Lambda02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM light extraction port mirrors shall be water cooled to avoid image distortion.02/09/2026In ProcessFALSE
- 6.02.02.05.04There shall be an enclosed SL transport from the light extraction port to the SLM optical lab rooms. Length to be determined by the distance to optical lab room, should be minimized to reduce vibration problems.02/09/2026In ProcessFALSE
- 6.02.02.05.04The locations of the SLM optical lab rooms shall be TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The double-slit interferometer method shall be used to measure transverse beam size02/09/2026In ProcessFALSE
- 6.02.02.05.04The standard transverse resolution of an SLM using visible light shall be ~60 um02/09/2026In ProcessFALSE
- 6.02.02.05.04The resolution using the double-slit method shall equal to 10 um02/09/2026In ProcessFALSE
- 6.02.02.05.04A streak camera shall be used to measure the bunch longitudinal profiles02/09/2026In ProcessFALSE
- 6.02.02.05.04A position sensitive photo-diode will provide photon beam centroid information which shall supplement the orbit stability measurements by the BPMs02/09/2026In ProcessFALSE
- 6.02.02.05.04A GigE CCD/CMOS camera, externally triggerable with exposure times ranging from 10 nsec to 5 sec, shall be used to image the visible radiation02/09/2026In ProcessFALSE
- 6.02.02.05.04A commercially available gated camera with gate width of <2 nsec (compared to a minimum bunch spacing of 10 nsec) shall be used to detect injection oscillations and for beam studies.02/09/2026In ProcessFALSE
- 6.02.02.05.04The location of the X-ray pinhole monitoring system shall be TBD02/09/2026In ProcessFALSE
- 6.02.02.05.04The target resolution of the X-ray pin hole monitoring system shall be ~ 5 um (or as best that can be achieved with the machine parameters and commercial equipment) 5 um02/09/2026In ProcessFALSE
- 6.02.02.05.04The X-ray pin hole monitor shall provide independent measurement of the energy spread and horizontal/vertical emittance. H=V=15.4 nm02/09/2026In ProcessFALSE
- 6.02.02.05.04The X-ray pinhole photon beamline shall be equipped with gated cameras that will be employed to provide high resolution turn-by-turn profile measurements02/09/2026In ProcessFALSE
- 6.02.02.05.04Several different size pinholes sizes shall be incorporated to allow easy alignment and measurements at different beam currents and energies.02/09/2026In ProcessFALSE
- 6.02.02.05.04A pinhole assembly including tungsten slits shall provide sufficient resolution to precisely measure the beam size02/09/2026In ProcessFALSE
- 6.02.02.06The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.02/09/2026ApprovedFALSE
- 6.02.02The ESR vacuum chamber material shall be chosen such that the SR power can be intercepted by the arc chambers and in addition good radiation shielding will be provided to prevent damage to other components.02/09/2026ApprovedFALSE
- 6.02.02.06The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.02/09/2026ApprovedFALSE
- 6.04.05The impedance of the entire ESR vacuum system, including the interaction regions in IR06 and IR08, shall allow for the bunch intensities, beam currents, and bunch numbers contained in the Master Parameter Table (MPT). [Document#:EIC-SEG-RSI-005]05/16/2025ApprovedFALSE
- 6.02.02.06The vacuum system global impedance shall be less than the impedance budget as provided by accelerator physics.02/09/2026ApprovedFALSE
- 6.02.02The ESR lattice shall provide a minimum dynamic aperture of 10 sigma with respect to Gaussian electron beam distribution in all three dimensions (horizontal, vertical, and longitudinal) having a vertical emittance of half the horizontal design emittance.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The field harmonic measurements shall be measured at the reference radius of 25mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet reference radius for field homogeneity shall be 15 (mm).02/09/2026ApprovedFALSE
- 6.02.02.06The maximum beam excursion orbit shall be TBD02/09/2026In ProcessFALSE
- 6.02.02.03.05.01The magnet reference radius for homogeneity shall be 17 (mm).02/09/2026ApprovedFALSE
- 6.02.02.06The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.02/09/2026ApprovedFALSE
- 6.02.02The ESR alignment requirements are established by dynamic aperture and polarization tracking. The ESR RMS alignment tolerances shall be such that all the beam parameter listed in the MPT can be satisfied. [Document#:EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet install center and install alignment must be within a translational value of +/- 150 (um) and a rotational alignment value of +/- 0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- 50 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet install center and install alignment must be within a translational value of +/-500 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet install center and install alignment must be within a translational value of +/- 500(um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-500 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- 500 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02The minimum dynamic aperture shall be achieved in two optics configurations (60 and 90 degrees betatron phase advance per FODO cell) at all operational beam energies in the Master Parameter Table (MPT), and with one and with two low-beta insertions. [Document#:EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.06The maximum beam excursion orbit shall be TBD02/09/2026In ProcessFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.06The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.02/09/2026ApprovedFALSE
- 6.02.02The ESR Lattice shall contain provisions for correctors such as skew quadrupoles, Dipole correctors etc. as needed.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.02/09/2026ApprovedFALSE
- 6.02.02The ESR shall have an average arc bending radius of approximately 380 meters02/09/2026ApprovedFALSE
- 6.02.02The ESR lattice arc magnet structure shall contain an array of regular FODO cells02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.02/09/2026ApprovedFALSE
- 6.02.02The ESR lattice arc magnet structure shall consists of a quadrupole, a sextupole, a bending section, and a dipole corrector in each arc half-cell.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.02/09/2026ApprovedFALSE
- 6.02.02The ESR lattice arc magnet structure shall accommodate slightly different average arc radii in the individual arcs by adjusting the drift spaces between individual elements in each FODO cell.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The ESR beamline bending sections shall contain three individual dipole magnets, referred to as “super-bends”.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The ESR magnets shall meet the requirements defined by the physics lattice.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet install center and install alignment must be within a translational value of +/- 150 (um) and a rotational alignment value of +/- 0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet-to-magnet field variability between magnets shall be less than 0.25%.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- 50 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The integrated field over the length of the magnet at the reference radius shall meet the following harmonic multipole content:02/09/2026ApprovedFALSE
- 6.02.02.03.04.01b2=10000, a2 = N/A02/09/2026ApprovedFALSE
- 6.02.02.03.04.01-2.00 < b3 < 2.00, -1.00 < a3 < 1.0002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b4 < 1.75, -0.47 < a4 < 0.4602/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.50 < b5 < 0.50, -0.30 < a5 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b6 < 1.75, -0.20 < a6 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b7 < 1.00, -0.50 < a7 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b8 < 1.00, -0.50 < a8 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b9 < 1.00, -0.50 < a9 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b10 < 1.00, -0.20 < a10 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b11 < 1.00, -0.40 < a11 < 0.4002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b12 < 1.00, -0.30 < a12 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b13 < 1.00, -0.20 < a13 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.30 < b14 < 0.30, -0.02 < a14 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b15 < 1.00, -0.20 < a15 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b16 < 1.00, -0.20 < a16 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum physical magnet length shall be 0.2 m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet install center and install alignment must be within a translational value of +/-500 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum magnet-to-magnet variability shall be 0.5%.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within reference radius at half and full field excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b15 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum physical magnet length shall be 0.2 m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet install center and install alignment must be within a translational value of +/- 500(um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum magnet-to-magnet variability shall be 0.5%.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within the reference radius at half and full excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01a1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a15 < 2502/09/2026ApprovedFALSE
- 6.02.02The ESR magnets shall have the required field quality to meet the operational needs.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The integrated field over the length of the magnet at the reference radius shall meet the following harmonic multipole content:02/09/2026ApprovedFALSE
- 6.02.02.03.04.01b2=10000, a2 = N/A02/09/2026ApprovedFALSE
- 6.02.02.03.04.01-2.00 < b3 < 2.00, -1.00 < a3 < 1.0002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b4 < 1.75, -0.47 < a4 < 0.4602/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.50 < b5 < 0.50, -0.30 < a5 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b6 < 1.75, -0.20 < a6 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b7 < 1.00, -0.50 < a7 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b8 < 1.00, -0.50 < a8 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b9 < 1.00, -0.50 < a9 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b10 < 1.00, -0.20 < a10 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b11 < 1.00, -0.40 < a11 < 0.4002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b12 < 1.00, -0.30 < a12 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b13 < 1.00, -0.20 < a13 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.30 < b14 < 0.30, -0.02 < a14 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b15 < 1.00, -0.20 < a15 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b16 < 1.00, -0.20 < a16 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within reference radius at half and full field excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b15 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within the reference radius at half and full excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01a1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a15 < 2502/09/2026ApprovedFALSE
- 6.02.02The “super-bends” in the ESR ARC sections shall consist of two long dipoles on either end of a short dipole.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The good field region of the ESR dipoles shall extend over a horizontal range of at least 4 centimeters in the radial direction, for all operational beam energies from 5 to 18 GeV. This will take into account the orbit changes due to the reverse bends.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The aperture of all ESR magnets shall be large enough to accommodate the ESR vacuum chamber.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be designed to have a splitable yoke.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The minimal magnet bore gap and width shall be 52 and 150 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet pole tip radius shall be 40 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The minimal magnet bore gap and width shall be 150 and 52 mm.02/09/2026ApprovedFALSE
- 6.02.02The ESR magnets shall be fed by a system of power supplies matched in voltage and maximum current to the specifications and requirements of the respective magnets02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02All dipoles in the ESR, including those in IRs 6 and 8, shall be connected in series to a single main power supply.02/09/2026ApprovedFALSE
- 6.02.02The ESR Lattice shall contain provisions for correctors such as skew quadrupoles, Dipole correctors etc. as needed.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.02/09/2026ApprovedFALSE
- 6.02.02The ESR electron beam shall orbit in the clockwise direction as seen from above.02/09/2026ApprovedFALSE
- 6.02.02The ESR lattice arc magnet structure shall contain an array of regular FODO cells02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.02/09/2026ApprovedFALSE
- 6.02.02The ESR lattice arc magnet structure shall consists of a quadrupole, a sextupole, a bending section, and a dipole corrector in each arc half-cell.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.02/09/2026ApprovedFALSE
- 6.02.02The ESR lattice arc magnet structure shall accommodate slightly different average arc radii in the individual arcs by adjusting the drift spaces between individual elements in each FODO cell.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The ESR beamline bending sections shall contain three individual dipole magnets, referred to as “super-bends”.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The ESR magnets shall meet the requirements defined by the physics lattice.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet install center and install alignment must be within a translational value of +/- 150 (um) and a rotational alignment value of +/- 0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet-to-magnet field variability between magnets shall be less than 0.25%.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- 50 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The integrated field over the length of the magnet at the reference radius shall meet the following harmonic multipole content:02/09/2026ApprovedFALSE
- 6.02.02.03.04.01b2=10000, a2 = N/A02/09/2026ApprovedFALSE
- 6.02.02.03.04.01-2.00 < b3 < 2.00, -1.00 < a3 < 1.0002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b4 < 1.75, -0.47 < a4 < 0.4602/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.50 < b5 < 0.50, -0.30 < a5 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b6 < 1.75, -0.20 < a6 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b7 < 1.00, -0.50 < a7 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b8 < 1.00, -0.50 < a8 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b9 < 1.00, -0.50 < a9 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b10 < 1.00, -0.20 < a10 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b11 < 1.00, -0.40 < a11 < 0.4002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b12 < 1.00, -0.30 < a12 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b13 < 1.00, -0.20 < a13 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.30 < b14 < 0.30, -0.02 < a14 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b15 < 1.00, -0.20 < a15 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b16 < 1.00, -0.20 < a16 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum physical magnet length shall be 0.2 m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet install center and install alignment must be within a translational value of +/-500 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum magnet-to-magnet variability shall be 0.5%.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within reference radius at half and full field excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b15 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum physical magnet length shall be 0.2 m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet install center and install alignment must be within a translational value of +/- 500(um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum magnet-to-magnet variability shall be 0.5%.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within the reference radius at half and full excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01a1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a15 < 2502/09/2026ApprovedFALSE
- 6.02.02The ESR magnets shall have the required field quality to meet the operational needs.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The integrated field over the length of the magnet at the reference radius shall meet the following harmonic multipole content:02/09/2026ApprovedFALSE
- 6.02.02.03.04.01b2=10000, a2 = N/A02/09/2026ApprovedFALSE
- 6.02.02.03.04.01-2.00 < b3 < 2.00, -1.00 < a3 < 1.0002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b4 < 1.75, -0.47 < a4 < 0.4602/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.50 < b5 < 0.50, -0.30 < a5 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b6 < 1.75, -0.20 < a6 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b7 < 1.00, -0.50 < a7 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b8 < 1.00, -0.50 < a8 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b9 < 1.00, -0.50 < a9 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b10 < 1.00, -0.20 < a10 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b11 < 1.00, -0.40 < a11 < 0.4002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b12 < 1.00, -0.30 < a12 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b13 < 1.00, -0.20 < a13 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.30 < b14 < 0.30, -0.02 < a14 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b15 < 1.00, -0.20 < a15 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b16 < 1.00, -0.20 < a16 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within reference radius at half and full field excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b15 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within the reference radius at half and full excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01a1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a15 < 2502/09/2026ApprovedFALSE
- 6.02.02The “super-bends” in the ESR ARC sections shall consist of two long dipoles on either end of a short dipole.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The good field region of the ESR dipoles shall extend over a horizontal range of at least 4 centimeters in the radial direction, for all operational beam energies from 5 to 18 GeV. This will take into account the orbit changes due to the reverse bends.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02All dipoles in the ESR, including those in IRs 6 and 8, shall be connected in series to a single main power supply.02/09/2026ApprovedFALSE
- 6.02.02The aperture of all ESR magnets shall be large enough to accommodate the ESR vacuum chamber.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be designed to have a splitable yoke.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The minimal magnet bore gap and width shall be 52 and 150 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet pole tip radius shall be 40 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The minimal magnet bore gap and width shall be 150 and 52 mm.02/09/2026ApprovedFALSE
- 6.02.02The ESR magnets shall be fed by a system of power supplies matched in voltage and maximum current to the specifications and requirements of the respective magnets02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02The ESR Lattice shall be tilted with respect to the plane of the HSR along the chord between IP6 and IP8 by 200 microradians to avoid interference with other components and such that the ESR is above the HSR at IP12.02/09/2026ApprovedFALSE
- 6.02.02The ESR shall have a circumference such that the revolution frequency of the stored electron beam matches the revolution frequency of 133 GeV protons stored in the HSR, with the proton beam orbit centered in the HSR beampipe.02/09/2026ApprovedFALSE
- 6.02.02The ESR lattice arc magnet structure shall contain an array of regular FODO cells02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.02/09/2026ApprovedFALSE
- 6.02.02The ESR lattice arc magnet structure shall consists of a quadrupole, a sextupole, a bending section, and a dipole corrector in each arc half-cell.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.02/09/2026ApprovedFALSE
- 6.02.02The ESR lattice arc magnet structure shall accommodate slightly different average arc radii in the individual arcs by adjusting the drift spaces between individual elements in each FODO cell.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The ESR beamline bending sections shall contain three individual dipole magnets, referred to as “super-bends”.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The ESR magnets shall meet the requirements defined by the physics lattice.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet install center and install alignment must be within a translational value of +/- 150 (um) and a rotational alignment value of +/- 0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet-to-magnet field variability between magnets shall be less than 0.25%.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- 50 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The integrated field over the length of the magnet at the reference radius shall meet the following harmonic multipole content:02/09/2026ApprovedFALSE
- 6.02.02.03.04.01b2=10000, a2 = N/A02/09/2026ApprovedFALSE
- 6.02.02.03.04.01-2.00 < b3 < 2.00, -1.00 < a3 < 1.0002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b4 < 1.75, -0.47 < a4 < 0.4602/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.50 < b5 < 0.50, -0.30 < a5 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b6 < 1.75, -0.20 < a6 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b7 < 1.00, -0.50 < a7 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b8 < 1.00, -0.50 < a8 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b9 < 1.00, -0.50 < a9 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b10 < 1.00, -0.20 < a10 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b11 < 1.00, -0.40 < a11 < 0.4002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b12 < 1.00, -0.30 < a12 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b13 < 1.00, -0.20 < a13 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.30 < b14 < 0.30, -0.02 < a14 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b15 < 1.00, -0.20 < a15 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b16 < 1.00, -0.20 < a16 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum physical magnet length shall be 0.2 m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet install center and install alignment must be within a translational value of +/-500 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum magnet-to-magnet variability shall be 0.5%.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within reference radius at half and full field excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b15 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum physical magnet length shall be 0.2 m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet install center and install alignment must be within a translational value of +/- 500(um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum magnet-to-magnet variability shall be 0.5%.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within the reference radius at half and full excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01a1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a15 < 2502/09/2026ApprovedFALSE
- 6.02.02The ESR magnets shall have the required field quality to meet the operational needs.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The integrated field over the length of the magnet at the reference radius shall meet the following harmonic multipole content:02/09/2026ApprovedFALSE
- 6.02.02.03.04.01b2=10000, a2 = N/A02/09/2026ApprovedFALSE
- 6.02.02.03.04.01-2.00 < b3 < 2.00, -1.00 < a3 < 1.0002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b4 < 1.75, -0.47 < a4 < 0.4602/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.50 < b5 < 0.50, -0.30 < a5 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b6 < 1.75, -0.20 < a6 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b7 < 1.00, -0.50 < a7 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b8 < 1.00, -0.50 < a8 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b9 < 1.00, -0.50 < a9 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b10 < 1.00, -0.20 < a10 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b11 < 1.00, -0.40 < a11 < 0.4002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b12 < 1.00, -0.30 < a12 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b13 < 1.00, -0.20 < a13 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.30 < b14 < 0.30, -0.02 < a14 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b15 < 1.00, -0.20 < a15 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b16 < 1.00, -0.20 < a16 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within reference radius at half and full field excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b15 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within the reference radius at half and full excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01a1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a15 < 2502/09/2026ApprovedFALSE
- 6.02.02The “super-bends” in the ESR ARC sections shall consist of two long dipoles on either end of a short dipole.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The good field region of the ESR dipoles shall extend over a horizontal range of at least 4 centimeters in the radial direction, for all operational beam energies from 5 to 18 GeV. This will take into account the orbit changes due to the reverse bends.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02All dipoles in the ESR, including those in IRs 6 and 8, shall be connected in series to a single main power supply.02/09/2026ApprovedFALSE
- 6.02.02The aperture of all ESR magnets shall be large enough to accommodate the ESR vacuum chamber.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be designed to have a splitable yoke.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The minimal magnet bore gap and width shall be 52 and 150 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet pole tip radius shall be 40 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The minimal magnet bore gap and width shall be 150 and 52 mm.02/09/2026ApprovedFALSE
- 6.02.02The ESR magnets shall be fed by a system of power supplies matched in voltage and maximum current to the specifications and requirements of the respective magnets02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02The ESR shall use the “inner” aisle (closest to the inner tunnel wall) of the tunnel from IR4 to IR6 and from IR8 to IR12, and the “outer” aisle (closest to the outer tunnel wall) from IR12 to IR4 and IR6 to IR8.02/09/2026ApprovedFALSE
- 6.02.02The ESR lattice arc magnet structure shall contain an array of regular FODO cells02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.02/09/2026ApprovedFALSE
- 6.02.02The ESR lattice arc magnet structure shall consists of a quadrupole, a sextupole, a bending section, and a dipole corrector in each arc half-cell.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.02/09/2026ApprovedFALSE
- 6.02.02The ESR lattice arc magnet structure shall accommodate slightly different average arc radii in the individual arcs by adjusting the drift spaces between individual elements in each FODO cell.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The ESR beamline bending sections shall contain three individual dipole magnets, referred to as “super-bends”.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The ESR Sextupole wiring scheme shall create the required sextupole families needed per arc to maximize dynamic aperture at the 90 degrees per FODO cell phase advance at 18 GeV.02/09/2026ApprovedFALSE
- 6.02.02The ESR magnets shall meet the requirements defined by the physics lattice.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet install center and install alignment must be within a translational value of +/- 150 (um) and a rotational alignment value of +/- 0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet-to-magnet field variability between magnets shall be less than 0.25%.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- 50 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The integrated field over the length of the magnet at the reference radius shall meet the following harmonic multipole content:02/09/2026ApprovedFALSE
- 6.02.02.03.04.01b2=10000, a2 = N/A02/09/2026ApprovedFALSE
- 6.02.02.03.04.01-2.00 < b3 < 2.00, -1.00 < a3 < 1.0002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b4 < 1.75, -0.47 < a4 < 0.4602/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.50 < b5 < 0.50, -0.30 < a5 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b6 < 1.75, -0.20 < a6 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b7 < 1.00, -0.50 < a7 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b8 < 1.00, -0.50 < a8 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b9 < 1.00, -0.50 < a9 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b10 < 1.00, -0.20 < a10 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b11 < 1.00, -0.40 < a11 < 0.4002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b12 < 1.00, -0.30 < a12 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b13 < 1.00, -0.20 < a13 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.30 < b14 < 0.30, -0.02 < a14 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b15 < 1.00, -0.20 < a15 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b16 < 1.00, -0.20 < a16 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum physical magnet length shall be 0.2 m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet install center and install alignment must be within a translational value of +/-500 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum magnet-to-magnet variability shall be 0.5%.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within reference radius at half and full field excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b15 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum physical magnet length shall be 0.2 m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet install center and install alignment must be within a translational value of +/- 500(um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum magnet-to-magnet variability shall be 0.5%.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within the reference radius at half and full excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01a1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a15 < 2502/09/2026ApprovedFALSE
- 6.02.02The ESR magnets shall have the required field quality to meet the operational needs.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The integrated field over the length of the magnet at the reference radius shall meet the following harmonic multipole content:02/09/2026ApprovedFALSE
- 6.02.02.03.04.01b2=10000, a2 = N/A02/09/2026ApprovedFALSE
- 6.02.02.03.04.01-2.00 < b3 < 2.00, -1.00 < a3 < 1.0002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b4 < 1.75, -0.47 < a4 < 0.4602/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.50 < b5 < 0.50, -0.30 < a5 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b6 < 1.75, -0.20 < a6 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b7 < 1.00, -0.50 < a7 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b8 < 1.00, -0.50 < a8 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b9 < 1.00, -0.50 < a9 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b10 < 1.00, -0.20 < a10 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b11 < 1.00, -0.40 < a11 < 0.4002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b12 < 1.00, -0.30 < a12 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b13 < 1.00, -0.20 < a13 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.30 < b14 < 0.30, -0.02 < a14 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b15 < 1.00, -0.20 < a15 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b16 < 1.00, -0.20 < a16 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within reference radius at half and full field excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b15 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within the reference radius at half and full excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01a1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a15 < 2502/09/2026ApprovedFALSE
- 6.02.02The “super-bends” in the ESR ARC sections shall consist of two long dipoles on either end of a short dipole.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The good field region of the ESR dipoles shall extend over a horizontal range of at least 4 centimeters in the radial direction, for all operational beam energies from 5 to 18 GeV. This will take into account the orbit changes due to the reverse bends.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02All dipoles in the ESR, including those in IRs 6 and 8, shall be connected in series to a single main power supply.02/09/2026ApprovedFALSE
- 6.02.02The aperture of all ESR magnets shall be large enough to accommodate the ESR vacuum chamber.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be designed to have a splitable yoke.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The minimal magnet bore gap and width shall be 52 and 150 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet pole tip radius shall be 40 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The minimal magnet bore gap and width shall be 150 and 52 mm.02/09/2026ApprovedFALSE
- 6.02.02The ESR magnets shall be fed by a system of power supplies matched in voltage and maximum current to the specifications and requirements of the respective magnets02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02The ESR shall support collisions with the HSR in IR6, to accommodate colliding beam interaction regions and detectors for nuclear physics experiments.02/09/2026ApprovedFALSE
- 6.02.02The ESR main arc quadrupoles shall be powered to accommodate the Lattice requirements having the appropriate number of circuits to power the focusing and defocusing quadrupoles in each sextant of the ESR.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02The maximum integrated field strength of the ESR FODO sextupoles needs to be sufficient to provide chromatic correction at all energies from 5 to 18 GeV with two low-beta interaction regions.02/09/2026ApprovedFALSE
- 6.02.04.02The BBA quad strength command output rate shall be 1 Hz02/09/2026In ProcessFALSE
- 6.02.02The ESR shall support two low-beta insertions (colliding beam interaction regions) at IRs 06 and 08.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.06The maximum beam excursion orbit shall be TBD02/09/2026In ProcessFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.06The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.02/09/2026ApprovedFALSE
- 6.02.02The ESR beam dynamics shall incorporate the need for collision points with the HSR in IR6 and IR8.02/09/2026ApprovedFALSE
- 6.02.02The ESR shall have provisions made at IR8 to accommodate a future 2nd colliding beam interaction region with low-beta section, spin rotators and crab cavities.02/09/2026ApprovedFALSE
- 6.02.02The ESR main arc quadrupoles shall be powered to accommodate the Lattice requirements having the appropriate number of circuits to power the focusing and defocusing quadrupoles in each sextant of the ESR.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02The maximum integrated field strength of the ESR FODO sextupoles needs to be sufficient to provide chromatic correction at all energies from 5 to 18 GeV with two low-beta interaction regions.02/09/2026ApprovedFALSE
- 6.02.04.02The BBA quad strength command output rate shall be 1 Hz02/09/2026In ProcessFALSE
- 6.02.02The ESR shall support two low-beta insertions (colliding beam interaction regions) at IRs 06 and 08.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.06The maximum beam excursion orbit shall be TBD02/09/2026In ProcessFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.06The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.02/09/2026ApprovedFALSE
- 6.02.02The ESR shall have provisions made at IR12 to accommodate beam polarimetry measurements, damper systems, special instrumentation.02/09/2026ApprovedFALSE
- 6.02.02The ESR shall have provisions made to accommodate electron beam injection and extraction elements in IR4.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The ESR fast abort system shall be located in the IR2 straight section.02/09/2026ApprovedFALSE
- 6.02.02The ESR shall be designed to minimize unscheduled downtime, maintenance time and repair time to achieve EIC operational availability.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The ESR shall contain an Abort system to dump the beam.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The diameter shall be 90 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The length shall be 2 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The materials shall be C / Al / Cu02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The energy deposited during abort shall be 320 kJ02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The frequency of thermal cycle shall be 1 hour02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The window thickness shall be tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The window material shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Length shall be 50 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Internal diameter shall be 90 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Temperature sensors shall be yes02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The BPMs shall be 402/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Correctors shall be 402/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Corrector PS shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The power supply accuracy shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Cooling / pumping shall be yes02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The deflection shall be 2 mrad02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The length shall be 1.2 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The power supply shall be 1600 A02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The power supply accuracy shall be TBD02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Y-chamber aperture shall be 36 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02May need to add additional window requirements for other leg of Lambertson magnet TBD02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The gradient shall be 17 T/m02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The power supply shall be 1600 A02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The power supply accuracy shall be TBD02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The length shall be 70 cm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The aperture radius shall be 50 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The number of kickers shall be 602/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Rise time shall be 900 ns02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Fall time shall be NA sec02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The flat top time shall be 13 us02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The waveshape shall be trap02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The painting shall be vertical02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The maximum field shall be 0.12 T02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The total deflection shall be 16 mrad02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The maximum current shall be TBD02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The maximum voltage shall be TBD02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The inductance with cable shall be TBD (uH)02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Max rep rate shall be 100 kV/pC02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The flat top repeatability shall be NA Hz02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The beam abort kicker shall be tbd %02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The flatness of flat top/pulse form shall be 1 %02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The cooling type shall be w (W,A)02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The ESR Abort system shall contain a beam dump to safely absorb the energy of the stored beam in a controlled fashion.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The diameter shall be 90 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The length shall be 2 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The materials shall be C / Al / Cu02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The energy deposited during abort shall be 320 kJ02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The window thickness shall be tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The frequency of thermal cycle shall be 1 hour02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The window material shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR shall have a collimation system capable of ensuring a sufficiently low background at the detector.02/09/2026ApprovedFALSE
- 6.04.04.03.01.01The ESR Injection absorber shall be placed in Sector 12 adjacent to the Momentum collimator.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR Injection absorber shall be vertical.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall be 17.5 mm half gap. +/- 17.5 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall be fixed.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR injection absorber has dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 550 W. 550 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be steady-state.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be negligible. ~0 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 275 J (1 bunch). 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The thermal duty cycle shall be 2 Hz. 2 Hz02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 0.89 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Al-Ti02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 1.1 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR detector absorbers shall be placed at Sector 5.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall be fixed.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall be fixed.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall be tbd mm half gap. tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall be tbd.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The detector absorbers have dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be negligible. ~0 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be tbd kW. tbd kW02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam failure energy deposition shall be 275 J (1 bunch). 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The failure thermal duty cycle shall be intermittent.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 21 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Cu02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 560-720 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR momentum collimators shall be placed in Sector 12 adjacent to the Injection absorber.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR momentum collimator shall be horizontal.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall be tbd mm half gap. tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall be range shall be tbd.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR momentum collimator has dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 550 W. 550 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be steady-state.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be negligible. ~0 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam failure energy deposition shall be 275 J (1 bunch). 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The failure thermal duty cycle shall be intermittent.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 0.89 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Al-Ti02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 1.1 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR primary vertical collimator shall be placed at Sector 4.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR primary horizontal collimator shall be placed at Sector 2.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall range from 5 to 10 mm (half gap, +/- 10 µm).02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall range from 8 to 23 mm (half gap, +/- 10 µm).02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR primary collimators have dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 300 W on the tip of the jaw. 300 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The duty cycle shall be steady state.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be 2.5 kW (horizontal only). 2.5 kW02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01Jaw angle in position relative to beam axshall be 1 mrad02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam failure energy deposition shall be 275 J (1 bunch) on the tip of the jaw. 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The failure thermal duty cycle shall be intermittent.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 180 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Mo-Gr02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 762-995 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR secondary vertical collimators shall be placed at Sector 4.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR secondary horizontal collimators shall be placed at Sector 2.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall range from 6 to 11 mm (half gap, +/- tbd). tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall range from 9 to 25 mm (half gap, +/- tbd).02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR collimators have dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 300 W. 300 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The duty cycle shall be steady state.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be 2.5 kW (horizontal only). 2.5 kW02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01Jaw angle in position relative to beam axshall be 1 mrad02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam failure energy deposition shall be 275 J (1 bunch). 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The failure thermal duty cycle shall be intermittent.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Mo-Gr02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 180 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 762-995 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR shall have a collimation system capable protecting all machine elements in case of failure.02/09/2026ApprovedFALSE
- 6.04.04.03.01.01The ESR Injection absorber shall be placed in Sector 12 adjacent to the Momentum collimator.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR Injection absorber shall be vertical.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall be 17.5 mm half gap. +/- 17.5 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall be fixed.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR injection absorber has dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 550 W. 550 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be steady-state.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be negligible. ~0 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 275 J (1 bunch). 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The thermal duty cycle shall be 2 Hz. 2 Hz02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 0.89 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Al-Ti02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 1.1 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR detector absorbers shall be placed at Sector 5.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall be fixed.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall be fixed.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall be tbd mm half gap. tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall be tbd.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The detector absorbers have dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be negligible. ~0 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be tbd kW. tbd kW02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam failure energy deposition shall be 275 J (1 bunch). 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The failure thermal duty cycle shall be intermittent.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 21 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Cu02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 560-720 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR momentum collimators shall be placed in Sector 12 adjacent to the Injection absorber.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR momentum collimator shall be horizontal.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall be tbd mm half gap. tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall be range shall be tbd.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR momentum collimator has dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 550 W. 550 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be steady-state.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be negligible. ~0 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam failure energy deposition shall be 275 J (1 bunch). 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The failure thermal duty cycle shall be intermittent.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 0.89 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Al-Ti02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 1.1 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR primary vertical collimator shall be placed at Sector 4.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR primary horizontal collimator shall be placed at Sector 2.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall range from 5 to 10 mm (half gap, +/- 10 µm).02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall range from 8 to 23 mm (half gap, +/- 10 µm).02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR primary collimators have dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 300 W on the tip of the jaw. 300 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The duty cycle shall be steady state.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be 2.5 kW (horizontal only). 2.5 kW02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01Jaw angle in position relative to beam axshall be 1 mrad02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam failure energy deposition shall be 275 J (1 bunch) on the tip of the jaw. 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The failure thermal duty cycle shall be intermittent.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 180 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Mo-Gr02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 762-995 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR secondary vertical collimators shall be placed at Sector 4.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR secondary horizontal collimators shall be placed at Sector 2.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall range from 6 to 11 mm (half gap, +/- tbd). tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall range from 9 to 25 mm (half gap, +/- tbd).02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR collimators have dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 300 W. 300 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The duty cycle shall be steady state.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be 2.5 kW (horizontal only). 2.5 kW02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01Jaw angle in position relative to beam axshall be 1 mrad02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam failure energy deposition shall be 275 J (1 bunch). 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The failure thermal duty cycle shall be intermittent.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Mo-Gr02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 180 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 762-995 mm02/09/2026In ProcessFALSE
- 6.02.02The ESR shall reach an availability consistent with the overall availability of the entire EIC as specified in the GRD. [Document#:EIC-SEG-RSI-010]02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.04.03.01.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +15 (C) to +50 (C).07/29/2025ApprovedFALSE
- 6.02.02.03.04.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be designed to be cooled and sustained at an operational temperature range of +X (C) to +X (C).02/09/2026In ProcessFALSE
- 6.02.02.03.05.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be designed with components capable to withstand a lifetime radiation dose of 1 MGy.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be designed to be cooled and sustained at an operational temperature range of +X (C) to +X (C).02/09/2026In ProcessFALSE
- 6.02.02.03.05.01The magnet shall be designed with components capable to withstand a lifetime radiation dose of 1 MGy.02/09/2026ApprovedFALSE
- 6.02.02All ESR components and systems shall be designed and installed in line with all relevant regulatory codes and in full compliance with BNL SBMS.02/09/2026ApprovedFALSE
- 6.02.04.02The ESR shall have provisions made to accommodate a control system which can operate the ESR consistent will the overall control of the EIC and other EIC systems and to ensure the ESR meets all the Physics requirements needed to deliver the physics goals of the EIC.02/09/2026ApprovedFALSE
- 6.02.04.02The ESR control system shall facilitate all ESR global control requirements.02/09/2026ApprovedFALSE
- 6.02.04.02The BBA quad strength command output rate shall be 1 Hz02/09/2026In ProcessFALSE
- 6.02.04.02The tune feedback measurement sample rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The tune feedback correction rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.04.02The ESR control system shall facilitate all network, relational database and data archiving required.02/09/2026ApprovedFALSE
- 6.02.04.02The tune feedback measurement sample rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The BBA quad strength command output rate shall be 1 Hz02/09/2026In ProcessFALSE
- 6.02.04.02The tune feedback correction rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.02The ESR RF Systems within the tunnel shall operate within its yearly radiation exposure budget.02/09/2026ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that cannot be maintained in-situ shall be designed with a minimum lifetime radiation tolerance of 1 MGy.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.02.04.02The control system shall facilitate all machine protection systems required02/09/2026ApprovedFALSE
- 6.02.04.02The tune feedback measurement sample rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The BBA quad strength command output rate shall be 1 Hz02/09/2026In ProcessFALSE
- 6.02.04.02The tune feedback correction rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The ESR control system shall facilitate all EIC machine timing required.02/09/2026ApprovedFALSE
- 6.02.04.02The tune feedback measurement sample rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The BBA quad strength command output rate shall be 1 Hz02/09/2026In ProcessFALSE
- 6.02.04.02The tune feedback correction rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The ESR control system shall facilitate fast orbit feedback integration systems as required.02/09/2026ApprovedFALSE
- 6.02.04.02The BBA quad strength command output rate shall be 1 Hz02/09/2026In ProcessFALSE
- 6.02.04.02Placeholder for fast orbit feedback requirements02/09/2026In ProcessFALSE
- 6.02.04.02Placeholder for fast orbit feedback requirements02/09/2026In ProcessFALSE
- 6.02.04.02The tune feedback measurement sample rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02Placeholder for fast orbit feedback requirements02/09/2026In ProcessFALSE
- 6.02.04.02The tune feedback correction rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The ESR control system shall facilitate all physics application support required.02/09/2026ApprovedFALSE
- 6.02.04.02The BBA quad strength command output rate shall be 1 Hz02/09/2026In ProcessFALSE
- 6.02.04.02The tune feedback measurement sample rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The tune feedback correction rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The ESR controls system shall be capable of producing arbitrary spin pattern at injection02/09/2026In ProcessFALSE
- 6.02.04.02The number of bunches @ 18GeV shall be 290 cnt02/09/2026In ProcessFALSE
- 6.02.04.02The Spin pattern control granularity shall be 1 bunch02/09/2026In ProcessFALSE
- 6.02.04.02The number of bunches @ 10GeV and below shall be 1160 cnt02/09/2026In ProcessFALSE
- 6.02.02The ESR instrumentation system shall include dual-plane Beam Position Monitors (BPMs) adjacent to each vertically focusing quadrupole. Provisions shall be made in the vacuum chamber design to install additional dual-plane BPMs at the horizontally focusing quadrupoles, if needed.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The ESR beam position monitor pick-up shall provide dual plane (horizontal and vertical) beam positional measurements.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The roll angle error of the ESR BPM pickup, given as the horizontal measurement plane defined by the BPM fiducials witrh respect to. the horizontal plane of the ESR ring shall be less than +/- 20 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The ESR BPM system shall fulfill resolution and accuracy requirements over the following two defined transverse beam position ranges with respect vacuum chamber center, referenced to the mechanical fiducials on the BPM pickups.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The beam position monitor pick-up assembly shall operate in ultra-high vacuum.02/09/2026ApprovedFALSE
- 6.02.02The ESR BPMs shall have turn-by-turn orbit measurement capability based on a single, remotely selectable bunch out of the fully filled bunch train to enable injection optimization.02/09/2026ApprovedFALSE
- 6.02.02.05.01.01The ESR Beam Position Monitor (BPM) Electronics shall have the following capabilities defined for the low intensity pilot injection energies and high intensity collision energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR Beam Position Monitor (BPM) Electronics shall have the following time resolutions for data refresh defined for the beam energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]:02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM Electronics shall have the following time resolutions for data logging defined for the beam energies:02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM Electronics shall have the following measurement resolutions defined for beam energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]:02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM Electronics shall be designed to operate reliability with capability to withstand a lifetime radiation dose of TBD MGy.02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM Electronics shall be designed to operate in an ambient temperature degree from X (C) to X (C).02/09/2026ReviewedFALSE
- 6.02.02.05.01.02The ESR beam position monitor pick-up shall provide dual plane (horizontal and vertical) beam positional measurements.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The roll angle error of the ESR BPM pickup, given as the horizontal measurement plane defined by the BPM fiducials witrh respect to. the horizontal plane of the ESR ring shall be less than +/- 20 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The ESR BPM system shall fulfill resolution and accuracy requirements over the following two defined transverse beam position ranges with respect vacuum chamber center, referenced to the mechanical fiducials on the BPM pickups.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The beam position monitor pick-up assembly shall operate in ultra-high vacuum.02/09/2026ApprovedFALSE
- 6.02.02The ESR instrumentation system shall include a beam current monitor to measure average beam current.02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer shall have the ability to measure the average beam current over a range of 0.15 (mA) to 2500 (mA).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer shall provide an average current measurement with a resolution of less than 5 (uA /√Hz).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer measurement drift tolerance shall be less than 10 (uA) over 1 (hr).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer system average beam current measurement shall have an absolute accuracy of better than +/- 1 (%) at 250 (mA).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer system average beam current measurement shall have an absolute accuracy between the range of 250 (mA) to 2.5 (A) at +/- 0.5 (%).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer system shall operate in ultra-high vacuum.02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer Calibration system shall be capable of providing an equivalent ESR DC current over the full operating range within 0.25% over the beam current range of 0.15 (mA) to 2500 (mA).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer system shall have a remote controlled self calibration system02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer measured average current shall be archived at a rate of 1 Hz02/09/2026ApprovedFALSE
- 6.02.02The ESR instrumentation system shall include a system to measure individual bunch charges and bunch pattern.02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR fast charge monitor shall be capable of measuring bunch patterns ranging from a single bunch, to a filled ring with 1,160 bunches.02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR fast charge monitor shall be capable of measuring witness bunch for 1/e for a fixed gain over the beam lifetime.02/09/2026ApprovedFALSE
- 6.02.02The ESR instrumentation system shall include a system to measure transverse beam profiles.02/09/2026ApprovedFALSE
- 6.02.02.05.05.01The transverse feedback systems shall be capable of counteracting single-bunch rise times of 1 ms02/09/2026In ProcessFALSE
- 6.02.02.05.05.01Placeholder, Input needed TBD02/09/2026In ProcessFALSE
- 6.02.02.05.05.01Placeholder, Input needed TBD02/09/2026In ProcessFALSE
- 6.02.02The ESR instrumentation system shall include a system to measure longitudinal beam profiles.02/09/2026ApprovedFALSE
- 6.02.02.05.05.02The requirements for longitudinal feedback are ??? TBD02/09/2026In ProcessFALSE
- 6.02.02.05.05.02The Longitudinal feedback systems shall be capable of counteracting single-bunch rise times of 1 ms02/09/2026In ProcessFALSE
- 6.02.02The ESR longitudinal bunch profile monitor needs turn-by-turn capability based on a single bunch in the fully filled bunch train to allow timing and energy adjustment for injection optimization.02/09/2026ApprovedFALSE
- 6.02.02.05.05.02The requirements for longitudinal feedback are ??? TBD02/09/2026In ProcessFALSE
- 6.02.02.05.05.02The Longitudinal feedback systems shall be capable of counteracting single-bunch rise times of 1 ms02/09/2026In ProcessFALSE
- 6.02.02The ESR instrumentation system shall include system to measure H & V betatron tunes.02/09/2026ApprovedFALSE
- 6.02.02.05.03Stripline kickers (H & V) shall be used to excite the beam so tunes can be measured using turn-by-turn BPM data.02/09/2026In ProcessFALSE
- 6.02.02.05.03The magnitude of the kick required for the horizontal kicker shall be TBD units02/09/2026In ProcessFALSE
- 6.02.02.05.03The magnitude of the kick required for the vertical kicker shall be TBD units02/09/2026In ProcessFALSE
- 6.02.02.05.03The location of the tune meter kicker striplines in the ESR shall be TBD units02/09/2026In ProcessFALSE
- 6.02.02.05.03The kicker waveform (risetime and shape) requirements shall be TBD units02/09/2026In ProcessFALSE
- 6.02.02.05.03The impedance of the kicker beamline device shall be approved by beam Physics.02/09/2026In ProcessFALSE
- 6.02.02The ESR instrumentation system shall facilitate all required feedback systems (slow transverse, longitudinal and transverse bunch-by-bunch)02/09/2026ApprovedFALSE
- 6.02.04.02The slow orbit feedback correction output rate shall be 10 Hz02/09/2026In ProcessFALSE
- 6.02.04.02The slow orbit feedback BPM data averaging period shall be tbd -02/09/2026In ProcessFALSE
- 6.02.02.05.05.01The transverse slow feedback system bandwidth shall bs 10 Hz02/09/2026In ProcessFALSE
- 6.02.02The ESR instrumentation system shall include beam loss monitor system with detectors located only at select regions of the ESR.02/09/2026ApprovedFALSE
- 6.02.02.05.02BLM shall be needed to needed to protect sensitive equipment.02/09/2026In ProcessFALSE
- 6.02.02.05.02The number of BLM installed in the ESR shall be TBD ea02/09/2026In ProcessFALSE
- 6.02.02.05.02BLM shall be installed at the following locations in the ESR TBD02/09/2026In ProcessFALSE
- 6.02.02.05.02The sensitivity of the BLM detectors shall be TBD units?02/09/2026In ProcessFALSE
- 6.02.02.05.02Where possible existing RHIC BLM's can be relocated to identify ESR & HSR losses02/09/2026In ProcessFALSE
- 6.02.02.05.02The response time from loss detection to abort shall be TBD us02/09/2026In ProcessFALSE
- 6.02.02The ESR RF System shall be designed to minimize unscheduled downtime, maintenance time and repair time to achieve ESR operational availability.02/09/2026ApprovedFALSE
- 6.02.04.02The ESR controls system shall be capable of producing arbitrary spin pattern at injection02/09/2026In ProcessFALSE
- 6.02.04.02The Spin pattern control granularity shall be 1 bunch02/09/2026In ProcessFALSE
- 6.02.04.02The number of bunches @ 18GeV shall be 290 cnt02/09/2026In ProcessFALSE
- 6.02.04.02The number of bunches @ 10GeV and below shall be 1160 cnt02/09/2026In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 300K to 150K shall be 10 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 150K to 50K shall be 30 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 50K to 4.5K shall be 10 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 4.5K to 2K shall be 0.5 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum warmup rate of the SRF cavity between 50K to 150K shall be 30 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall achieve steady state temperature with the cavity bath at 4K in a maximum of 2 days.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall achieve a full warm-up cycle from 4K to 295K in a maximum of 2 days.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall operate through a minimum of 200 thermal cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner 1% range tuning cycles shall be 100,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner full range tuning cycles shall be 1,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The manufactured SRF Cryomodule Cavity shall produce no field emission at 4 MV.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that cannot be maintained in-situ shall be designed with a minimum lifetime radiation tolerance of 1 MGy.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.08.04.01All critical monitoring and control instruments that cannot be maintained in-situ shall utilize a back-up instrument.05/16/2025ApprovedFALSE
- 6.08.04.01The active SRF cavity tuning mechanism components (motor/gearbox/drive mechanism) shall be replaceable and maintainable in-situ.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cavity slow tuner tuning rate shall be 800 Hz/s.05/16/2025ApprovedFALSE
- 6.02.04.04The ESR shall have provisions made to accommodate a cryogenic system to cool and operate all elements which need cryogenic cooling .02/09/2026ApprovedFALSE
- 6.02.02The ESR shall have provisions made to accommodate a RF system capable of operating at parameters defined in MPT. [Document#:EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
ESR-PPD : EZSR Pulse Power Device System (WBS 6.03.03.05)
ESR-PPD-INJ_EXT_PULSE_STRIPLINE_KICK : EIS RCS Injection/Extraction Pulse Power Strip-line Kicker System (WBS 6.03.03.05.06)
- TBDThe location (Section) type shall be 12 o'clock02/09/2026In ProcessFALSE
- TBDThe dimension in W type shall be 5 (ft)02/09/2026In ProcessFALSE
- TBDThe dimension in L type shall be 5 (ft)02/09/2026In ProcessFALSE
- TBDThe dimension in H type shall be 7 (ft)02/09/2026In ProcessFALSE
- TBDThe num magnets type shall be 1002/09/2026In ProcessFALSE
- TBDThe mag gap type shall be 3 (cm)02/09/2026In ProcessFALSE
- TBDThe rise time type shall be 0.000000002 (sec)02/09/2026In ProcessFALSE
- TBDThe fall time type shall be 0.0000000025 (sec)02/09/2026In ProcessFALSE
- TBDThe flat top time type shall be 0.000000013 (sec)02/09/2026In ProcessFALSE
- TBDThe waveshape type shall be Trap02/09/2026In ProcessFALSE
- TBDThe flat top repeatability type shall be tbd %02/09/2026In ProcessFALSE
- TBDThe uniformity of the flattop type shall be tbd (V)02/09/2026In ProcessFALSE
- TBDThe deflecting Angle type shall be 1.3 (mRad)02/09/2026In ProcessFALSE
- TBDThe rep rate spec type shall be 1 (Hz)02/09/2026In ProcessFALSE
- TBDThe output voltage Spec type shall be 20000 (Volts)02/09/2026In ProcessFALSE
- TBDThe output current spec type shall be 400 (Amps)02/09/2026In ProcessFALSE
- TBDThe inductance with cable type shall be 50 ohm (TBD) (uH)02/09/2026In ProcessFALSE
- TBDThe cooling type shall be water02/09/2026In ProcessFALSE
ESR-PPD-INJ_EXT_PULSE_KICK : EIS RCS Injection/Extraction Pulsed Bump IM&HW System (WBS 6.03.03.05.07)
- TBDThe location (Section) shall be 12 o'clock02/09/2026In ProcessFALSE
- TBDThe dimension in W shall be 4 (ft)02/09/2026In ProcessFALSE
- TBDThe dimension in L shall be 10 (ft)02/09/2026In ProcessFALSE
- TBDThe dimension in H shall be 7 (ft)02/09/2026In ProcessFALSE
- TBDThe num magnets shall be 302/09/2026In ProcessFALSE
- TBDThe mag gap shall be tbd (cm)02/09/2026In ProcessFALSE
- TBDThe rise time shall be 0.001 (sec)02/09/2026In ProcessFALSE
- TBDThe fall time shall be 0.002 (sec)02/09/2026In ProcessFALSE
- TBDThe flat top time shall be 0.0015 (sec)02/09/2026In ProcessFALSE
- TBDThe waveshape shall be trap02/09/2026In ProcessFALSE
- TBDThe flat top repeatability shall be tbd %02/09/2026In ProcessFALSE
- TBDThe uniformity of the flattop shall be tbd (V)02/09/2026In ProcessFALSE
- TBDThe deflecting Angle shall be 1 (mRad)02/09/2026In ProcessFALSE
- TBDThe rep rate spec shall be 1 (Hz)02/09/2026In ProcessFALSE
- TBDThe output voltage Spec shall be 60 (Volts)02/09/2026In ProcessFALSE
- TBDThe output current spec shall be 1000 (Amps)02/09/2026In ProcessFALSE
- TBDThe inductance with cable shall be 11 (uH)02/09/2026In ProcessFALSE
- TBDThe cooling type shall be water02/09/2026In ProcessFALSE
ESR-PPD-INJ_EXT_PULSE_SEPTUM : EIS RCS Injection/Extraction Pulsed Septum System (WBS 6.03.03.05.08)
- TBDThe location (Section) shall be 12 o'clock02/09/2026In ProcessFALSE
- TBDThe dimension in W shall be 4 (ft)02/09/2026In ProcessFALSE
- TBDThe dimension in L shall be 10 (ft)02/09/2026In ProcessFALSE
- TBDThe dimension in H shall be 7 (ft)02/09/2026In ProcessFALSE
- TBDThe num magnets shall be 2 ea02/09/2026In ProcessFALSE
- TBDThe mag gap shall be tbd02/09/2026In ProcessFALSE
- TBDThe rise time shall be 0.001 (sec)02/09/2026In ProcessFALSE
- TBDThe fall time shall be 0.0015 (sec)02/09/2026In ProcessFALSE
- TBDThe flat top time shall be 0.002 (sec)02/09/2026In ProcessFALSE
- TBDThe waveshape shall be Trap02/09/2026In ProcessFALSE
- TBDThe flat top repeatability shall be tbd %02/09/2026In ProcessFALSE
- TBDThe uniformity of the flattop shall be tbd (V)02/09/2026In ProcessFALSE
- TBDThe deflecting Angle shall be 15 (mRad)02/09/2026In ProcessFALSE
- TBDThe rep rate spec shall be 1 (Hz)02/09/2026In ProcessFALSE
- TBDThe output voltage Spec shall be 80 (Volts)02/09/2026In ProcessFALSE
- TBDThe output current spec shall be 1000 (Amps)02/09/2026In ProcessFALSE
- TBDThe inductance with cable shall be 25 (uH)02/09/2026In ProcessFALSE
- TBDThe cooling type shall be water02/09/2026In ProcessFALSE
ESR-MAG : ESR Magnet (WBS 6.04.02/6.04.03)
- ESR-MAG EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02The ESR magnets shall meet the requirements defined by the physics lattice.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet install center and install alignment must be within a translational value of +/- 150 (um) and a rotational alignment value of +/- 0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet-to-magnet field variability between magnets shall be less than 0.25%.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- 50 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The integrated field over the length of the magnet at the reference radius shall meet the following harmonic multipole content:02/09/2026ApprovedFALSE
- 6.02.02.03.04.01b2=10000, a2 = N/A02/09/2026ApprovedFALSE
- 6.02.02.03.04.01-2.00 < b3 < 2.00, -1.00 < a3 < 1.0002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b4 < 1.75, -0.47 < a4 < 0.4602/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.50 < b5 < 0.50, -0.30 < a5 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b6 < 1.75, -0.20 < a6 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b7 < 1.00, -0.50 < a7 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b8 < 1.00, -0.50 < a8 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b9 < 1.00, -0.50 < a9 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b10 < 1.00, -0.20 < a10 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b11 < 1.00, -0.40 < a11 < 0.4002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b12 < 1.00, -0.30 < a12 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b13 < 1.00, -0.20 < a13 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.30 < b14 < 0.30, -0.02 < a14 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b15 < 1.00, -0.20 < a15 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b16 < 1.00, -0.20 < a16 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum physical magnet length shall be 0.2 m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet install center and install alignment must be within a translational value of +/-500 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum magnet-to-magnet variability shall be 0.5%.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within reference radius at half and full field excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b15 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum physical magnet length shall be 0.2 m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet install center and install alignment must be within a translational value of +/- 500(um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum magnet-to-magnet variability shall be 0.5%.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within the reference radius at half and full excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01a1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a15 < 2502/09/2026ApprovedFALSE
- 6.02.02The ESR magnets shall have the required field quality to meet the operational needs.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The integrated field over the length of the magnet at the reference radius shall meet the following harmonic multipole content:02/09/2026ApprovedFALSE
- 6.02.02.03.04.01b2=10000, a2 = N/A02/09/2026ApprovedFALSE
- 6.02.02.03.04.01-2.00 < b3 < 2.00, -1.00 < a3 < 1.0002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b4 < 1.75, -0.47 < a4 < 0.4602/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.50 < b5 < 0.50, -0.30 < a5 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b6 < 1.75, -0.20 < a6 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b7 < 1.00, -0.50 < a7 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b8 < 1.00, -0.50 < a8 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b9 < 1.00, -0.50 < a9 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b10 < 1.00, -0.20 < a10 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b11 < 1.00, -0.40 < a11 < 0.4002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b12 < 1.00, -0.30 < a12 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b13 < 1.00, -0.20 < a13 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.30 < b14 < 0.30, -0.02 < a14 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b15 < 1.00, -0.20 < a15 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b16 < 1.00, -0.20 < a16 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within reference radius at half and full field excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b15 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within the reference radius at half and full excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01a1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a15 < 2502/09/2026ApprovedFALSE
- 6.02.02The “super-bends” in the ESR ARC sections shall consist of two long dipoles on either end of a short dipole.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The good field region of the ESR dipoles shall extend over a horizontal range of at least 4 centimeters in the radial direction, for all operational beam energies from 5 to 18 GeV. This will take into account the orbit changes due to the reverse bends.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02All ESR quadrupoles shall be designed to facilitate beam based alignment.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- 50 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02The maximum integrated field strength of the ESR FODO sextupoles needs to be sufficient to provide chromatic correction at all energies from 5 to 18 GeV with two low-beta interaction regions.02/09/2026ApprovedFALSE
- 6.02.04.02The BBA quad strength command output rate shall be 1 Hz02/09/2026In ProcessFALSE
- 6.02.02The aperture of all ESR magnets shall be large enough to accommodate the ESR vacuum chamber.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be designed to have a splitable yoke.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The minimal magnet bore gap and width shall be 52 and 150 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet pole tip radius shall be 40 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The minimal magnet bore gap and width shall be 150 and 52 mm.02/09/2026ApprovedFALSE
- 6.02.02The ESR Shall have a conventional orbit corrector scheme, with single-plane correctors located at the respective quadrupoles. The strength of these correctors needs to be chosen to correct for any source of orbit distortion and should have enough margin for beam based diagnostic purposes, Harmonic Spin bumps and emittance generating bumps.02/09/2026ApprovedFALSE
- 6.02.02All dipoles in the ESR, including those in IRs 6 and 8, shall be connected in series to a single main power supply.02/09/2026ApprovedFALSE
- 6.02.02The ESR main arc quadrupoles shall be powered to accommodate the Lattice requirements having the appropriate number of circuits to power the focusing and defocusing quadrupoles in each sextant of the ESR.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02The ESR quadrupoles in the straight sections IR02, IR04, IR10 and IR12 and in the transition from the arc to the straight section structure shall be wired to provide the optimized betatron phase advance across each straight section, as required for dynamic aperture optimization.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The ESR quadrupoles shall have provisions to vary individual strengths by approximately 1% for beam-based alignment purposes.02/09/2026ApprovedFALSE
- 6.02.02The ESR sextupole power supply scheme shall be laid out such that the sextupole family structure can be configured for both the 60 and the 90 degree lattice along with a small number of individually powered sextupoles in the transition regions between arcs and straight sections with minimal effort, cost and minimizing any risk of error.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
ESR-MAG-TD:273 : ESR Dipole Magnet (D13) (WBS 6.04.02.01)
- 6.02.02.03.01.01nan02/09/2026ApprovedFALSE
- 6.02.02.03.01.01nan02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to fit within the following envelope:02/09/2026ApprovedFALSE
- 6.02.02.03.01.01nan02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be measured using the following multipole homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints:02/09/2026ApprovedFALSE
- 6.02.02.03.01.01nan02/09/2026ApprovedFALSE
- 6.02.02.03.01Infrastructure shall provide Low Conductivity Water (LCW) to/from the common supply/return header(s) with isolation valves in the tunnel to be utilized by the magnets.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group shall provide a design and materials to facilitate installation of the piping (or hose) and connections from the magnet to the girder for Low Conductivity Water (LCW).01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group shall provide a design and materials to facilitate installation of the piping (or hose) and connections from the tunnel header(s) to the girder for Low Conductivity Water LCW).01/08/2026Not ApplicableFALSE
- 6.02.02.03.01ASR System Installation and Final Integration shall provide funding and scheduling for piping installation (or hosing) between the Low Conductivity Water (LCW) infrastructure and the magnets by the appropriate technical support groups.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall create schematics with the number of cables and connectors made to the magnet power circuit.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall purchase the cables that go from the power supply to the magnets.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall provide a power supply to be utilized by the magnets.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall make connections of the main winding magnet power cables at the magnet and power supply.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall make connections of the trim coils to the chassis cables at the magnet and the power supply.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group shall provide a terminal block to facilitate installation of the main winding magnet power cables.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group shall provide trim coils.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group shall provide several current taps to facilitate running at different operational modes.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall make connections of the Beam Based Alignment shunt resistor/switch chasssis cables at the magnet and PS ends01/08/2026Not ApplicableFALSE
- 6.02.02.03.01ASR System Installation and Final Integration shall provide funding and scheduling for installing cabling from the thermal switch lugs on the magnet to the Power Supply Group by the appropriate technical support groups.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall procure the cables that go from the thermal switch on the magnet to the Power Supply01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall make connections of the thermal switch cables at the magnet and Power Supply ends01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall create schematics with the number of cables and connectors made to the magnet protection circuit(s)01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group shall provide the terminal block to facilitate installation of the connection for thermal protection01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Mechanical Design Group shall provide a girder design and CAD model to be utilized by the magnet group. They will ensure the design does not interfere with magnet or cable installation around the beampipe01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group shall procure the girders for the Accelerator Installation Group to install.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01ASR System Installation and Final Integration shall provide funding and scheduling for installing the magnets on the girders.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Vacuum Group shall design the beampipe integration to the magnets.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Vacuum Group will provide temporary thermal couples to the magnets and incorporate the defined thermal design limits for the magnet into its bakeout procedure for the ESR beamline which satisfies the Magnet Group design.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group will provide supports for beam pipes.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01ASR System Installation and Final Integration shall provide funding and scheduling for installing the beampipe through the magnets and installing the magnets by the appropriate technical support groups.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Mechanical Design Group shall provide the volume within the tunnel required by the magnets and girders.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The ESR Physics Group will provide the arrangement location for the magnets and girders01/08/2026Not ApplicableFALSE
- ESR-MAG-TD:273 EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
ESR-MAG-TD:380 : ESR Spin Rotator Dipole Magnet (DROT) (WBS 6.04.02.01)
- 6.02.02.03.01.03The magnet shall be a single function dipole with a vertical field.02/09/2026ApprovedFALSE
- 6.02.02.03.01.03The magnet shall require trim coils capable of trimming the field within +/- TBD (%) of the Peak field.02/09/2026In ProcessFALSE
- 6.02.02.03.01.03The magnet shall require current taps for operation TBD ( Y or N)02/09/2026In ProcessFALSE
- 6.02.02.03.01.03The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation TBD02/09/2026In ProcessFALSE
- 6.02.02.03.01.03The physical magnet length shall be <3.8 m.02/09/2026ApprovedFALSE
- 6.02.02.03.01.03The magnet model length shall be 3.8 m.02/09/2026ApprovedFALSE
- 6.02.02.03.01.03The magnet bore gap and Width shall be 52 mm.02/09/2026ReviewedFALSE
- 6.02.02.03.01.03The magnet shall be designed to fit within the following envelope. TBD02/09/2026In ProcessFALSE
- 6.02.02.03.01.03Magnet installation tolerances TBD02/09/2026In ProcessFALSE
- 6.02.02.03.01.03The magnet install center and install alignment must be within a translational value of +/-TBD (um) and a rotational alignment value of +/- TBD (mrad).02/09/2026In ProcessFALSE
- 6.02.02.03.01.03The magnet integrated dipole field (B) shall be 1.2 T.m.02/09/2026ReviewedFALSE
- 6.02.02.03.01.03The magnet good field aperture dAx required shall be 32.59 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.03The magnet good field aperture dAy required shall be 11.46 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.03The magnet to magnet field variability between magnets shall be 1 %.02/09/2026ApprovedFALSE
- 6.02.02.03.01.03The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).02/09/2026In ProcessFALSE
- 6.02.02.03.01.03The field shall be measured at two locations as follows: Harmonic Measurements region 1; Rref1=TBD mm centered at (-TBD,TBD) mm, Harmonic Measurements region 2; Rref2=TBD mm centered at (TBD,TBD) mm.02/09/2026In ProcessFALSE
- 6.02.02.03.01.03The reference field for the different measurements shall be: Measurement 1; Bref1=TBD (T) in Region TBD, Region TBD , Measurement 2; Bref2=TBD (T) in Region TBD, Region TBD.02/09/2026In ProcessFALSE
- 6.02.02.03.01.03The magnet bore field shall have a field homogeneity in region TBD, of better than dB/B <10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1 & 2.02/09/2026ApprovedFALSE
- 6.02.02.03.01.03Region 1: b1 = 10000, Region 2: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.03Region1: -4<b2<4, Region2: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.03Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.03Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.03Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.03Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.03Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.03Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.03Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.03Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.03Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.03Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.03Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.03Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.03Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.03Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.03The magnet shall not be designed to limit CrossTalk requirements.02/09/2026In ProcessFALSE
- 6.02.02.03.01.03The magnet shall be designed to specifically constrain the external fringe field TBD (Yes or No)02/09/2026In ProcessFALSE
- 6.02.02.03.01.03The magnet shall be designed to meet the following fringe field requirements TBD02/09/2026In ProcessFALSE
- 6.02.02.03.01.03The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.03The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01Infrastructure shall provide Low Conductivity Water (LCW) to/from the common supply/return header(s) with isolation valves in the tunnel to be utilized by the magnets.01/08/2026In ProcessFALSE
- 6.02.02.03.01The Magnet Group shall provide a design and materials to facilitate installation of the piping (or hose) and connections from the magnet to the girder for Low Conductivity Water (LCW).01/08/2026In ProcessFALSE
- 6.02.02.03.01The Magnet Group shall provide a design and materials to facilitate installation of the piping (or hose) and connections from the tunnel header(s) to the girder for Low Conductivity Water LCW).01/08/2026In ProcessFALSE
- 6.02.02.03.01ASR System Installation and Final Integration shall provide funding and scheduling for piping installation (or hosing) between the Low Conductivity Water (LCW) infrastructure and the magnets by the appropriate technical support groups.01/08/2026In ProcessFALSE
- 6.02.02.03.01The Power Supply Group shall create schematics with the number of cables and connectors made to the magnet power circuit.01/08/2026In ProcessFALSE
- 6.02.02.03.01The Power Supply Group shall purchase the cables that go from the power supply to the magnets.01/08/2026In ProcessFALSE
- 6.02.02.03.01The Power Supply Group shall provide a power supply to be utilized by the magnets.01/08/2026In ProcessFALSE
- 6.02.02.03.01The Power Supply Group shall make connections of the main winding magnet power cables at the magnet and power supply.01/08/2026In ProcessFALSE
- 6.02.02.03.01The Power Supply Group shall make connections of the trim coils to the chassis cables at the magnet and the power supply.01/08/2026In ProcessFALSE
- 6.02.02.03.01The Magnet Group shall provide a terminal block to facilitate installation of the main winding magnet power cables.01/08/2026In ProcessFALSE
- 6.02.02.03.01The Magnet Group shall provide trim coils.01/08/2026In ProcessFALSE
- 6.02.02.03.01The Magnet Group shall provide several current taps to facilitate running at different operational modes.01/08/2026In ProcessFALSE
- 6.02.02.03.01The Power Supply Group shall make connections of the Beam Based Alignment shunt resistor/switch chasssis cables at the magnet and PS ends01/08/2026In ProcessFALSE
- 6.02.02.03.01ASR System Installation and Final Integration shall provide funding and scheduling for installing cabling from the thermal switch lugs on the magnet to the Power Supply Group by the appropriate technical support groups.01/08/2026In ProcessFALSE
- 6.02.02.03.01The Power Supply Group shall procure the cables that go from the thermal switch on the magnet to the Power Supply01/08/2026In ProcessFALSE
- 6.02.02.03.01The Power Supply Group shall make connections of the thermal switch cables at the magnet and Power Supply ends01/08/2026In ProcessFALSE
- 6.02.02.03.01The Power Supply Group shall create schematics with the number of cables and connectors made to the magnet protection circuit(s)01/08/2026In ProcessFALSE
- 6.02.02.03.01The Magnet Group shall provide the terminal block to facilitate installation of the connection for thermal protection01/08/2026In ProcessFALSE
- 6.02.02.03.01The Mechanical Design Group shall provide a girder design and CAD model to be utilized by the magnet group. They will ensure the design does not interfere with magnet or cable installation around the beampipe01/08/2026In ProcessFALSE
- 6.02.02.03.01The Magnet Group shall procure the girders for the Accelerator Installation Group to install.01/08/2026In ProcessFALSE
- 6.02.02.03.01ASR System Installation and Final Integration shall provide funding and scheduling for installing the magnets on the girders.01/08/2026In ProcessFALSE
- 6.02.02.03.01The Vacuum Group shall design the beampipe integration to the magnets.01/08/2026In ProcessFALSE
- 6.02.02.03.01The Vacuum Group will provide temporary thermal couples to the magnets and incorporate the defined thermal design limits for the magnet into its bakeout procedure for the ESR beamline which satisfies the Magnet Group design.01/08/2026In ProcessFALSE
- 6.02.02.03.01The Magnet Group will provide supports for beam pipes.01/08/2026In ProcessFALSE
- 6.02.02.03.01ASR System Installation and Final Integration shall provide funding and scheduling for installing the beampipe through the magnets and installing the magnets by the appropriate technical support groups.01/08/2026In ProcessFALSE
- 6.02.02.03.01The Mechanical Design Group shall provide the volume within the tunnel required by the magnets and girders.01/08/2026In ProcessFALSE
- 6.02.02.03.01The ESR Physics Group will provide the arrangement location for the magnets and girders01/08/2026In ProcessFALSE
ESR-MAG-TD:550 : ESR Dipole Magnet (B2ER) (WBS 6.04.02.01)
- 6.02.02.03.01.03The magnet shall be a single function magnet with a vertical dipole field along the beam axis.02/09/2026ApprovedFALSE
- 6.02.02.03.01.03The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation TBD02/09/2026On HoldFALSE
- 6.02.02.03.01.03The physical magnet length shall be <TBD m.02/09/2026On HoldFALSE
- 6.02.02.03.01.03The magnet bore gap and Width shall be 48 mm.02/09/2026On HoldFALSE
- 6.02.02.03.01.03The magnet shall be designed to fit within the following envelope:02/09/2026On HoldFALSE
- 6.02.02.03.01.03Magnet installation volume tolerances TBD02/09/2026On HoldFALSE
- 6.02.02.03.01.03The magnet install center and install alignment must be within a translational value of +/-TBD (um) and a rotational alignment value of +/- TBD (mrad).02/09/2026On HoldFALSE
- 6.02.02.03.01.03The magnet integrated dipole field (B) shall be TBD T.m.02/09/2026On HoldFALSE
- 6.02.02.03.01.03The magnet good field aperture dAx required shall be TBD mm.02/09/2026On HoldFALSE
- 6.02.02.03.01.03The magnet good field aperture dAy required shall be TBD mm.02/09/2026On HoldFALSE
- 6.02.02.03.01.03The magnet to magnet field variability between magnets shall be 5 %.02/09/2026On HoldFALSE
- 6.02.02.03.01.03The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).02/09/2026On HoldFALSE
- 6.02.02.03.01.03The harmonic reference radius at the design energy of 18 GeV shall be TBD (mm) .02/09/2026On HoldFALSE
- 6.02.02.03.01.03The Field at the reference radius at the design energy of 18 GeV shall be TBD (T) .02/09/2026On HoldFALSE
- 6.02.02.03.01.03The magnet bore field shall require the following multipole content:02/09/2026On HoldFALSE
- 6.02.02.03.01.03b1 = 10000 (10^-4)02/09/2026On HoldFALSE
- 6.02.02.03.01.03b2 < 100 (10^-4)02/09/2026On HoldFALSE
- 6.02.02.03.01.03b3 < 100 (10^-4)02/09/2026On HoldFALSE
- 6.02.02.03.01.03b4 < 100 (10^-4)02/09/2026On HoldFALSE
- 6.02.02.03.01.03b5 < 100 (10^-4)02/09/2026On HoldFALSE
- 6.02.02.03.01.03b6 < 100 (10^-4)02/09/2026On HoldFALSE
- 6.02.02.03.01.03b7 < 100 (10^-4)02/09/2026On HoldFALSE
- 6.02.02.03.01.03b8 < 100 (10^-4)02/09/2026On HoldFALSE
- 6.02.02.03.01.03b9 < 100 (10^-4)02/09/2026On HoldFALSE
- 6.02.02.03.01.03b10 < 100 (10^-4)02/09/2026On HoldFALSE
- 6.02.02.03.01.03b11 < 100 (10^-4)02/09/2026On HoldFALSE
- 6.02.02.03.01.03b12 < 100 (10^-4)02/09/2026On HoldFALSE
- 6.02.02.03.01.03b13 < 100 (10^-4)02/09/2026On HoldFALSE
- 6.02.02.03.01.03b14 < 100 (10^-4)02/09/2026On HoldFALSE
- 6.02.02.03.01.03b15 < 100 (10^-4)02/09/2026On HoldFALSE
- 6.02.02.03.01.03b16 < 100 (10^-4)02/09/2026On HoldFALSE
- 6.02.02.03.01.03The magnet shall not be designed to limit CrossTalk requirements.02/09/2026On HoldFALSE
- 6.02.02.03.01.03The magnet shall be designed to specifically constrain the external fringe field TBD (Yes or No)02/09/2026On HoldFALSE
- 6.02.02.03.01.03The magnet shall be designed to meet the following fringe field requirements TBD02/09/2026On HoldFALSE
- 6.02.02.03.01.03The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.03The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01Infrastructure shall provide Low Conductivity Water (LCW) to/from the common supply/return header(s) with isolation valves in the tunnel to be utilized by the magnets.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group shall provide a design and materials to facilitate installation of the piping (or hose) and connections from the magnet to the girder for Low Conductivity Water (LCW).01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group shall provide a design and materials to facilitate installation of the piping (or hose) and connections from the tunnel header(s) to the girder for Low Conductivity Water LCW).01/08/2026Not ApplicableFALSE
- 6.02.02.03.01ASR System Installation and Final Integration shall provide funding and scheduling for piping installation (or hosing) between the Low Conductivity Water (LCW) infrastructure and the magnets by the appropriate technical support groups.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall create schematics with the number of cables and connectors made to the magnet power circuit.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall purchase the cables that go from the power supply to the magnets.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall provide a power supply to be utilized by the magnets.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall make connections of the main winding magnet power cables at the magnet and power supply.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall make connections of the trim coils to the chassis cables at the magnet and the power supply.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group shall provide a terminal block to facilitate installation of the main winding magnet power cables.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group shall provide trim coils.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group shall provide several current taps to facilitate running at different operational modes.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall make connections of the Beam Based Alignment shunt resistor/switch chasssis cables at the magnet and PS ends01/08/2026Not ApplicableFALSE
- 6.02.02.03.01ASR System Installation and Final Integration shall provide funding and scheduling for installing cabling from the thermal switch lugs on the magnet to the Power Supply Group by the appropriate technical support groups.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall procure the cables that go from the thermal switch on the magnet to the Power Supply01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall make connections of the thermal switch cables at the magnet and Power Supply ends01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall create schematics with the number of cables and connectors made to the magnet protection circuit(s)01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group shall provide the terminal block to facilitate installation of the connection for thermal protection01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Mechanical Design Group shall provide a girder design and CAD model to be utilized by the magnet group. They will ensure the design does not interfere with magnet or cable installation around the beampipe01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group shall procure the girders for the Accelerator Installation Group to install.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01ASR System Installation and Final Integration shall provide funding and scheduling for installing the magnets on the girders.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Vacuum Group shall design the beampipe integration to the magnets.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Vacuum Group will provide temporary thermal couples to the magnets and incorporate the defined thermal design limits for the magnet into its bakeout procedure for the ESR beamline which satisfies the Magnet Group design.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group will provide supports for beam pipes.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01ASR System Installation and Final Integration shall provide funding and scheduling for installing the beampipe through the magnets and installing the magnets by the appropriate technical support groups.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Mechanical Design Group shall provide the volume within the tunnel required by the magnets and girders.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The ESR Physics Group will provide the arrangement location for the magnets and girders01/08/2026Not ApplicableFALSE
ESR-MAG-TD:89 : ESR Dipole Magnet (D2) (WBS 6.04.02.01)
- 6.02.02.03.01.02nan02/09/2026ApprovedFALSE
- 6.02.02.03.01.02nan02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to fit within the following envelope:02/09/2026ApprovedFALSE
- 6.02.02.03.01.02nan02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be measured using the following multipole homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints:02/09/2026ApprovedFALSE
- 6.02.02.03.01.02nan02/09/2026ApprovedFALSE
- 6.02.02.03.01Infrastructure shall provide Low Conductivity Water (LCW) to/from the common supply/return header(s) with isolation valves in the tunnel to be utilized by the magnets.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group shall provide a design and materials to facilitate installation of the piping (or hose) and connections from the magnet to the girder for Low Conductivity Water (LCW).01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group shall provide a design and materials to facilitate installation of the piping (or hose) and connections from the tunnel header(s) to the girder for Low Conductivity Water LCW).01/08/2026Not ApplicableFALSE
- 6.02.02.03.01ASR System Installation and Final Integration shall provide funding and scheduling for piping installation (or hosing) between the Low Conductivity Water (LCW) infrastructure and the magnets by the appropriate technical support groups.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall create schematics with the number of cables and connectors made to the magnet power circuit.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall purchase the cables that go from the power supply to the magnets.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall provide a power supply to be utilized by the magnets.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall make connections of the main winding magnet power cables at the magnet and power supply.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall make connections of the trim coils to the chassis cables at the magnet and the power supply.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group shall provide a terminal block to facilitate installation of the main winding magnet power cables.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group shall provide trim coils.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group shall provide several current taps to facilitate running at different operational modes.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall make connections of the Beam Based Alignment shunt resistor/switch chasssis cables at the magnet and PS ends01/08/2026Not ApplicableFALSE
- 6.02.02.03.01ASR System Installation and Final Integration shall provide funding and scheduling for installing cabling from the thermal switch lugs on the magnet to the Power Supply Group by the appropriate technical support groups.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall procure the cables that go from the thermal switch on the magnet to the Power Supply01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall make connections of the thermal switch cables at the magnet and Power Supply ends01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Power Supply Group shall create schematics with the number of cables and connectors made to the magnet protection circuit(s)01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group shall provide the terminal block to facilitate installation of the connection for thermal protection01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Mechanical Design Group shall provide a girder design and CAD model to be utilized by the magnet group. They will ensure the design does not interfere with magnet or cable installation around the beampipe01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group shall procure the girders for the Accelerator Installation Group to install.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01ASR System Installation and Final Integration shall provide funding and scheduling for installing the magnets on the girders.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Vacuum Group shall design the beampipe integration to the magnets.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Vacuum Group will provide temporary thermal couples to the magnets and incorporate the defined thermal design limits for the magnet into its bakeout procedure for the ESR beamline which satisfies the Magnet Group design.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Magnet Group will provide supports for beam pipes.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01ASR System Installation and Final Integration shall provide funding and scheduling for installing the beampipe through the magnets and installing the magnets by the appropriate technical support groups.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The Mechanical Design Group shall provide the volume within the tunnel required by the magnets and girders.01/08/2026Not ApplicableFALSE
- 6.02.02.03.01The ESR Physics Group will provide the arrangement location for the magnets and girders01/08/2026Not ApplicableFALSE
- ESR-MAG-TD:89 EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
ESR-MAG-SX:24 : ESR Sextupole Magnet (SX) (WBS 6.04.02.02)
- 6.01.02.02The magnet shall be a single function sextupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to have a splitable pole toaccommodate the Vacuum beam pipe installation.02/09/2026ApprovedFALSE
- 6.01.02.02The physical magnet length shall be <0.32 m.02/09/2026ApprovedFALSE
- 6.01.02.02The effective magnet length shall be 0.24 m02/09/2026ApprovedFALSE
- 6.01.02.02The magnet install center and install alignment must be within atranslational value of +/-150(um) and a rotational alignment valueof +/-0.5 (mrad).02/09/2026ApprovedFALSE
- 6.01.02.02The magnet integrated grad field G shall be 97.2 T/m.02/09/2026ApprovedFALSE
- 6.01.02.02The magnetic field, center and alignment, within the magnet mustbe known to within a translational value of +/-50 (um) and arotational alignment value of +/-0.5 (mrad).02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.01.02.02The harmonic reference radius and current shall be 25 (mm) and 161 (A).02/09/2026ApprovedFALSE
- 6.01.02.02The Field at the reference radius and current shall be 405 (T/m^2).02/09/2026ApprovedFALSE
- 6.01.02.02The magnet bore field shall require the following multipole content:02/09/2026ApprovedFALSE
- 6.01.02.02b3 = 10000 a3 = N/A02/09/2026ApprovedFALSE
- 6.01.02.02b4 = HV +/- 5.3 a4 = HV +/- 7.102/09/2026ApprovedFALSE
- 6.01.02.02b5 = HV +/- 1.6 a5 = HV +/- 1.902/09/2026ApprovedFALSE
- 6.01.02.02b6 = HV +/- 1.0 a6 = +/- 2.002/09/2026ApprovedFALSE
- 6.01.02.02b7 = HV +/- 1.0 a7 = +/- 0.802/09/2026ApprovedFALSE
- 6.01.02.02b8 = HV +/- 1.0 a8 = +/- 0.502/09/2026ApprovedFALSE
- 6.01.02.02b9 = HV +/- 1.0 a9 = +/- 0.502/09/2026ApprovedFALSE
- 6.01.02.02b10 = HV +/- 1.0 a10 = +/- 0.302/09/2026ApprovedFALSE
- 6.01.02.02b11 = HV +/- 1.0 a11 = +/- 0.2802/09/2026ApprovedFALSE
- 6.01.02.02b12 = HV +/- 1.0 a12 = +/- 0.2602/09/2026ApprovedFALSE
- 6.01.02.02b13 = HV +/- 1.0 a13 = +/- 0.2402/09/2026ApprovedFALSE
- 6.01.02.02b14 = HV +/- 1.0 a14 = +/- 0.2202/09/2026ApprovedFALSE
- 6.01.02.02b15 = HV +/- 1.0 a15 = +/- 0.2102/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field to 10 Gauss at 40mm from the RCS beamline.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +X (C) to +X (C).02/09/2026In ProcessFALSE
- 6.01.02.02The magnet design and verification process shall ensure the finalmagnet will meet the reliability needs of the EIC over it plannedoperational life of >20 Years.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to operate reliably given thecumulative radiation dose of TBD Rads it will experience over thelifetime of the EIC of >20 Years.02/09/2026In ProcessFALSE
ESR-MAG-SXT:57 : ESR Long Sextupole Magnet (SXL) (WBS 6.04.02.02)
- 6.02.02.03.02The magnet shall be a single function sextupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.02.02.03.02The magnet shall be designed to have a splitable yoke.02/09/2026ApprovedFALSE
- 6.02.02.03.02The maximum physical magnet length shall be 0.63 m.02/09/2026ApprovedFALSE
- 6.02.02.03.02The magnet pole tip radius shall be 49 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.02The magnet shall be designed to fit within the following envelope.02/09/2026ApprovedFALSE
- 6.02.02.03.02The magnet maximum axial dimensions shall be X = 71.1 cm and Y = 92.3 cm.02/09/2026In ProcessFALSE
- 6.02.02.03.02The magnet install center and install alignment must be within a translational value of +/- 150 (um) and a rotational alignment value of +/- 0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.02The magnet integrated gradient field, G, shall be 230.9 T/m.02/09/2026ApprovedFALSE
- 6.02.02.03.02The magnet-to-magnet field variability between magnets shall be less than 0.1%.02/09/2026ReviewedFALSE
- 6.02.02.03.02The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- 50 (um) and a rotational alignment value of +/- 0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.02The magnet reference radius and current shall be 25 mm and 161 A.02/09/2026ApprovedFALSE
- 6.02.02.03.02The magnetic field at the reference radius and current shall be 405 T/m^2.02/09/2026ApprovedFALSE
- 6.02.02.03.02The integrated field over the length of the magnet at the reference radius shall meet the following harmonic multipole content:02/09/2026ApprovedFALSE
- 6.02.02.03.02b3 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.02-5.00 < b4 < 5.00 -7.00 < a4 < 7.0002/09/2026ApprovedFALSE
- 6.02.02.03.02-1.40 < b5 < 1.40, -1.70 < a5 < 1.7002/09/2026ApprovedFALSE
- 6.02.02.03.02-1.00 < b6 < 1.00, -1.00 < a6 < 1.0002/09/2026ApprovedFALSE
- 6.02.02.03.02-0.75 < b7 < 0.75, -0.40 < a7 < 0.4002/09/2026ApprovedFALSE
- 6.02.02.03.02-0.50 < b8 < 0.50, -0.30 < a8 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.02-5.00 < b9 < 5.00, -0.30 < a9 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.02-0.35 < b10 < 0.35, -0.20 < a10 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.02-0.30 < b11 < 0.30, -0.15 < a11 < 0.1502/09/2026ApprovedFALSE
- 6.02.02.03.02-0.30 < b12 < 0.30, -0.15 < a12 < 0.1502/09/2026ApprovedFALSE
- 6.02.02.03.02-0.25 < b13 < 0.25, -0.10 < a13 < 0.1002/09/2026ApprovedFALSE
- 6.02.02.03.02-0.20 < b14 < 0.20, -0.10 < a14 < 0.1002/09/2026ApprovedFALSE
- 6.02.02.03.02-1.00 < b15 < 1.00, -0.10 < a15 < 0.1002/09/2026ApprovedFALSE
- 6.02.02.03.02-0.20 < b16 < 0.20, -0.10 < a16 < 0.1002/09/2026ApprovedFALSE
- 6.02.02.03.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +15 (C) to +50 (C).02/09/2026In ProcessFALSE
- 6.02.02.03.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- Infrastructure shall provide Low Conductivity Water (LCW) to/from the common supply/return header(s) with isolation valves in the tunnel to be utilized by the magnets.01/12/2026In ProcessFALSE
- Infrastructure shall provide Low Conductivity Water (LCW) to/from the common supply/return header(s) to be utilized by the magnets.01/12/2026In ProcessFALSE
- The magnet group shall provide all distribution design of the piping (or hoses) for Low Conductivity Water (LCW) from the tunnel header to the Cryomodules to be utilized by the magnets.01/12/2026In ProcessFALSE
- The Accelerator Installation WBS CAM shall fund and schedule piping installation (or hosing) between the Low Conductivity Water (LCW) infrastructure and the magnets by the appropriate technical support groups.01/12/2026In ProcessFALSE
- The Accelerator Installation WBS CAM shall schedule and fund cable installation from the power supply to the magnets by the appropriate technical support group.01/12/2026In ProcessFALSE
- The Power Supply Group shall purchase the cables that go from the Power Supply to the magnets.01/12/2026In ProcessFALSE
- The Power Supply Group shall make connections of the main winding magnet power cables at the magnet terminals and power supply ends.01/12/2026In ProcessFALSE
- The Power Supply Group shall create schematics with the number of cables and connectors made to the magnet power circuit.01/12/2026In ProcessFALSE
- The Power Supply Group shall provide a power supply to be utilized by the magnets.01/12/2026In ProcessFALSE
- The Magnet Group shall provide a terminal block with standard polarity labels to facilitate installation of the main winding magnet power cables from the Accelerator Installation WBS CAM.01/12/2026In ProcessFALSE
- The Magnet Group shall provide a electrical and thermal parameters to the Power Supply Group to be utilized in selecting necessary power supply needs.01/12/2026In ProcessFALSE
- The Accelerator Installation WBS CAM shall schedule and fund installing cabling from the thermal switch lugs on the magnet to the Power Supply Group by the appropriate technical support group.01/12/2026In ProcessFALSE
- The Power Supply Group shall purchase the cables that go from the thermal switch on the magnet to the Power Supply.01/12/2026In ProcessFALSE
- The Power Supply Group shall make connections of the thermal switch cables at the magnet and Power Supply ends.01/12/2026In ProcessFALSE
- The Power Supply Group shall create schematics with the number of cables and connectors made to the magnet protection circuit(s).01/12/2026In ProcessFALSE
- The Magnet Group shall provide the terminal block with labeling to facilitate installation of the connection for thermal protection.01/12/2026In ProcessFALSE
- The Magnet Group shall provide a electrical and thermal parameters to the Power Supply Group to be utilized in selecting necessary power supply needs.01/12/2026In ProcessFALSE
- The Vacuum Group shall design the beampipe integration to the magnets.01/12/2026In ProcessFALSE
- The Accelerator Installation WBS CAM shall schedule and fund installing the beampipe through the magnets and installing the magnets by the appropriate technical support group.01/12/2026In ProcessFALSE
- The Vacuum Group will provide temporary thermal couples to the magnets for beamline bakeout. The magnet and coil temperature shall not exceed 150 degrees F during beamline bakeout.01/12/2026In ProcessFALSE
- The Magnet Group shall provide analysis of potential thermally conductive paths between the magnet and beampipe.01/12/2026In ProcessFALSE
- The Mechanical Design Group shall provide a girder design and CAD model to be utilized by the magnet group. They will ensure the design does not interfere with magnet or cable installation around the beampipe.01/12/2026In ProcessFALSE
- The BNL Magnet Group shall procure the girders for the Accelerator Installation WBS CAM to install.01/12/2026In ProcessFALSE
- The Survey Group shall fiducialize the magnet based on magnetic center after they have been installed onto the girder.01/12/2026In ProcessFALSE
- The Magnet Group shall provide magnet design CAD models to the Mechanical Design Group to facilitate the design of the magnet girder.01/12/2026In ProcessFALSE
- The Accelerator Installation WBS CAM shall schedule and fund installing the final assembled magnet girder to the tunnel by the appropriate technical support group.01/12/2026In ProcessFALSE
- The Mechanical Design Group shall model the tunnel to define the required spacial location of the magnets and girders.01/12/2026In ProcessFALSE
- The Survey Group will provide the arrangement location for the magnets and girders.01/12/2026In ProcessFALSE
- The Magnet Group shall provide analysis and approval of the magnet installations and potential interferences to the Mechanical Design Group.01/12/2026In ProcessFALSE
ESR-MAG-Q:50 : ESR Quadrupole Magnet (Q50) (WBS 6.04.03.01)
- 6.01.02.02The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall require shunt resistors for beam-based alignment, 5A at 5 GeV.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall have a splitable pole to facilitate the vacuum beam pipe installation.02/09/2026ApprovedFALSE
- 6.01.02.02The physical magnet length shall be <0.5 m.02/09/2026ApprovedFALSE
- 6.01.02.02The effective magnet length shall be 0.5 m.02/09/2026ApprovedFALSE
- 6.01.02.02The pole tip radius of the magnet shall be 40 mm.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.01.02.02The magnet integrated grad field G shall be 9.4 T.02/09/2026ApprovedFALSE
- 6.01.02.02The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.01.02.02The harmonic reference radius and current at 18 GeV shall be 25 (mm) and 412 (A).02/09/2026ApprovedFALSE
- 6.01.02.02The Field at the reference radius and current at 18 GeV shall be 18.9 (T/m).02/09/2026ApprovedFALSE
- 6.01.02.02The magnet bore field shall require the following multipole content:02/09/2026ApprovedFALSE
- 6.01.02.02b2 = 10000 , a2 = N/A02/09/2026ApprovedFALSE
- 6.01.02.02b3 = HV +/- 2.2 , a3 = +/- 202/09/2026ApprovedFALSE
- 6.01.02.02b4 = HV +/- 2.4 , a4 = +/- 0.702/09/2026ApprovedFALSE
- 6.01.02.02b5 = HV +/- 1.0 , a5 = +/- 0.502/09/2026ApprovedFALSE
- 6.01.02.02b6 = HV +/- 1.0 , a6 = +/- 0.202/09/2026ApprovedFALSE
- 6.01.02.02b7 = HV +/- 1.0 , a7 = +/- 0.502/09/2026ApprovedFALSE
- 6.01.02.02b8 = HV +/- 1.0 , a8 = +/- 0.502/09/2026ApprovedFALSE
- 6.01.02.02b9 = HV +/- 1.0 , a9 = +/- 0.502/09/2026ApprovedFALSE
- 6.01.02.02b10 = HV +/- 1.0 , a10 = +/- 0.502/09/2026ApprovedFALSE
- 6.01.02.02b11 = HV +/- 1.0 , a11 = +/- 0.402/09/2026ApprovedFALSE
- 6.01.02.02b12 = HV +/- 1.0 , a12 = +/- 0.302/09/2026ApprovedFALSE
- 6.01.02.02b13 = HV +/- 1.0 , a13 = +/- 0.202/09/2026ApprovedFALSE
- 6.01.02.02b14 = HV +/- 1.0 , a14 = +/- 0.1502/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field to 10 Gauss at 40mm from the RCS beamline.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +X (C) to +X (C).02/09/2026In ProcessFALSE
- 6.01.02.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to operate reliably given the cumulative radiation dose of TBD Rads it will experience over the lifetime of the EIC of >20 Years.02/09/2026In ProcessFALSE
- ESR-MAG-Q:50 EXTERNALSRequirements who's parents are in other sub-systems.
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
ESR-MAG-Q:60 : ESR Quadrupole Magnet (Q60) (WBS 6.04.03.01)
- 6.01.02.02The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall require shunt resistors for beam-based alignment, 5A at 5 GeV.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall have a splitable pole to facilitate the vacuum beam pipe installation.02/09/2026ApprovedFALSE
- 6.01.02.02The physical magnet length shall be <0.6 m.02/09/2026ApprovedFALSE
- 6.01.02.02The effective magnet length shall be 0.6 m.02/09/2026ApprovedFALSE
- 6.01.02.02The pole tip radius of the magnet shall be 40 mm.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.01.02.02The magnet integrated grad field G shall be 11.0 T.02/09/2026ApprovedFALSE
- 6.01.02.02The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.01.02.02The harmonic reference radius and current at 18 GeV shall be 25 (mm) and 412 (A).02/09/2026ApprovedFALSE
- 6.01.02.02The Field at the reference radius and current at 18 GeV shall be 18.9 (T/m).02/09/2026ApprovedFALSE
- 6.01.02.02The magnet bore field shall require the following multipole content:02/09/2026ApprovedFALSE
- 6.01.02.02b2 = 10000 , a2 = N/A02/09/2026ApprovedFALSE
- 6.01.02.02b3 = HV +/- 2.2 , a3 = +/- 202/09/2026ApprovedFALSE
- 6.01.02.02b4 = HV +/- 2.4 , a4 = +/- 0.702/09/2026ApprovedFALSE
- 6.01.02.02b5 = HV +/- 1.0 , a5 = +/- 0.502/09/2026ApprovedFALSE
- 6.01.02.02b6 = HV +/- 1.0 , a6 = +/- 0.202/09/2026ApprovedFALSE
- 6.01.02.02b7 = HV +/- 1.0 , a7 = +/- 0.502/09/2026ApprovedFALSE
- 6.01.02.02b8 = HV +/- 1.0 , a8 = +/- 0.502/09/2026ApprovedFALSE
- 6.01.02.02b9 = HV +/- 1.0 , a9 = +/- 0.502/09/2026ApprovedFALSE
- 6.01.02.02b10 = HV +/- 1.0 , a10 = +/- 0.502/09/2026ApprovedFALSE
- 6.01.02.02b11 = HV +/- 1.0 , a11 = +/- 0.402/09/2026ApprovedFALSE
- 6.01.02.02b12 = HV +/- 1.0 , a12 = +/- 0.302/09/2026ApprovedFALSE
- 6.01.02.02b13 = HV +/- 1.0 , a13 = +/- 0.202/09/2026ApprovedFALSE
- 6.01.02.02b14 = HV +/- 1.0 , a14 = +/- 0.1502/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field to 10 Gauss at 40mm from the RCS beamline.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +X (C) to +X (C).02/09/2026In ProcessFALSE
- 6.01.02.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to operate reliably given the cumulative radiation dose of TBD Rads it will experience over the lifetime of the EIC of >20 Years.02/09/2026In ProcessFALSE
- ESR-MAG-Q:60 EXTERNALSRequirements who's parents are in other sub-systems.
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
ESR-MAG-Q:80 : ESR Quadrupole Magnet (Q80) (WBS 6.04.03.01)
- 6.01.02.02The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall require shunt resistors for beam-based alignment, 5A at 5 GeV.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall have a splitable pole to facilitate the vacuum beam pipe installation.02/09/2026ApprovedFALSE
- 6.01.02.02The physical magnet length shall be <0.8 m.02/09/2026ApprovedFALSE
- 6.01.02.02The effective magnet length shall be 0.8 m.02/09/2026ApprovedFALSE
- 6.01.02.02The pole tip radius of the magnet shall be 40 mm.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.01.02.02The magnet integrated grad field G shall be 15.1 T.02/09/2026ApprovedFALSE
- 6.01.02.02The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.01.02.02The harmonic reference radius and current at 18 GeV shall be 25 (mm) and 412 (A).02/09/2026ApprovedFALSE
- 6.01.02.02The Field at the reference radius and current at 18 GeV shall be 18.9 (T/m).02/09/2026ApprovedFALSE
- 6.01.02.02The magnet bore field shall require the following multipole content:02/09/2026ApprovedFALSE
- 6.01.02.02b2 = 10000 , a2 = N/A02/09/2026ApprovedFALSE
- 6.01.02.02b3 = HV +/- 2.2 , a3 = +/- 202/09/2026ApprovedFALSE
- 6.01.02.02b4 = HV +/- 2.4 , a4 = +/- 0.702/09/2026ApprovedFALSE
- 6.01.02.02b5 = HV +/- 1.0 , a5 = +/- 0.502/09/2026ApprovedFALSE
- 6.01.02.02b6 = HV +/- 1.0 , a6 = +/- 0.202/09/2026ApprovedFALSE
- 6.01.02.02b7 = HV +/- 1.0 , a7 = +/- 0.502/09/2026ApprovedFALSE
- 6.01.02.02b8 = HV +/- 1.0 , a8 = +/- 0.502/09/2026ApprovedFALSE
- 6.01.02.02b9 = HV +/- 1.0 , a9 = +/- 0.502/09/2026ApprovedFALSE
- 6.01.02.02b10 = HV +/- 1.0 , a10 = +/- 0.502/09/2026ApprovedFALSE
- 6.01.02.02b11 = HV +/- 1.0 , a11 = +/- 0.402/09/2026ApprovedFALSE
- 6.01.02.02b12 = HV +/- 1.0 , a12 = +/- 0.302/09/2026ApprovedFALSE
- 6.01.02.02b13 = HV +/- 1.0 , a13 = +/- 0.202/09/2026ApprovedFALSE
- 6.01.02.02b14 = HV +/- 1.0 , a14 = +/- 0.1502/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field to 10 Gauss at 40mm from the RCS beamline.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +X (C) to +X (C).02/09/2026In ProcessFALSE
- 6.01.02.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to operate reliably given the cumulative radiation dose of TBD Rads it will experience over the lifetime of the EIC of >20 Years.02/09/2026In ProcessFALSE
- ESR-MAG-Q:80 EXTERNALSRequirements who's parents are in other sub-systems.
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
ESR-MAG-QLA:135 : ESR Large Aperture Quadrupole Magnet (Q_LA) (WBS 6.04.03.01.02)
- 6.02.02.03.04.02The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.02.02.03.04.02The magnet shall be require shunt resistors for beam-based alignment, TBD A at TBD GeV.02/09/2026Not ApplicableFALSE
- 6.02.02.03.04.02The magnet shall be designed to have a splitable yoke to accommodate the Vacuum beam pipe installation.02/09/2026ApprovedFALSE
- 6.02.02.03.04.02The maximum physical magnet length shall be 1.35(m).02/09/2026ApprovedFALSE
- 6.02.02.03.04.02The magnet pole tip radius shall be 104 (mm).02/09/2026ApprovedFALSE
- 6.02.02.03.04.02The magnet shall be designed to fit within the following envelope:02/09/2026ApprovedFALSE
- 6.02.02.03.04.02The maximum magnet axial dimensions shall be X = 90 (cm) and Y = 80 (cm).02/09/2026ApprovedFALSE
- 6.02.02.03.04.02The magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.04.02The magnet integrated grad field G shall be 9.7 (T).02/09/2026ApprovedFALSE
- 6.02.02.03.04.02The magnet to magnet field variability between magnets shall be less than 0.25%.02/09/2026ApprovedFALSE
- 6.02.02.03.04.02The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.04.02The field harmonic measurements shall be measured at the reference radius of 25mm.02/09/2026ApprovedFALSE
- 6.02.02.03.04.02The reference field for the measurement shall be 9.7 (T).02/09/2026ApprovedFALSE
- 6.02.02.03.04.02The magnet bore field shall have a field homogeneity in the region of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in the region.owing multipole content:02/09/2026ApprovedFALSE
- 6.02.02.03.04.02b2=1000002/09/2026ApprovedFALSE
- 6.02.02.03.04.02-2.00 < b3 < 2.00, -1.00 < a3 < 1.0002/09/2026ApprovedFALSE
- 6.02.02.03.04.02-1.75 < b4 < 1.75, -0.47 < a4 < 0.4602/09/2026ApprovedFALSE
- 6.02.02.03.04.02-0.50 < b5 < 0.50, -0.30 < a5 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.02-1.75 < b6 < 1.75, -0.20 < a6 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.02-1.00 < b7 < 1.00, -0.50 < a7 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.02-1.00 < b8 < 1.00, -0.50 < a8 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.02-1.00 < b9 < 1.00, -0.50 < a9 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.02-1.00 < b10 < 1.00, -0.20 < a10 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.02-1.00 < b11 < 1.00, -0.40 < a11 < 0.4002/09/2026ApprovedFALSE
- 6.02.02.03.04.02-1.00 < b12 < 1.00, -0.30 < a12 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.02-1.00 < b13 < 1.00, -0.20 < a13 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.02-0.30 < b14 < 0.30, -0.20 < a14 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.02-1.00 < b15 < 1.00, -0.20 < a15 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.02-1.00 < b16 < 1.00, -0.20 < a16 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +15 (C) to +50 (C).02/09/2026ApprovedFALSE
- 6.02.02.03.04.02The magnet coils shall have a maximum current leak of 10 uA during Hi-Pot test at nominal operating conditions corresponding to 1 (kV).02/09/2026ApprovedFALSE
- 6.02.02.03.04.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.04.02The magnet shall be designed with components capable to withstand a lifetime radiation dose of 1 MGy.02/09/2026ApprovedFALSE
- 6.04.03.02Infrastructure shall provide Low Conductivity Water (LCW) to/from the common supply/return header(s) with isolation valves in the tunnel to be utilized by the magnets.01/08/2026Not ApplicableFALSE
- 6.04.03.02Infrastructure shall provide Low Conductivity Water (LCW) to/from the common supply/return header(s) to be utilized by the magnets.01/08/2026Not ApplicableFALSE
- 6.04.03.02The magnet group shall provide all distribution design of the piping (or hoses) for Low Conductivity Water (LCW) from the tunnel header to the Cryomodules to be utilized by the magnets.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Accelerator Installation WBS CAM shall fund and schedule piping installation (or hosing) between the Low Conductivity Water (LCW) infrastructure and the magnets by the appropriate technical support groups.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Accelerator Installation WBS CAM shall schedule and fund cable installation from the power supply to the magnets by the appropriate technical support group.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall purchase the cables that go from the Power Supply to the magnets.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall make connections of the main winding magnet power cables at the magnet terminals and power supply ends.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall create schematics with the number of cables and connectors made to the magnet power circuit.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall provide a power supply to be utilized by the magnets.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide a terminal block with standard polarity labels to facilitate installation of the main winding magnet power cables from the Accelerator Installation WBS CAM.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide a electrical and thermal parameters to the Power Supply Group to be utilized in selecting necessary power supply needs.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Accelerator Installation WBS CAM shall schedule and fund installing cabling from the thermal switch lugs on the magnet to the Power Supply Group by the appropriate technical support group.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall purchase the cables that go from the thermal switch on the magnet to the Power Supply.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall make connections of the thermal switch cables at the magnet and Power Supply ends.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall create schematics with the number of cables and connectors made to the magnet protection circuit(s).01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide the terminal block with labeling to facilitate installation of the connection for thermal protection.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide a electrical and thermal parameters to the Power Supply Group to be utilized in selecting necessary power supply needs.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Vacuum Group shall design the beampipe integration to the magnets.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Accelerator Installation WBS CAM shall schedule and fund installing the beampipe through the magnets and installing the magnets by the appropriate technical support group.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Vacuum Group will provide temporary thermal couples to the magnets for beamline bakeout. The magnet and coil temperature shall not exceed 150 degrees F during beamline bakeout.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide analysis of potential thermally conductive paths between the magnet and beampipe.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Mechanical Design Group shall provide a girder design and CAD model to be utilized by the magnet group. They will ensure the design does not interfere with magnet or cable installation around the beampipe.01/08/2026Not ApplicableFALSE
- 6.04.03.02The BNL Magnet Group shall procure the girders for the Accelerator Installation WBS CAM to install.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Survey Group shall fiducialize the magnet based on magnetic center after they have been installed onto the girder.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide magnet design CAD models to the Mechanical Design Group to facilitate the design of the magnet girder.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Accelerator Installation WBS CAM shall schedule and fund installing the final assembled magnet girder to the tunnel by the appropriate technical support group.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Mechanical Design Group shall model the tunnel to define the required spacial location of the magnets and girders.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Survey Group will provide the arrangement location for the magnets and girders.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide analysis and approval of the magnet installations and potential interferences to the Mechanical Design Group.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Mechanical Design Group shall provide the spacial limitation between the beampipe and the magnet pole after all radiation shielding has been added.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide a terminal block to facilitate installation of the Beam Based Alignment shunt resistor/switch power cables and connections from the Accelerator Installation WBS CAM01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide a way to mount the Beam Based Alignment shunt resistor/switch chasssis from the Accelerator Installation WBS CAM01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall make connections of the Beam Based Alignment shunt resistor/switch chasssis cables at the magnet and PS ends01/08/2026Not ApplicableFALSE
ESR-MAG-QN:80 : ESR Narrow Quadrupole Magnet (QN) (WBS 6.04.03.01.02)
- ESR-MAG-QN:80 EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02.03.04.01The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be designed to have a splitable yoke.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The maximum physical magnet length shall be 0.88 m.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet pole tip radius shall be 40 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be designed to fit within the following envelope:02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The maximum magnet axial dimensions shall be X = 45 cm and Y = 45 cm.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet install center and install alignment must be within a translational value of +/- 150 (um) and a rotational alignment value of +/- 0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet-to-magnet field variability between magnets shall be less than 0.25%.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- 50 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The field harmonic measurements shall be measured at the reference radius of 25mm.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The reference integrated field for the measurement shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The integrated field over the length of the magnet at the reference radius shall meet the following harmonic multipole content:02/09/2026ApprovedFALSE
- 6.02.02.03.04.01b2=10000, a2 = N/A02/09/2026ApprovedFALSE
- 6.02.02.03.04.01-2.00 < b3 < 2.00, -1.00 < a3 < 1.0002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b4 < 1.75, -0.47 < a4 < 0.4602/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.50 < b5 < 0.50, -0.30 < a5 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b6 < 1.75, -0.20 < a6 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b7 < 1.00, -0.50 < a7 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b8 < 1.00, -0.50 < a8 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b9 < 1.00, -0.50 < a9 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b10 < 1.00, -0.20 < a10 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b11 < 1.00, -0.40 < a11 < 0.4002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b12 < 1.00, -0.30 < a12 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b13 < 1.00, -0.20 < a13 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.30 < b14 < 0.30, -0.02 < a14 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b15 < 1.00, -0.20 < a15 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b16 < 1.00, -0.20 < a16 < 0.2002/09/2026ApprovedFALSE
- 6.04.03.01.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +15 (C) to +50 (C).07/29/2025ApprovedFALSE
- 6.02.02.03.04.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
ESR-MAG-Q:120 : ESR Quadrupole Magnet (Q120) (WBS 6.04.03.02)
- 6.04.03.03.02.02The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.04.03.03.02.02The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation.02/09/2026In ProcessFALSE
- 6.04.03.03.02.02The physical magnet length shall be <1.2 m.02/09/2026ApprovedFALSE
- 6.04.03.03.02.02The magnet pole tip radius shall be 40 mm.02/09/2026In ProcessFALSE
- 6.04.03.03.02.02The magnet shall be designed to fit within the following envelope. TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.02Magnet installation tolerances, Max X = 42 cm May Y = 42 cm02/09/2026In ProcessFALSE
- 6.04.03.03.02.02The magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026In ProcessFALSE
- 6.04.03.03.02.02The magnet integrated grad field G shall be 18.9 T/m.02/09/2026In ProcessFALSE
- 6.04.03.03.02.02The magnet to magnet field variability between magnets shall be less than 0.1%.02/09/2026ApprovedFALSE
- 6.04.03.03.02.02The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).02/09/2026In ProcessFALSE
- 6.04.03.03.02.02The field harmonic measurements shall be measured at Rref=25mm.02/09/2026ApprovedFALSE
- 6.04.03.03.02.02The reference field for the measurement shall be TBD (T/m).02/09/2026In ProcessFALSE
- 6.04.03.03.02.02The magnet bore field shall have a field homogeneity in the region of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in the region.owing multipole content:02/09/2026ApprovedFALSE
- 6.04.03.03.02.02-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.02b2=1000002/09/2026ApprovedFALSE
- 6.04.03.03.02.02-2.71<b3<0.72, -2.13<a3<2.1102/09/2026ApprovedFALSE
- 6.04.03.03.02.02-3.58<b4<1.2, -0.47<a4<0.4602/09/2026ApprovedFALSE
- 6.04.03.03.02.02-0.53<b5<0.23, -0.29<a5<0.3502/09/2026ApprovedFALSE
- 6.04.03.03.02.02-1.75<b6<-1.12, -0.07<a6<0.0802/09/2026ApprovedFALSE
- 6.04.03.03.02.02-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.02-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.02-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.02-1.06<b10<-0.66, 0<a10<002/09/2026ApprovedFALSE
- 6.04.03.03.02.02-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.02-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.02-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.02-0.12<b14<-0.08, 0<a14<002/09/2026ApprovedFALSE
- 6.04.03.03.02.02-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.02-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026In ProcessFALSE
- 6.04.03.03.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026In ProcessFALSE
- 6.04.03.03.02.02The magnet shall be designed to meet the following fringe field requirements The magnet shall be designed to specifically constrain the external fringe field to 10 Gauss at TBD mm from the magnet center.02/09/2026In ProcessFALSE
- 6.04.03.03.02.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +X (C) to +X (C).02/09/2026In ProcessFALSE
- 6.04.03.03.02.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.04.03.03.02.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
ESR-MAG-QS:25 : ESR Skew Quadrupole Magnet (QS) (WBS 6.04.03.02)
- 6.04.03.03.02.01The magnet shall be a single function quadrupole with a skew field rotation.02/09/2026ApprovedFALSE
- 6.04.03.03.02.01The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.01The physical magnet length shall be <0.25 m.02/09/2026ApprovedFALSE
- 6.04.03.03.02.01The magnet model length shall be 0.25 m.02/09/2026ApprovedFALSE
- 6.04.03.03.02.01The magnet pole tip radius shall be 67.9 mm.02/09/2026ReviewedFALSE
- 6.04.03.03.02.01The magnet shall be designed to fit within the following envelope. TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.01Magnet installation tolerances TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.01The magnet install center and install alignment must be within a translational value of +/-TBD (um) and a rotational alignment value of +/- TBD (mrad).02/09/2026In ProcessFALSE
- 6.04.03.03.02.01The magnet integrated grad field G shall be 1.5 T/m.02/09/2026ReviewedFALSE
- 6.04.03.03.02.01The magnet to magnet field variability between magnets shall be less than 0.1%.02/09/2026ApprovedFALSE
- 6.04.03.03.02.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).02/09/2026In ProcessFALSE
- 6.04.03.03.02.01The harmonic reference radius at the design energy of 18 GeV shall be TBD (mm) .02/09/2026In ProcessFALSE
- 6.04.03.03.02.01The field at the reference radius at the design energy of 18 GeV shall be TBD (T/m) .02/09/2026In ProcessFALSE
- 6.04.03.03.02.01The magnet bore field shall require the following multipole content:02/09/2026In ProcessFALSE
- 6.04.03.03.02.01b1 < 1 (10^-4)02/09/2026In ProcessFALSE
- 6.04.03.03.02.01b2 = 10000 (10^-4)02/09/2026In ProcessFALSE
- 6.04.03.03.02.01b3 < 1 (10^-4)02/09/2026In ProcessFALSE
- 6.04.03.03.02.01b4 < 1 (10^-4)02/09/2026In ProcessFALSE
- 6.04.03.03.02.01b5 < 1 (10^-4)02/09/2026In ProcessFALSE
- 6.04.03.03.02.01b6 < 1 (10^-4)02/09/2026In ProcessFALSE
- 6.04.03.03.02.01b7 < 1 (10^-4)02/09/2026In ProcessFALSE
- 6.04.03.03.02.01b8 < 1 (10^-4)02/09/2026In ProcessFALSE
- 6.04.03.03.02.01b9 < 1 (10^-4)02/09/2026In ProcessFALSE
- 6.04.03.03.02.01b10 < 1 (10^-4)02/09/2026In ProcessFALSE
- 6.04.03.03.02.01b11 < 1 (10^-4)02/09/2026In ProcessFALSE
- 6.04.03.03.02.01b12 < 1 (10^-4)02/09/2026In ProcessFALSE
- 6.04.03.03.02.01b13 < 1 (10^-4)02/09/2026In ProcessFALSE
- 6.04.03.03.02.01b14 < 1 (10^-4)02/09/2026In ProcessFALSE
- 6.04.03.03.02.01b15 < 1 (10^-4)02/09/2026In ProcessFALSE
- 6.04.03.03.02.01b16 < 1 (10^-4)02/09/2026In ProcessFALSE
- 6.04.03.03.02.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026In ProcessFALSE
- 6.04.03.03.02.01The magnet shall be designed to specifically constrain the external fringe field TBD (Yes or No)02/09/2026In ProcessFALSE
- 6.04.03.03.02.01The magnet shall be designed to meet the following fringe field requirements TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.04.03.03.02.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
ESR-MAG-TFFB : ESR Fast Feed Back Corrector Magnet (T_FFB) (WBS 6.04.03.02)
ESR-MAG-TH:20 : ESR Horizontal Corrector Magnet (TH) (WBS 6.04.03.02)
- 6.02.02.03.05.01The magnet shall be designed to fit within the following envelope:02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum magnet axial dimensions shall be X = 43.2 cm and Y = 61 cm.02/09/2026ApprovedFALSE
- 6.02.02.03.05.0102/09/2026Not ApplicableFALSE
- 6.02.02.03.05.01The magnet should not be designed to limit CrossTalk requirements.02/09/2026Not ApplicableFALSE
- 6.02.02.03.05.01The magnet shall be designed to specifically constrain the external fringe field to 10 Gauss at TBD mm from the magnet axis.02/09/2026In ProcessFALSE
- 6.02.02.03.05.01The magnet coils shall pass a Hi-Pot test at nominal operating conditions corresponding to TBD (V).02/09/2026In ProcessFALSE
- ESR-MAG-TH:20 EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum physical magnet length shall be 0.2 m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The minimal magnet bore gap and width shall be 52 and 150 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet install center and install alignment must be within a translational value of +/-500 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet reference radius for field homogeneity shall be 15 (mm).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum magnet-to-magnet variability shall be 0.5%.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-500 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within reference radius at half and full field excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b15 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be designed to be cooled and sustained at an operational temperature range of +X (C) to +X (C).02/09/2026In ProcessFALSE
- 6.02.02.03.05.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be designed with components capable to withstand a lifetime radiation dose of 1 MGy.02/09/2026ApprovedFALSE
ESR-MAG-THLA:60 : ESR IR10 Horizontal Corrector Magnet (TH_LA) (WBS 6.04.03.02)
- 6.02.02.03.05.02The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The maximum physical magnet length shall be 0.6 m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The minimal magnet bore gap and width shall be 208 and 208 (mm).02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnet shall be designed to fit within the following envelope:02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The maximum magnet axial dimensions shall be X = 45 (cm) and Y = 63 (cm).02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnet install center and install alignment must be within a translational value of +/-500 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnet integrated dipole field (B) shall be 12 (mT-m).02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnet reference radius for field homogeneity shall be 17 (mm).02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The maximum magnet-to-magnet variability shall be 0.5%.02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-500 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnet field quality shall be measured within the reference radius at half and full field excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.0202/09/2026Not ApplicableFALSE
- 6.02.02.03.05.02The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.02b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.02-5 < b2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-25 < b3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-5 < b4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-25 < b5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-5 < b6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-25 < b7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-5 < b8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-25 < b9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-5 < b10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-25 < b11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-5 < b12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-25 < b13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-5 < b14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-25 < b15 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-5 < b16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +15 (C) to +50 (C).02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnet shall be designed with components capable to withstand a lifetime radiation dose of 1 MGy.02/09/2026ApprovedFALSE
ESR-MAG-THS : ESR Spin Quadrupole Horizontal Corrector Magnet (THS) (WBS 6.04.03.02)
ESR-MAG-TV:20 : ESR Vertical Corrector Magnet (TV) (WBS 6.04.03.02)
- 6.02.02.03.05.01The magnet shall be designed to fit within the following envelope:02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum magnet axial dimensions shall be X = 61 cm and Y = 43.2 cm.02/09/2026ApprovedFALSE
- 6.02.02.03.05.0102/09/2026Not ApplicableFALSE
- 6.02.02.03.05.01The magnet should not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be designed to specifically constrain the external fringe field to 10 Gauss at TBD mm from the magnet axis.02/09/2026In ProcessFALSE
- 6.02.02.03.05.01The magnet coils shall pass a Hi-Pot test at nominal operating conditions corresponding to TBD (V).02/09/2026In ProcessFALSE
- ESR-MAG-TV:20 EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum physical magnet length shall be 0.2 m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The minimal magnet bore gap and width shall be 150 and 52 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet install center and install alignment must be within a translational value of +/- 500(um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet reference radius for homogeneity shall be 17 (mm).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum magnet-to-magnet variability shall be 0.5%.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- 500 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within the reference radius at half and full excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01a1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a15 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be designed to be cooled and sustained at an operational temperature range of +X (C) to +X (C).02/09/2026In ProcessFALSE
- 6.02.02.03.05.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be designed with components capable to withstand a lifetime radiation dose of 1 MGy.02/09/2026ApprovedFALSE
ESR-MAG-TVLA:60 : ESR IR10 Vertical Corrector Magnet (TV_LA) (WBS 6.04.03.02)
- 6.02.02.03.05.02The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The maximum physical magnet length shall be 0.6 m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The minimal magnet bore gap and width shall be 208 and 208 (mm).02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnet shall be designed to fit within the following envelope:02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The maximum magnet axial dimensions shall be X = 63 (cm) and Y = 45 (cm).02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnet install center and install alignment must be within a translational value of +/- 500(um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnet integrated dipole field (B) shall be 12 (mT-m).02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnet reference radius for homoegeneity shall be 17 (mm).02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The maximum magnet-to-magnet variability shall be 0.5%.02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- 500 (um) and a rotational alignment value of +/-0.3 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnet field quality shall be measured within the reference radius at half and full excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.0202/09/2026Not ApplicableFALSE
- 6.02.02.03.05.02The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.02a1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.02-5 < a2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-25 < a3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-5 < a4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-25 < a5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-5 < a6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-25 < a7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-5 < a8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-25 < a9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-5 < a10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-25 < a11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-5 < a12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-25 < a13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-5 < a14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-25 < a125 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.02-5 < a16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +15 (C) to +50 (C).02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnet shall be designed to specifically constrain the external fringe field to 10 Gauss at TBD mm from the magnet axis.02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +X (C) to +X (C).02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.02The magnet shall be designed with components capable to withstand a lifetime radiation dose of 1 MGy.02/09/2026ApprovedFALSE
ESR-MAG-TVS : ESR Spin Quadrupole Vertical Corrector Magnet (TVS) (WBS 6.04.03.02)
ESR-MAG-QROT:114 : ESR Quadrupole Magnet (QSS3) (WBS 6.06.02.02)
- 6.04.03.03.02.03The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The physical magnet length shall be <1.14 m.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet pole tip radius shall be 67.9 mm.02/09/2026ReviewedFALSE
- 6.04.03.03.02.03The magnet shall be designed to fit within the following envelope. TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03Magnet installation tolerances TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet install center and install alignment must be within a translational value of +/-TBD (um) and a rotational alignment value of +/- TBD (mrad).02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet integrated grad field G shall be 24 T/m.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet to magnet field variability between magnets shall be less than 0.1%.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The field harmonic measurements shall be measured at Rref=25mm.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The reference field for the measurement shall be TBD (T/m).02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet bore field shall have a field homogeneity in the region of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in the region.owing multipole content:02/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03b2=1000002/09/2026ApprovedFALSE
- 6.04.03.03.02.03-2.71<b3<0.72, -2.13<a3<2.1102/09/2026ApprovedFALSE
- 6.04.03.03.02.03-3.58<b4<1.2, -0.47<a4<0.4602/09/2026ApprovedFALSE
- 6.04.03.03.02.03-0.53<b5<0.23, -0.29<a5<0.3502/09/2026ApprovedFALSE
- 6.04.03.03.02.03-1.75<b6<-1.12, -0.07<a6<0.0802/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-1.06<b10<-0.66, 0<a10<002/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-0.12<b14<-0.08, 0<a14<002/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03The magnet shall not be designed to limit CrossTalk requirements.02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet shall be designed to specifically constrain the external fringe field TBD (Yes or No)02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet shall be designed to meet the following fringe field requirements TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
ESR-MAG-QROT:122 : ESR Quadrupole Magnet (QSS1) (WBS 6.06.02.02)
- 6.04.03.03.02.03The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The physical magnet length shall be <1.22 m.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet pole tip radius shall be 67.9 mm.02/09/2026ReviewedFALSE
- 6.04.03.03.02.03The magnet shall be designed to fit within the following envelope. TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03Magnet installation tolerances TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet install center and install alignment must be within a translational value of +/-TBD (um) and a rotational alignment value of +/- TBD (mrad).02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet integrated grad field G shall be 24 T/m.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet to magnet field variability between magnets shall be less than 0.1%.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The field harmonic measurements shall be measured at Rref=25mm.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The reference field for the measurement shall be TBD (T/m).02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet bore field shall have a field homogeneity in the region of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in the region.owing multipole content:02/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03b2=1000002/09/2026ApprovedFALSE
- 6.04.03.03.02.03-2.71<b3<0.72, -2.13<a3<2.1102/09/2026ApprovedFALSE
- 6.04.03.03.02.03-3.58<b4<1.2, -0.47<a4<0.4602/09/2026ApprovedFALSE
- 6.04.03.03.02.03-0.53<b5<0.23, -0.29<a5<0.3502/09/2026ApprovedFALSE
- 6.04.03.03.02.03-1.75<b6<-1.12, -0.07<a6<0.0802/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-1.06<b10<-0.66, 0<a10<002/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-0.12<b14<-0.08, 0<a14<002/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03The magnet shall not be designed to limit CrossTalk requirements.02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet shall be designed to specifically constrain the external fringe field TBD (Yes or No)02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet shall be designed to meet the following fringe field requirements TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
ESR-MAG-QROT:138 : ESR Quadrupole Magnet (QSS4) (WBS 6.06.02.02)
- 6.04.03.03.02.03The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The physical magnet length shall be <1.38 m.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet pole tip radius shall be 67.9 mm.02/09/2026ReviewedFALSE
- 6.04.03.03.02.03The magnet shall be designed to fit within the following envelope. TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03Magnet installation tolerances TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet install center and install alignment must be within a translational value of +/-TBD (um) and a rotational alignment value of +/- TBD (mrad).02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet integrated grad field G shall be 24 T/m.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet to magnet field variability between magnets shall be less than 0.1%.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The field harmonic measurements shall be measured at Rref=25mm.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The reference field for the measurement shall be TBD (T/m).02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet bore field shall have a field homogeneity in the region of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in the region.owing multipole content:02/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03b2=1000002/09/2026ApprovedFALSE
- 6.04.03.03.02.03-2.71<b3<0.72, -2.13<a3<2.1102/09/2026ApprovedFALSE
- 6.04.03.03.02.03-3.58<b4<1.2, -0.47<a4<0.4602/09/2026ApprovedFALSE
- 6.04.03.03.02.03-0.53<b5<0.23, -0.29<a5<0.3502/09/2026ApprovedFALSE
- 6.04.03.03.02.03-1.75<b6<-1.12, -0.07<a6<0.0802/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-1.06<b10<-0.66, 0<a10<002/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-0.12<b14<-0.08, 0<a14<002/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03The magnet shall not be designed to limit CrossTalk requirements.02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet shall be designed to specifically constrain the external fringe field TBD (Yes or No)02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet shall be designed to meet the following fringe field requirements TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
ESR-MAG-QROT:188 : ESR Quadrupole Magnet (QSS5) (WBS 6.06.02.02)
- 6.04.03.03.02.03The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The physical magnet length shall be <1.88 m.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet pole tip radius shall be 67.9 mm.02/09/2026ReviewedFALSE
- 6.04.03.03.02.03The magnet shall be designed to fit within the following envelope. TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03Magnet installation tolerances TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet install center and install alignment must be within a translational value of +/-TBD (um) and a rotational alignment value of +/- TBD (mrad).02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet integrated grad field G shall be 24 T/m.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet to magnet field variability between magnets shall be less than 0.1%.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The field harmonic measurements shall be measured at Rref=25mm.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The reference field for the measurement shall be TBD (T/m).02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet bore field shall have a field homogeneity in the region of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in the region.owing multipole content:02/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03b2=1000002/09/2026ApprovedFALSE
- 6.04.03.03.02.03-2.71<b3<0.72, -2.13<a3<2.1102/09/2026ApprovedFALSE
- 6.04.03.03.02.03-3.58<b4<1.2, -0.47<a4<0.4602/09/2026ApprovedFALSE
- 6.04.03.03.02.03-0.53<b5<0.23, -0.29<a5<0.3502/09/2026ApprovedFALSE
- 6.04.03.03.02.03-1.75<b6<-1.12, -0.07<a6<0.0802/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-1.06<b10<-0.66, 0<a10<002/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-0.12<b14<-0.08, 0<a14<002/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03The magnet shall not be designed to limit CrossTalk requirements.02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet shall be designed to specifically constrain the external fringe field TBD (Yes or No)02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet shall be designed to meet the following fringe field requirements TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
ESR-MAG-QROT:197 : ESR Quadrupole Magnet (QSS2) (WBS 6.06.02.02)
- 6.04.03.03.02.03The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The physical magnet length shall be <1.97 m.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet pole tip radius shall be 67.9 mm.02/09/2026ReviewedFALSE
- 6.04.03.03.02.03The magnet shall be designed to fit within the following envelope. TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03Magnet installation tolerances TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet install center and install alignment must be within a translational value of +/-TBD (um) and a rotational alignment value of +/- TBD (mrad).02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet integrated grad field G shall be 24 T/m.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet to magnet field variability between magnets shall be less than 0.1%.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The field harmonic measurements shall be measured at Rref=25mm.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The reference field for the measurement shall be TBD (T/m).02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet bore field shall have a field homogeneity in the region of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in the region.owing multipole content:02/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03b2=1000002/09/2026ApprovedFALSE
- 6.04.03.03.02.03-2.71<b3<0.72, -2.13<a3<2.1102/09/2026ApprovedFALSE
- 6.04.03.03.02.03-3.58<b4<1.2, -0.47<a4<0.4602/09/2026ApprovedFALSE
- 6.04.03.03.02.03-0.53<b5<0.23, -0.29<a5<0.3502/09/2026ApprovedFALSE
- 6.04.03.03.02.03-1.75<b6<-1.12, -0.07<a6<0.0802/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-1.06<b10<-0.66, 0<a10<002/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-0.12<b14<-0.08, 0<a14<002/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03The magnet shall not be designed to limit CrossTalk requirements.02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet shall be designed to specifically constrain the external fringe field TBD (Yes or No)02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet shall be designed to meet the following fringe field requirements TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
ESR-MAG-QROT:87 : ESR Quadrupole Magnet (QLS3) (WBS 6.06.02.02)
- 6.04.03.03.02.03The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet shall be designed to have a splitable pole to accommodate the Vacuum beam pipe installation TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The physical magnet length shall be <0.87 m.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet pole tip radius shall be 67.9 mm.02/09/2026ReviewedFALSE
- 6.04.03.03.02.03The magnet shall be designed to fit within the following envelope. TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03Magnet installation tolerances TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet install center and install alignment must be within a translational value of +/-TBD (um) and a rotational alignment value of +/- TBD (mrad).02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet integrated grad field G shall be 24 T/m.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet to magnet field variability between magnets shall be less than 0.1%.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnetic field, center and alignment, within the magnet must be known to within a translational value of +/- TBD (um) and a rotational alignment value of +/- TBD(mrad).02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The field harmonic measurements shall be measured at Rref=25mm.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The reference field for the measurement shall be TBD (T/m).02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet bore field shall have a field homogeneity in the region of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in the region.owing multipole content:02/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03b2=1000002/09/2026ApprovedFALSE
- 6.04.03.03.02.03-2.71<b3<0.72, -2.13<a3<2.1102/09/2026ApprovedFALSE
- 6.04.03.03.02.03-3.58<b4<1.2, -0.47<a4<0.4602/09/2026ApprovedFALSE
- 6.04.03.03.02.03-0.53<b5<0.23, -0.29<a5<0.3502/09/2026ApprovedFALSE
- 6.04.03.03.02.03-1.75<b6<-1.12, -0.07<a6<0.0802/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-1.06<b10<-0.66, 0<a10<002/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-0.12<b14<-0.08, 0<a14<002/09/2026ApprovedFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03-, -02/09/2026Not ApplicableFALSE
- 6.04.03.03.02.03The magnet shall not be designed to limit CrossTalk requirements.02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet shall be designed to specifically constrain the external fringe field TBD (Yes or No)02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet shall be designed to meet the following fringe field requirements TBD02/09/2026In ProcessFALSE
- 6.04.03.03.02.03The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.04.03.03.02.03The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
ESR-MAG-THLA:60a
- 6.04.03.02The Magnet Group shall provide the requirements to the Infrastructure Group that defines the building and utilities along with associated heatload analyses for the ESR Correctors.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Infrastructure group shall provide a sufficiently cooled space within the existing RHIC tunnel that satisfies the requirements of the ESR corrector magnets.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Accelerator Installation WBS CAM shall schedule and fund cable installation from the power supply to the magnets by the appropriate technical support group.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall purchase the cables that go from the Power Supply to the magnets.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall make connections of the main winding magnet power cables at the magnet terminals and power supply ends.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall create schematics with the number of cables and connectors made to the magnet power circuit.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall provide a power supply to be utilized by the magnets.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide a terminal block with standard polarity labels to facilitate installation of the main winding magnet power cables from the Accelerator Installation WBS CAM.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide a electrical and thermal parameters to the Power Supply Group to be utilized in selecting necessary power supply needs.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Accelerator Installation WBS CAM shall schedule and fund installing cabling from the thermal switch lugs on the magnet to the Power Supply Group by the appropriate technical support group.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall purchase the cables that go from the thermal switch on the magnet to the Power Supply.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall make connections of the thermal switch cables at the magnet and Power Supply ends.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall create schematics with the number of cables and connectors made to the magnet protection circuit(s).01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide the terminal block with labeling to facilitate installation of the connection for thermal protection.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide a electrical and thermal parameters to the Power Supply Group to be utilized in selecting necessary power supply needs.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Vacuum Group shall design the beampipe integration to the magnets.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Accelerator Installation WBS CAM shall schedule and fund installing the beampipe through the magnets and installing the magnets by the appropriate technical support group.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Vacuum Group will provide temporary thermal couples to the magnets for beamline bakeout. The magnet and coil temperature shall not exceed 150 degrees F during beamline bakeout.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide analysis of potential thermally conductive paths between the magnet and beampipe.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Mechanical Design Group shall provide a girder design and CAD model to be utilized by the magnet group. They will ensure the design does not interfere with magnet or cable installation around the beampipe.01/08/2026Not ApplicableFALSE
- 6.04.03.02The BNL Magnet Group shall procure the girders for the Accelerator Installation WBS CAM to install.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Survey Group shall fiducialize the magnet based on magnetic center after they have been installed onto the girder.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide magnet design CAD models to the Mechanical Design Group to facilitate the design of the magnet girder.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Accelerator Installation WBS CAM shall schedule and fund installing the final assembled magnet girder to the tunnel by the appropriate technical support group.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Mechanical Design Group shall model the tunnel to define the required spacial location of the magnets and girders.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Survey Group will provide the arrangement location for the magnets and girders.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide analysis and approval of the magnet installations and potential interferences to the Mechanical Design Group.01/08/2026Not ApplicableFALSE
ESR-MAG-TVLA:60a
- 6.04.03.02The Magnet Group shall provide the requirements to the Infrastructure Group that defines the building and utilities along with associated heatload analyses for the ESR Correctors.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Infrastructure group shall provide a sufficiently cooled space within the existing RHIC tunnel that satisfies the requirements of the ESR corrector magnets.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Accelerator Installation WBS CAM shall schedule and fund cable installation from the power supply to the magnets by the appropriate technical support group.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall purchase the cables that go from the Power Supply to the magnets.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall make connections of the main winding magnet power cables at the magnet terminals and power supply ends.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall create schematics with the number of cables and connectors made to the magnet power circuit.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall provide a power supply to be utilized by the magnets.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide a terminal block with standard polarity labels to facilitate installation of the main winding magnet power cables from the Accelerator Installation WBS CAM.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide a electrical and thermal parameters to the Power Supply Group to be utilized in selecting necessary power supply needs.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Accelerator Installation WBS CAM shall schedule and fund installing cabling from the thermal switch lugs on the magnet to the Power Supply Group by the appropriate technical support group.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall purchase the cables that go from the thermal switch on the magnet to the Power Supply.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall make connections of the thermal switch cables at the magnet and Power Supply ends.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Power Supply Group shall create schematics with the number of cables and connectors made to the magnet protection circuit(s).01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide the terminal block with labeling to facilitate installation of the connection for thermal protection.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide a electrical and thermal parameters to the Power Supply Group to be utilized in selecting necessary power supply needs.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Vacuum Group shall design the beampipe integration to the magnets.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Accelerator Installation WBS CAM shall schedule and fund installing the beampipe through the magnets and installing the magnets by the appropriate technical support group.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Vacuum Group will provide temporary thermal couples to the magnets for beamline bakeout. The magnet and coil temperature shall not exceed 150 degrees F during beamline bakeout.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide analysis of potential thermally conductive paths between the magnet and beampipe.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Mechanical Design Group shall provide a girder design and CAD model to be utilized by the magnet group. They will ensure the design does not interfere with magnet or cable installation around the beampipe.01/08/2026Not ApplicableFALSE
- 6.04.03.02The BNL Magnet Group shall procure the girders for the Accelerator Installation WBS CAM to install.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Survey Group shall fiducialize the magnet based on magnetic center after they have been installed onto the girder.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide magnet design CAD models to the Mechanical Design Group to facilitate the design of the magnet girder.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Accelerator Installation WBS CAM shall schedule and fund installing the final assembled magnet girder to the tunnel by the appropriate technical support group.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Mechanical Design Group shall model the tunnel to define the required spacial location of the magnets and girders.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Survey Group will provide the arrangement location for the magnets and girders.01/08/2026Not ApplicableFALSE
- 6.04.03.02The Magnet Group shall provide analysis and approval of the magnet installations and potential interferences to the Mechanical Design Group.01/08/2026Not ApplicableFALSE
ESR-PS : ESR Magnet Power Supply (WBS 6.04.04)
- ESR-PS EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02The ESR magnets shall be fed by a system of power supplies matched in voltage and maximum current to the specifications and requirements of the respective magnets02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02The ESR magnet power supplies shall be capable of providing the stability the ESR needs to operate02/09/2026ApprovedFALSE
ESR-PS-D : ESR Main Dipole Magnet (D) Power Supply
- 6.02.02.04The magnet model being powered is esr-td:380, esr-td:273, esr-td:89 and esr-td:550.02/09/2026ApprovedFALSE
- 6.02.02.04The main dipole power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The main dipole power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 1600 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The main dipole power supply during a fault condition shall limit the maximum voltage of the magnet-to-ground to less than 2500 (V) for a period of 1 minute. The magnet should have sufficient design margin for this level of voltage:02/09/2026ApprovedFALSE
- 6.02.02.04The main dipole power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The main dipole power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 10 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The main dipole power supply shall provide a minimal current setpoint resolution of 18 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The main dipole power supply synchronization timing of synchronization shall be 100 (us).02/09/2026Not ApplicableFALSE
- 6.02.02.04The main dipole power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The main dipole power supply shall limit current ripple (RMS) to 10 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The main dipole power supply shall limit ripple to 1000 (ppm) in the 1 k(Hz)–8 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The main dipole power supply shall limit ripple in the 8 k(Hz)–40 k(Hz) range per the specified by figure in P-ESR-PS-main dipole.09.04.01.02/09/2026ApprovedFALSE
- 6.02.02.04nan02/09/2026ApprovedFALSE
- 6.02.02.04The main dipole power supply shall have a tunable switching frequency over a tuning range of +/- 500 (Hz).02/09/2026ApprovedFALSE
- 6.02.02.04The main dipole rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 0.3 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-TD:89.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-TD:273.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-TD:380.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-TD:550.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-Q:120 : ESR Quadrupole Magnet (Q:120) Power Supply
- 6.02.02.04The magnet model being powered is esr-q:120.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:120 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The Q:120 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 300 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:120 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The QL:120 power supply for all series connected Quadrupoles BBA will be achieved by a circuit connected across each quad magnet that will divert a percentage of the operational current defined in the technical magnet documentation. [BNL-228833-2025-TECH and EIC-ADD-TN-134]02/09/2026ApprovedFALSE
- 6.02.02.04The Q:120 power supply for individually powered quadrupoles shall be able to transition from 95% of its operational current to its operational current at 1 (Hz) without exceeding the operational setpoint current for beam-based alignment.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:120 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 10 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:120 power supply shall provide a minimal current setpoint resolution of 18 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:120 power supply synchronization timing of synchronization shall be 100 (us).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:120 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:120 power supply shall limit current ripple (RMS) to 15 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:120 power supply shall limit current ripple (RMS) to 500 (ppm) of full scale current greater than 1k(Hz).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:120 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 0.3 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-Q:120.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-Q:50 : ESR Quadrupole Magnet (Q:50) Power Supply
- 6.02.02.04The magnet model being powered is esr-q:50.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:50 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The Q:50 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 300 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:50 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:50 power supply for all series connected Quadrupoles BBA will be achieved by a circuit connected across each quad magnet that will divert a percentage of the operational current defined in the technical magnet documentation. [BNL-228833-2025-TECH and EIC-ADD-TN-134]02/09/2026ApprovedFALSE
- 6.02.02.04The Q:50 power supply for individually powered quadrupoles shall be able to transition from 95% of its operational current to its operational current at 1 (Hz) without exceeding the operational setpoint current for beam-based alignment.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:50 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 10 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:50 power supply shall provide a minimal current setpoint resolution of 18 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:50 power supply synchronization timing of synchronization shall be 100 (us).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:50 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:50 power supply shall limit current ripple (RMS) to 15 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:500 power supply shall limit current ripple (RMS) to 500 (ppm) of full scale current greater than 1k(Hz).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:50 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 0.3 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-Q:50.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-Q:60 : ESR Quadrupole Magnet (Q:60) Power Supply
- 6.02.02.04The magnet model being powered is esr-q:60.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:60 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The Q:60 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 300 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:60 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:60 power supply for all series connected Quadrupoles BBA will be achieved by a circuit connected across each quad magnet that will divert a percentage of the operational current defined in the technical magnet documentation. [BNL-228833-2025-TECH and EIC-ADD-TN-134]02/09/2026ApprovedFALSE
- 6.02.02.04The Q:60 power supply for individually powered quadrupoles shall be able to transition from 95% of its operational current to its operational current at 1 (Hz) without exceeding the operational setpoint current for beam-based alignment.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:60 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 10 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:60 power supply shall provide a minimal current setpoint resolution of 18 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:60 power supply synchronization timing of synchronization shall be 100 (us).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:60 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:60 power supply shall limit current ripple (RMS) to 15 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:60 power supply shall limit current ripple (RMS) to 500 (ppm) of full scale current greater than 1k(Hz).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:60 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 0.3 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-Q:60.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-Q:80 : ESR Quadrupole Magnet (Q:80) Power Supply
- 6.02.02.04The magnet model being powered is esr-q:80.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:80 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The Q:80 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 300 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:80 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:80 power supply for all series connected Quadrupoles BBA will be achieved by a circuit connected across each quad magnet that will divert a percentage of the operational current defined in the technical magnet documentation. [BNL-228833-2025-TECH and EIC-ADD-TN-134]02/09/2026ApprovedFALSE
- 6.02.02.04The Q:80 power supply for individually powered quadrupoles shall be able to transition from 95% of its operational current to its operational current at 1 (Hz) without exceeding the operational setpoint current for beam-based alignment.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:80 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 10 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:80 power supply shall provide a minimal current setpoint resolution of 18 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:80 power supply synchronization timing of synchronization shall be 100 (us).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:80 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:80 power supply shall limit current ripple (RMS) to 15 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:80 power supply shall limit current ripple (RMS) to 500 (ppm) of full scale current greater than 1k(Hz).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:80 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 0.3 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-Q:80.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-QLA:120 : ESR Quadrupole Magnet (QLA:120) Power Supply
- 6.02.02.04The magnet model being powered is esr-qla:120.02/09/2026ApprovedFALSE
- 6.02.02.04The QLA:120 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The QLA:120 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 300 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The QLA:120 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The QLA:120 power supply for all series connected Quadrupoles BBA will be achieved by a circuit connected across each quad magnet that will divert a percentage of the operational current defined in the technical magnet documentation. [BNL-228833-2025-TECH and EIC-ADD-TN-134]02/09/2026ApprovedFALSE
- 6.02.02.04The QLA:120 power supply for individually powered quadrupoles shall be able to transition from 95% of its operational current to its operational current at 1 (Hz) without exceeding the operational setpoint current for beam-based alignment.02/09/2026ApprovedFALSE
- 6.02.02.04The QLA:120 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 10 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The QLA:120 power supply shall provide a minimal current setpoint resolution of 18 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The QLA:120 power supply synchronization timing of synchronization shall be 100 (us).02/09/2026ApprovedFALSE
- 6.02.02.04The QLA:120 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The QLA:120 power supply shall limit current ripple (RMS) to 15 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The QLA:120 power supply shall limit current ripple (RMS) to 500 (ppm) of full scale current greater than 1k(Hz).02/09/2026ApprovedFALSE
- 6.02.02.04The QLA:120 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 0.3 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-QLA:120.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-QN:80 : ESR Narrow Quadrupole Magnet (QN:80) Power Supply
- 6.02.02.04The magnet model being powered is esr-q:80.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:80 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The Q:80 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 300 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The QN:80 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The QN:80 power supply for all series connected Quadrupoles BBA will be achieved by a circuit connected across each quad magnet that will divert a percentage of the operational current defined in the technical magnet documentation. [BNL-228833-2025-TECH and EIC-ADD-TN-134]02/09/2026ApprovedFALSE
- 6.02.02.04The QN:80 power supply for individually powered quadrupoles shall be able to transition from 95% of its operational current to its operational current at 1 (Hz) without exceeding the operational setpoint current for beam-based alignment.02/09/2026ApprovedFALSE
- 6.02.02.04The QN:80 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 10 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The QN:80 power supply shall provide a minimal current setpoint resolution of 18 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The QN:80 power supply synchronization timing of synchronization shall be 100 (us).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:80 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:80 power supply shall limit current ripple (RMS) to 15 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The Q:80 power supply shall limit current ripple (RMS) to 500 (ppm) of full scale current greater than 1k(Hz).02/09/2026ApprovedFALSE
- 6.02.02.04The Q:80 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 0.3 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-QN:80.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-QROT:114 : ESR Quadrupole Spin Rotator Magnet (QROT:114) Power Supply
- 6.02.02.04The magnet model being powered is esr-qrot:114.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:114 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:114 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 300 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:114 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:114 power supply for all series connected Quadrupoles BBA will be achieved by a circuit connected across each quad magnet that will divert a percentage of the operational current defined in the technical magnet documentation. [BNL-228833-2025-TECH and EIC-ADD-TN-134]02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:114 power supply for individually powered quadrupoles shall be able to transition from 95% of its operational current to its operational current at 1 (Hz) without exceeding the operational setpoint current for beam-based alignment.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:114 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 10 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:114 power supply shall provide a minimal current setpoint resolution of 18 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:114 power supply synchronization timing of synchronization shall be 100 (us).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:114 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:114 power supply shall limit current ripple (RMS) to 15 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:114 power supply shall limit current ripple (RMS) to 500 (ppm) of full scale current greater than 1k(Hz).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:114 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 0.3 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-QROT:114.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-QROT:122 : ESR Quadrupole Spin Rotator Magnet (QROT:122) Power Supply
- 6.02.02.04The magnet model being powered is esr-qrot:122.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:122 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:122 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 300 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:122 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:122 power supply for all series connected Quadrupoles BBA will be achieved by a circuit connected across each quad magnet that will divert a percentage of the operational current defined in the technical magnet documentation. [BNL-228833-2025-TECH and EIC-ADD-TN-134]02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:122 power supply for individually powered quadrupoles shall be able to transition from 95% of its operational current to its operational current at 1 (Hz) without exceeding the operational setpoint current for beam-based alignment.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:122 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 10 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:122 power supply shall provide a minimal current setpoint resolution of 18 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:122 power supply synchronization timing of synchronization shall be 100 (us).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:122 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:122 power supply shall limit current ripple (RMS) to 15 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:122 power supply shall limit current ripple (RMS) to 500 (ppm) of full scale current greater than 1k(Hz).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:122 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 0.3 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-QROT:122.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-QROT:138 : ESR Quadrupole Spin Rotator Magnet (QROT:138) Power Supply
- 6.02.02.04The magnet model being powered is esr-qrot:138.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:138 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:138 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 300 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:138 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:138 power supply for all series connected Quadrupoles BBA will be achieved by a circuit connected across each quad magnet that will divert a percentage of the operational current defined in the technical magnet documentation. [BNL-228833-2025-TECH and EIC-ADD-TN-134]02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:138 power supply for individually powered quadrupoles shall be able to transition from 95% of its operational current to its operational current at 1 (Hz) without exceeding the operational setpoint current for beam-based alignment.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:138 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 10 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:138 power supply shall provide a minimal current setpoint resolution of 18 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:138 power supply synchronization timing of synchronization shall be 100 (us).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:138 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:138 power supply shall limit current ripple (RMS) to 15 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:138 power supply shall limit current ripple (RMS) to 500 (ppm) of full scale current greater than 1k(Hz).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:138 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 0.3 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-QROT:138.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-QROT:188 : ESR Quadrupole Spin Rotator Magnet (QROT:188) Power Supply
- 6.02.02.04The magnet model being powered is esr-qrot:188.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:188 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:188 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 300 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:188 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:188 power supply for all series connected Quadrupoles BBA will be achieved by a circuit connected across each quad magnet that will divert a percentage of the operational current defined in the technical magnet documentation. [BNL-228833-2025-TECH and EIC-ADD-TN-134]02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:188 power supply for individually powered quadrupoles shall be able to transition from 95% of its operational current to its operational current at 1 (Hz) without exceeding the operational setpoint current for beam-based alignment.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:188 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 10 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:188 power supply shall provide a minimal current setpoint resolution of 18 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:188 power supply synchronization timing of synchronization shall be 100 (us).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:188 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:188 power supply shall limit current ripple (RMS) to 15 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:188 power supply shall limit current ripple (RMS) to 500 (ppm) of full scale current greater than 1k(Hz).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:188 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 0.3 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-QROT:188.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-QROT:197 : ESR Quadrupole Spin Rotator Magnet (QROT:197) Power Supply
- 6.02.02.04The magnet model being powered is esr-qrot:197.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:197 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:197 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 300 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:197 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:197 power supply for all series connected Quadrupoles BBA will be achieved by a circuit connected across each quad magnet that will divert a percentage of the operational current defined in the technical magnet documentation. [BNL-228833-2025-TECH and EIC-ADD-TN-134]02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:197 power supply for individually powered quadrupoles shall be able to transition from 95% of its operational current to its operational current at 1 (Hz) without exceeding the operational setpoint current for beam-based alignment.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:197 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 10 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:197 power supply shall provide a minimal current setpoint resolution of 18 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:197 power supply synchronization timing of synchronization shall be 100 (us).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:197 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:197 power supply shall limit current ripple (RMS) to 15 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:197 power supply shall limit current ripple (RMS) to 500 (ppm) of full scale current greater than 1k(Hz).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:197 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 0.3 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-QROT:197.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-QROT:87 : ESR Quadrupole Spin Rotator Magnet (QROT:87) Power Supply
- 6.02.02.04The magnet model being powered is esr-qrot:87.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:87 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:87 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 300 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:87 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:87 power supply for all series connected Quadrupoles BBA will be achieved by a circuit connected across each quad magnet that will divert a percentage of the operational current defined in the technical magnet documentation. [BNL-228833-2025-TECH and EIC-ADD-TN-134]02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:87 power supply for individually powered quadrupoles shall be able to transition from 95% of its operational current to its operational current at 1 (Hz) without exceeding the operational setpoint current for beam-based alignment.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:87 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 10 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:87 power supply shall provide a minimal current setpoint resolution of 18 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:87 power supply synchronization timing of synchronization shall be 100 (us).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:87 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:87 power supply shall limit current ripple (RMS) to 15 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:87 power supply shall limit current ripple (RMS) to 500 (ppm) of full scale current greater than 1k(Hz).02/09/2026ApprovedFALSE
- 6.02.02.04The QROT:87 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 0.3 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-QROT:87.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-QS:25 : ESR Quadrupole Magnet (QS:25) Power Supply
- 6.02.02.04The magnet model being powered is esr-qs:25.02/09/2026ApprovedFALSE
- 6.02.02.04The QS:25 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The QS:25 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 300 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The QS:25 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The QS:25 power supply for all series connected Quadrupoles BBA will be achieved by a circuit connected across each quad magnet that will divert a percentage of the operational current defined in the technical magnet documentation. [BNL-228833-2025-TECH and EIC-ADD-TN-134]02/09/2026ApprovedFALSE
- 6.02.02.04The QS:25 power supply for individually powered quadrupoles shall be able to transition from 95% of its operational current to its operational current at 1 (Hz) without exceeding the operational setpoint current for beam-based alignment.02/09/2026ApprovedFALSE
- 6.02.02.04The QS:25 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 10 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The QS:25 power supply shall provide a minimal current setpoint resolution of 18 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The QS:25 power supply synchronization timing of synchronization shall be 100 (us).02/09/2026ApprovedFALSE
- 6.02.02.04The QS:25 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The QS:25 power supply shall limit current ripple (RMS) to 15 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The QS:25 power supply shall limit current ripple (RMS) to 500 (ppm) of full scale current greater than 1k(Hz).02/09/2026ApprovedFALSE
- 6.02.02.04The QS:25 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 0.3 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-QS:25.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-SX24
- 6.02.02.04The magnet model being powered is esr-sx:24.02/09/2026ApprovedFALSE
- 6.02.02.04The SX:24 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The SX:24 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 300 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The SX:24 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The SX:24 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 100 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The SX:24 power supply shall provide a minimal current setpoint resolution of 16 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The SX:24 power supply synchronization timing of synchronization shall be 100 (us).02/09/2026ApprovedFALSE
- 6.02.02.04The SX:24 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The SX:24 power supply shall limit current ripple (RMS) to 40 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The SX:24 power supply shall limit current ripple (RMS) to 10000 (ppm) of full scale current greater than 1k(Hz).02/09/2026ApprovedFALSE
- 6.02.02.04The SX:24 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 1.7 (C).02/09/2026ApprovedFALSE
ESR-PS-SX:24 : ESR Sextupole Magnet (SX:57) Power Supply
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including allocated space for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel . (I-ESR-MAG-SX:24.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-SX:57 : ESR Sextupole Magnet (SX:114) Power Supply
- 6.02.02.04The magnet model being powered is esr-sx:57.02/09/2026ApprovedFALSE
- 6.02.02.04The SX:57 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The SX:57 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 300 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The SX:57 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The SX:57 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 100 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The SX:57 power supply shall provide a minimal current setpoint resolution of 16 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The SX:57 power supply synchronization timing of synchronization shall be 100 (us).02/09/2026ApprovedFALSE
- 6.02.02.04The SX:57 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The SX:57 power supply shall limit current ripple (RMS) to 40 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The SX:57 power supply shall limit current ripple (RMS) to 10000 (ppm) of full scale current greater than 1k(Hz).02/09/2026ApprovedFALSE
- 6.02.02.04The SX:57 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 1.7 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-SX:57.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-TD:273 : ESR Dipole Magnet (TD:273) Power Supply
- 6.02.02.04The magnet model being powered is esr-td:273.02/09/2026ApprovedFALSE
- 6.02.02.04The TD:273 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The TD:273 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 1600 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The TD:273 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The TD:273 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 50 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The TD:273 power supply shall provide a minimal current setpoint resolution of 18 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The TD:237 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The TD:273 power supply shall limit current ripple (RMS) to 10 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The TD:273 power supply shall limit ripple to 1000 (ppm) in the 1 k(Hz)–8 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The TD:273 power supply shall limit ripple in the 8 k(Hz)–40 k(Hz) range per the specified by figure in P-ESR-PS-TD:273.09.04.01.02/09/2026ApprovedFALSE
- 6.02.02.04nan02/09/2026ApprovedFALSE
- 6.02.02.04The TD:237 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 0.3 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-TD:273.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-TD:380 : ESR Dipole Magnet (TD:380) Power Supply
- 6.02.02.04The magnet model being powered is esr-td:380.02/09/2026ApprovedFALSE
- 6.02.02.04The TD:380 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The TD:380 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 1600 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The TD:380 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The TD:380 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 50 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The TD:380 power supply shall provide a minimal current setpoint resolution of 18 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The TD:380 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The TD:380 power supply shall limit current ripple (RMS) to 10 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The TD:380 power supply shall limit ripple to 1000 (ppm) in the 1 k(Hz)–8 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The TD:380 power supply shall limit ripple in the 8 k(Hz)–40 k(Hz) range per the specified by figure in P-ESR-PS-TD:380.09.04.01.02/09/2026ApprovedFALSE
- 6.02.02.04nan02/09/2026ApprovedFALSE
- 6.02.02.04The TD:380 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 0.3 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-TD:380.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-TD:550 : ESR Dipole Magnet (TD:550) Power Supply
- 6.02.02.04The magnet model being powered is esr-td:550.02/09/2026ApprovedFALSE
- 6.02.02.04The TD:550 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The TD:550 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 1600 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The TD:550 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The TD:550 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 50 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The TD:550 power supply shall provide a minimal current setpoint resolution of 18 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The TD:550 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The TD:550 power supply shall limit current ripple (RMS) to 10 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The TD:550 power supply shall limit ripple to 1000 (ppm) in the 1 k(Hz)–8 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The TD:550 power supply shall limit ripple in the 8 k(Hz)–40 k(Hz) range per the specified by figure in P-ESR-PS-TD:550.09.04.01.02/09/2026ApprovedFALSE
- 6.02.02.04nan02/09/2026ApprovedFALSE
- 6.02.02.04The TD:550 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 0.3 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for Electrical Power interface details inside of tunnel. (I-ESR-MAG-TD:550.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-TD:89 : ESR Dipole Magnet (TD:89) Power Supply
- 6.02.02.04The magnet model being powered is esr-td:89.02/09/2026ApprovedFALSE
- 6.02.02.04The TD:89 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The TD:89 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 1600 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The TD:89 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The TD:89 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 50 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The TD:89 power supply shall provide a minimal current setpoint resolution of 18 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The TD:89 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The TD:89 power supply shall limit current ripple (RMS) to 10 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The TD:89 power supply shall limit ripple to 1000 (ppm) in the 1 k(Hz)–8 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The TD:89 power supply shall limit ripple in the 8 k(Hz)–40 k(Hz) range per the specified by figure in P-ESR-PS-TD:89.09.04.01.02/09/2026ApprovedFALSE
- 6.02.02.04nan02/09/2026ApprovedFALSE
- 6.02.02.04The TD:89 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 0.3 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-TD:89.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-TH:20 : ESR Corrector Magnet (TH:20) Power Supply
- 6.02.02.04The magnet model being powered is esr-th:20.02/09/2026ApprovedFALSE
- 6.02.02.04The TH:20 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The TH:20 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 300 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The TH:20 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The TH:20 power supply shall be capable of compensating slow orbit motion with a 1/f spectrum, the required magnet current to be equivalent to +/- 5mA at 10 Hz02/09/2026ApprovedFALSE
- 6.02.02.04The TH:20 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 100 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The TH:20 power supply shall provide a minimal current setpoint resolution of 16 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The TH:20 power supply synchronization timing of synchronization shall be 100 (us).02/09/2026ApprovedFALSE
- 6.02.02.04The TH:20 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The TH:20 power supply shall limit current ripple (RMS) to 100 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The TH:20 power supply shall limit current ripple (RMS) to 10000 (ppm) of full scale current greater than 1k(Hz).02/09/2026ApprovedFALSE
- 6.02.02.04The TH:20 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 1.7 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-TH:20.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-THLA:60
- 6.02.02.04The magnet model being powered is esr-thla:60.02/09/2026ApprovedFALSE
- 6.02.02.04The THLA:60 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The THLA:60 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 300 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The THLA:60 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The THLA:60 power supply shall be capable of compensating slow orbit motion with a 1/f spectrum, the required magnet current to be equivalent to +/- 5mA at 10 Hz02/09/2026ApprovedFALSE
- 6.02.02.04The THLA:60 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 100 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The THLA:60 power supply shall provide a minimal current setpoint resolution of 16 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The THLA:60 power supply synchronization timing of synchronization shall be 100 (us).02/09/2026ApprovedFALSE
- 6.02.02.04The THLA:60 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The THLA:60 power supply shall limit current ripple (RMS) to 100 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The THLA:60 power supply shall limit current ripple (RMS) to 10000 (ppm) of full scale current greater than 1k(Hz).02/09/2026ApprovedFALSE
- 6.02.02.04The THLA:60 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 1.7 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-THLA:60.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-TV:20 : ESR Corrector Magnet (TV:20) Power Supply
- 6.02.02.04The magnet model being powered is esr-tv:20.02/09/2026ApprovedFALSE
- 6.02.02.04The TV:20 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The TV:20 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 300 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The TV:20 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The TV:20 power supply shall be capable of compensating slow orbit motion with a 1/f spectrum, the required magnet current to be equivalent to +/- 5mA at 10 Hz02/09/2026ApprovedFALSE
- 6.02.02.04The TV:20 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 100 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The TV:20 power supply shall provide a minimal current setpoint resolution of 16 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The TV:20 power supply synchronization timing of synchronization shall be 100 (us).02/09/2026ApprovedFALSE
- 6.02.02.04The TV:20 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The TV:20 power supply shall limit current ripple (RMS) to 100 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The TV:20 power supply shall limit current ripple (RMS) to 10000 (ppm) of full scale current greater than 1k(Hz).02/09/2026ApprovedFALSE
- 6.02.02.04The TV:20 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 1.7 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-TV:20.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-PS-TVLA:60
- 6.02.02.04The magnet model being powered is esr-tvla:60.02/09/2026ApprovedFALSE
- 6.02.02.04The TVLA:60 power supply shall meet all requirements to deliver the magnet operational parameters defined in the technical magnet documentation. [Document#: EIC-SEG-RSI-110]02/09/2026ApprovedFALSE
- 6.02.02.04The TVLA:60 power supply during operation shall limit the maximum voltage of the magnet-to-ground to less than 300 (V).02/09/2026ApprovedFALSE
- 6.02.02.04The TVLA:60 power supply shall provide a DC current.02/09/2026ApprovedFALSE
- 6.02.02.04The TVLA:60 power supply shall be capable of compensating slow orbit motion with a 1/f spectrum, the required magnet current to be equivalent to +/- 5mA at 10 Hz02/09/2026ApprovedFALSE
- 6.02.02.04The TVLA:60 power supply long-term stability (1 second to 10 hours) at maximum operating current shall be 100 (ppm).02/09/2026ApprovedFALSE
- 6.02.02.04The TVLA:60 power supply shall provide a minimal current setpoint resolution of 16 (Bit).02/09/2026ApprovedFALSE
- 6.02.02.04The TVLA:60 power supply synchronization timing of synchronization shall be 100 (us).02/09/2026ApprovedFALSE
- 6.02.02.04The TVLA:60 power supply setpoint and all of the PS analog readbacks shall be synchronized to the line to reduce noise.02/09/2026ApprovedFALSE
- 6.02.02.04The TVLA:60 power supply shall limit current ripple (RMS) to 100 (ppm) of full-scale current in the 0–1 k(Hz) range.02/09/2026ApprovedFALSE
- 6.02.02.04The TVLA:60 power supply shall limit current ripple (RMS) to 10000 (ppm) of full scale current greater than 1k(Hz).02/09/2026ApprovedFALSE
- 6.02.02.04The TVLA:60 rack mounted power supply and its controls rack shall be designed to be cooled and sustained at an operational temperature range of +23.9 (C) +/- 1.7 (C).02/09/2026ApprovedFALSE
- 6.02.02.04Power Supply Group shall provide design details that defines the building, rack layouts and power and low conductivity water utility requirements for power supplies and its associated subsystems.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the power supplies and its subcomponents which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure Group shall provide indoor enviromental control for the power supply buildings which satisfies the power supply equipment operating parameters.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the power supply rack and its subsystems design, including the spatial location, thermal and weight details.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the plan and funding for the procurement of the racks to house power supplies and its sub components which satisfies power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling to move and install power supply racks by the appropriate technical support group and its subsystems which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of power supplies into the racks by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each power supply rack and the freestanding equipment.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide design, funding and scheduling for installation of the AC cable tray and AC cable from the wall mount distribution to each power supply rack and the freestanding equipment, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Infustructure mechanical cooling shall provide the LCW piping design and procurement of materials from the wall distribution to connections to the power supply DC Busses which satisfies the power supply group design, including waterflow switches and one contact per switch.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each power supply DC Buss by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design and funding for procurement for each power supply UPS, including AC cable distribution from the wall mount distribution to each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable distribution by the appropriate technical support group which satisfies the power supply group design into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall shall provide funding and scheduling for the installation of UPS by the appropriate technical support group into each power supply rack.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the design details defining the DC power cable routing from the power supply and its associated subsystems into the tunnels.01/08/2026ReviewedFALSE
- 6.02.02.04Infrastructure group shall provide tunnel penetrations for DC cable and bus work which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04ASR System Installation and Final Integration shall provide funding and scheduling for installation of the AC cable from the each power supply in the building to its corresponding magnet, including termination by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related magnet interface document for magnet electrical power interface details related to the connection inside of tunnel. (I-ESR-MAG-TVLA:60.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide an "ON" status output through the MPS interface which satisfies MPS design.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall define the design and location of the magnet interlock PLCs for normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for the Machine protection interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide personal protection system interlock interface and connection pinouts.01/08/2026ReviewedFALSE
- 6.02.02.04Reference related Personnel Protection System (PSS) interface document for the PSS interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the zPSCs for all EIC Power Supplies.01/08/2026ReviewedFALSE
- 6.02.02.04Power Supply Group shall provide the magnet interlock PLCs and Modbus for all EIC normal conducting magnet(s).01/08/2026ReviewedFALSE
- 6.02.02.04Reference related controls interface document for Controls interface details. (I-ESR-CNTRL-XXX.XXX)01/08/2026ReviewedFALSE
ESR-VAC : ESR Vacuum (WBS 6.04.05)
- 6.02.02.06The stray field From any Vacuum equipment on the ESR beam shall have no adverse effect on the beam.02/09/2026ApprovedFALSE
- 6.02.02.06The magnetic permeability for vacuum equipment shall be approved by beam physics.02/09/2026ApprovedFALSE
- 6.02.02.06All hardware in vacuum shall be UHV compatible.02/09/2026ApprovedFALSE
- ESR-VAC EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02The ESR vacuum chamber shall provide sufficient horizontal and vertical aperture to accommodate; a +/-15 sigma beam, where the vertical RMS beam size is based on the emittance of a fully coupled beam, plus an additional 10 mm horizontal and 5 mm vertical margin to account for expected orbit errors.02/09/2026ApprovedFALSE
- 6.02.02.06The typical (standard) vacuum chamber aperture shall be 80 x 36 mm.02/09/2026ApprovedFALSE
- 6.02.02.06Special aperture requirements and/or aperture file shall be provided by or approved by physics.02/09/2026ApprovedFALSE
- 6.02.02The dynamic pressure around the ESR shall be consistent with a beam gas lifetime of >10[hrs] with the design currents after an integrated beam current of 1000 [A.h].02/09/2026ApprovedFALSE
- 6.02.02.06There shall be no upper pressure limit as long as the average pressure is maintained.02/09/2026ApprovedFALSE
- 6.02.02.06The average vacuum level in the ESR Arc sections after conditioning (for 1000Ahrs) shall be <5x10-9 Torr.02/09/2026ApprovedFALSE
- 6.02.02.06On 15 m on each side (or one vacuum sector) of the SRF cavities shall be processed to class ISO 5.02/09/2026ApprovedFALSE
- 6.02.02There shall be no pressure bumps in the ESR exceeding (TBD)[Torr]02/09/2026ApprovedFALSE
- 6.02.02The ESR vacuum chamber and all its components shall be designed to withstand a total synchrotron radiation load of 10 MW, considering the uneven linear load particularly related to the super-bends.02/09/2026ApprovedFALSE
- 6.02.02.05.04The ESR shall have two synchrotron light monitors (SLM) and one X-ray pin hole monitor02/09/2026In ProcessFALSE
- 6.02.02.05.04The longitudinal bunch profile monitor shall have a turn-by-turn capability based on a single bunch in the fully filled bunch train.02/09/2026In ProcessFALSE
- 6.02.02.05.04TThe SLM systems shall measure the crabbing angle, longitudinal bunch parameters, H & V beam size and global coupling.02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure a crabbing angle of 12.5 mrad with accuracy of 10 %02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the Longitudinal bunch parameters with accuracy of TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the H & V beam size with accuracy of H=?? V=?? units02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the Global coupling with accuracy of TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04One SLM port shall be located downstream of a dipole in an appropriate location in the ESR, exact location not critical.02/09/2026In ProcessFALSE
- 6.02.02.05.04The second SLM port shall be located in a complimentary location in the lattice to ensure all the necessary SLM measurements can be made. TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM light extraction port mirrors shall be good quality, having a surface finish better than 1/10 Lambda02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM light extraction port mirrors shall be water cooled to avoid image distortion.02/09/2026In ProcessFALSE
- 6.02.02.05.04There shall be an enclosed SL transport from the light extraction port to the SLM optical lab rooms. Length to be determined by the distance to optical lab room, should be minimized to reduce vibration problems.02/09/2026In ProcessFALSE
- 6.02.02.05.04The locations of the SLM optical lab rooms shall be TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The double-slit interferometer method shall be used to measure transverse beam size02/09/2026In ProcessFALSE
- 6.02.02.05.04The standard transverse resolution of an SLM using visible light shall be ~60 um02/09/2026In ProcessFALSE
- 6.02.02.05.04The resolution using the double-slit method shall equal to 10 um02/09/2026In ProcessFALSE
- 6.02.02.05.04A streak camera shall be used to measure the bunch longitudinal profiles02/09/2026In ProcessFALSE
- 6.02.02.05.04A position sensitive photo-diode will provide photon beam centroid information which shall supplement the orbit stability measurements by the BPMs02/09/2026In ProcessFALSE
- 6.02.02.05.04A GigE CCD/CMOS camera, externally triggerable with exposure times ranging from 10 nsec to 5 sec, shall be used to image the visible radiation02/09/2026In ProcessFALSE
- 6.02.02.05.04A commercially available gated camera with gate width of <2 nsec (compared to a minimum bunch spacing of 10 nsec) shall be used to detect injection oscillations and for beam studies.02/09/2026In ProcessFALSE
- 6.02.02.05.04The location of the X-ray pinhole monitoring system shall be TBD02/09/2026In ProcessFALSE
- 6.02.02.05.04The target resolution of the X-ray pin hole monitoring system shall be ~ 5 um (or as best that can be achieved with the machine parameters and commercial equipment) 5 um02/09/2026In ProcessFALSE
- 6.02.02.05.04The X-ray pin hole monitor shall provide independent measurement of the energy spread and horizontal/vertical emittance. H=V=15.4 nm02/09/2026In ProcessFALSE
- 6.02.02.05.04The X-ray pinhole photon beamline shall be equipped with gated cameras that will be employed to provide high resolution turn-by-turn profile measurements02/09/2026In ProcessFALSE
- 6.02.02.05.04Several different size pinholes sizes shall be incorporated to allow easy alignment and measurements at different beam currents and energies.02/09/2026In ProcessFALSE
- 6.02.02.05.04A pinhole assembly including tungsten slits shall provide sufficient resolution to precisely measure the beam size02/09/2026In ProcessFALSE
- 6.02.02.06The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.02/09/2026ApprovedFALSE
- 6.02.02The ESR vacuum chamber material shall be chosen such that the SR power can be intercepted by the arc chambers and in addition good radiation shielding will be provided to prevent damage to other components.02/09/2026ApprovedFALSE
- 6.02.02.06The vacuum chamber shall be able to absorb synchrotron radiation and carry away 10 MW of power.02/09/2026ApprovedFALSE
- 6.04.05The impedance of the entire ESR vacuum system, including the interaction regions in IR06 and IR08, shall allow for the bunch intensities, beam currents, and bunch numbers contained in the Master Parameter Table (MPT). [Document#:EIC-SEG-RSI-005]05/16/2025ApprovedFALSE
- 6.02.02.06The vacuum system global impedance shall be less than the impedance budget as provided by accelerator physics.02/09/2026ApprovedFALSE
- 6.02.02.06The maximum beam excursion orbit shall be TBD02/09/2026In ProcessFALSE
ESR-INST : ESR Instrumentation System (WBS 6.04.06)
- ESR-INST EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02The ESR instrumentation system shall include dual-plane Beam Position Monitors (BPMs) adjacent to each vertically focusing quadrupole. Provisions shall be made in the vacuum chamber design to install additional dual-plane BPMs at the horizontally focusing quadrupoles, if needed.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The ESR beam position monitor pick-up shall provide dual plane (horizontal and vertical) beam positional measurements.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The roll angle error of the ESR BPM pickup, given as the horizontal measurement plane defined by the BPM fiducials witrh respect to. the horizontal plane of the ESR ring shall be less than +/- 20 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The ESR BPM system shall fulfill resolution and accuracy requirements over the following two defined transverse beam position ranges with respect vacuum chamber center, referenced to the mechanical fiducials on the BPM pickups.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The beam position monitor pick-up assembly shall operate in ultra-high vacuum.02/09/2026ApprovedFALSE
- 6.02.02The ESR BPMs shall have turn-by-turn orbit measurement capability based on a single, remotely selectable bunch out of the fully filled bunch train to enable injection optimization.02/09/2026ApprovedFALSE
- 6.02.02.05.01.01The ESR Beam Position Monitor (BPM) Electronics shall have the following capabilities defined for the low intensity pilot injection energies and high intensity collision energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR Beam Position Monitor (BPM) Electronics shall have the following time resolutions for data refresh defined for the beam energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]:02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM Electronics shall have the following time resolutions for data logging defined for the beam energies:02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM Electronics shall have the following measurement resolutions defined for beam energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]:02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM Electronics shall be designed to operate reliability with capability to withstand a lifetime radiation dose of TBD MGy.02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM Electronics shall be designed to operate in an ambient temperature degree from X (C) to X (C).02/09/2026ReviewedFALSE
- 6.02.02.05.01.02The ESR beam position monitor pick-up shall provide dual plane (horizontal and vertical) beam positional measurements.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The roll angle error of the ESR BPM pickup, given as the horizontal measurement plane defined by the BPM fiducials witrh respect to. the horizontal plane of the ESR ring shall be less than +/- 20 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The ESR BPM system shall fulfill resolution and accuracy requirements over the following two defined transverse beam position ranges with respect vacuum chamber center, referenced to the mechanical fiducials on the BPM pickups.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The beam position monitor pick-up assembly shall operate in ultra-high vacuum.02/09/2026ApprovedFALSE
- 6.02.02The ESR instrumentation system shall include a beam current monitor to measure average beam current.02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer shall have the ability to measure the average beam current over a range of 0.15 (mA) to 2500 (mA).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer shall provide an average current measurement with a resolution of less than 5 (uA /√Hz).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer measurement drift tolerance shall be less than 10 (uA) over 1 (hr).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer system average beam current measurement shall have an absolute accuracy of better than +/- 1 (%) at 250 (mA).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer system average beam current measurement shall have an absolute accuracy between the range of 250 (mA) to 2.5 (A) at +/- 0.5 (%).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer system shall operate in ultra-high vacuum.02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer Calibration system shall be capable of providing an equivalent ESR DC current over the full operating range within 0.25% over the beam current range of 0.15 (mA) to 2500 (mA).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer system shall have a remote controlled self calibration system02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer measured average current shall be archived at a rate of 1 Hz02/09/2026ApprovedFALSE
- 6.02.02The ESR instrumentation system shall include a system to measure individual bunch charges and bunch pattern.02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR fast charge monitor shall be capable of measuring bunch patterns ranging from a single bunch, to a filled ring with 1,160 bunches.02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR fast charge monitor shall be capable of measuring witness bunch for 1/e for a fixed gain over the beam lifetime.02/09/2026ApprovedFALSE
- 6.02.02The ESR instrumentation system shall include a system to measure transverse beam profiles.02/09/2026ApprovedFALSE
- 6.02.02.05.05.01The transverse feedback systems shall be capable of counteracting single-bunch rise times of 1 ms02/09/2026In ProcessFALSE
- 6.02.02.05.05.01Placeholder, Input needed TBD02/09/2026In ProcessFALSE
- 6.02.02.05.05.01Placeholder, Input needed TBD02/09/2026In ProcessFALSE
- 6.02.02The ESR instrumentation system shall include a system to measure longitudinal beam profiles.02/09/2026ApprovedFALSE
- 6.02.02.05.05.02The requirements for longitudinal feedback are ??? TBD02/09/2026In ProcessFALSE
- 6.02.02.05.05.02The Longitudinal feedback systems shall be capable of counteracting single-bunch rise times of 1 ms02/09/2026In ProcessFALSE
- 6.02.02The ESR longitudinal bunch profile monitor needs turn-by-turn capability based on a single bunch in the fully filled bunch train to allow timing and energy adjustment for injection optimization.02/09/2026ApprovedFALSE
- 6.02.02.05.05.02The requirements for longitudinal feedback are ??? TBD02/09/2026In ProcessFALSE
- 6.02.02.05.05.02The Longitudinal feedback systems shall be capable of counteracting single-bunch rise times of 1 ms02/09/2026In ProcessFALSE
- 6.02.02The ESR instrumentation system shall include system to measure H & V betatron tunes.02/09/2026ApprovedFALSE
- 6.02.02.05.03Stripline kickers (H & V) shall be used to excite the beam so tunes can be measured using turn-by-turn BPM data.02/09/2026In ProcessFALSE
- 6.02.02.05.03The magnitude of the kick required for the horizontal kicker shall be TBD units02/09/2026In ProcessFALSE
- 6.02.02.05.03The magnitude of the kick required for the vertical kicker shall be TBD units02/09/2026In ProcessFALSE
- 6.02.02.05.03The location of the tune meter kicker striplines in the ESR shall be TBD units02/09/2026In ProcessFALSE
- 6.02.02.05.03The kicker waveform (risetime and shape) requirements shall be TBD units02/09/2026In ProcessFALSE
- 6.02.02.05.03The impedance of the kicker beamline device shall be approved by beam Physics.02/09/2026In ProcessFALSE
- 6.02.02The ESR instrumentation system shall facilitate all required feedback systems (slow transverse, longitudinal and transverse bunch-by-bunch)02/09/2026ApprovedFALSE
- 6.02.04.02The slow orbit feedback correction output rate shall be 10 Hz02/09/2026In ProcessFALSE
- 6.02.04.02The slow orbit feedback BPM data averaging period shall be tbd -02/09/2026In ProcessFALSE
- 6.02.02.05.05.01The transverse slow feedback system bandwidth shall bs 10 Hz02/09/2026In ProcessFALSE
- 6.02.02The ESR instrumentation system shall include beam loss monitor system with detectors located only at select regions of the ESR.02/09/2026ApprovedFALSE
- 6.02.02.05.02BLM shall be needed to needed to protect sensitive equipment.02/09/2026In ProcessFALSE
- 6.02.02.05.02The number of BLM installed in the ESR shall be TBD ea02/09/2026In ProcessFALSE
- 6.02.02.05.02BLM shall be installed at the following locations in the ESR TBD02/09/2026In ProcessFALSE
- 6.02.02.05.02The sensitivity of the BLM detectors shall be TBD units?02/09/2026In ProcessFALSE
- 6.02.02.05.02Where possible existing RHIC BLM's can be relocated to identify ESR & HSR losses02/09/2026In ProcessFALSE
- 6.02.02.05.02The response time from loss detection to abort shall be TBD us02/09/2026In ProcessFALSE
ESR-INST-BCM : ESR Instrumentation Bunch Charge and Bunch Pattern Monitor (WBS 6.04.06)
ESR-INST-BLM : ESR Instrumentation Beam Loss Monitor (WBS 6.04.06)
- ESR-INST-BLM EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02.05.02BLM shall be needed to needed to protect sensitive equipment.02/09/2026In ProcessFALSE
- 6.02.02.05.02The number of BLM installed in the ESR shall be TBD ea02/09/2026In ProcessFALSE
- 6.02.02.05.02BLM shall be installed at the following locations in the ESR TBD02/09/2026In ProcessFALSE
- 6.02.02.05.02The sensitivity of the BLM detectors shall be TBD units?02/09/2026In ProcessFALSE
- 6.02.02.05.02Where possible existing RHIC BLM's can be relocated to identify ESR & HSR losses02/09/2026In ProcessFALSE
- 6.02.02.05.02The response time from loss detection to abort shall be TBD us02/09/2026In ProcessFALSE
ESR-INST-BPM : ESR Instrumentation Beam Postion Monitor System (WBS 6.04.06)
ESR-INST-BPM-ELEC : ESR Instrumentation Beam Postion Monitor (WBS 6.04.06)
- 6.02.02.05.01.01The ESR BPM Electronics shall provide a turn-by-turn measurement which is defined as a range of 1 (us) to the revolution period of bunches combined.02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM Electronics for the first 20 BPMs after injection shall be capable of measuring individual bunch positions to minimize betatron oscillations of the newly injected bunches.02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM electronics shall be capable of delivering an array of at least 1024 consecutive single-turn position measurements at a continuous rate of 1 (Hz).02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM electronics shall be capable of delivering average beam orbit measurements at a continuous rate of 1 (Hz).02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM electronics shall be capable of delivering bunch-by-bunch beam orbit measurements at a continuous rate of 1 (Hz).02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM electronics shall be capable of bunch lifetime (1/e) measurements for the 2 non-colliding bunches during the 2.5 minute bunch duration.02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM electronics shall be capable of delivering fast orbit feedback measurements at a continuous rate of 1 (kHz).02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM electronics shall be capable of delivering slow orbit feedback measurements at a continuous rate of 1 (Hz).02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM electronics shall be capable of logging an array of at least TBD consecutive single-turn position measurements at a continuous rate of TBD Hz.02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM electronics shall be capable of logging average beam orbit measurements at a continuous rate of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.02.05.01.01The ESR BPM electronics shall be capable of logging bunch-by-bunch beam orbit measurements at a continuous rate of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.02.05.01.01The ESR BPM electronics shall be capable of logging bunch lifetime (1/e) measurements during the XXX minute bunch duration.02/09/2026In ProcessFALSE
- 6.02.02.05.01.01The ESR BPM electronics shall be capable of logging fast orbit feedback measurements at a continuous rate of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.02.05.01.01The ESR BPM electronics shall be capable of logging slow orbit feedback measurements at a continuous rate of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.02.05.01.01For pilot bunches the ESR BPM electronics shall have the following measurement resolutions defined for beam energies:02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The BPM Electronics shall have a measurement range grater than or equal to 2 (nC).02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The BPM Electronics shall have a single turn measurement horizontal and vertical resolution greater than or equal to (100um) TBD (RMS).02/09/2026In ProcessFALSE
- 6.02.02.05.01.01The BPM Electronics shall have an average orbit measurement resolution over 1 second greater than or equal to (30um) TBD (RMS).02/09/2026In ProcessFALSE
- 6.02.02.05.01.01The BPM Electronics shall have an reproducibility from run to run greater than or equal to (30um) TBD (RMS).02/09/2026In ProcessFALSE
- 6.02.02.05.01.01The BPM electronics measurement drift due to thermal variations (0.5hrs) shall be no greater than 50 (µm).02/09/2026ReviewedFALSE
- 6.02.02.05.01.01For newly injected low charge refill bunches the ESR BPM electronics shall have the following measurement resolutions defined for beam energies:02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The BPM Electronics shall have a measurement range grater than or equal to 2 (nC).02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The BPM Electronics shall have a single turn measurement horizontal and vertical resolution resolution greater than or equal to (H=50 V=10 um) TBD (RMS).02/09/2026In ProcessFALSE
- 6.02.02.05.01.01The BPM Electronics shall have an average orbit measurement resolution over 1 second greater than or equal to TBD (RMS).02/09/2026In ProcessFALSE
- 6.02.02.05.01.01The BPM Electronics shall have an reproducibility from run to run greater than or equal to TBD (RMS).02/09/2026In ProcessFALSE
- 6.02.02.05.01.01The BPM electronics measurement drift due to thermal variations (0.5hrs) shall be no greater than 10 (µm).02/09/2026ReviewedFALSE
- 6.02.02.05.01.01For newly injected high charge refill bunches the ESR BPM electronics shall have the following measurement resolutions defined for beam energies:02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The BPM Electronics shall have a measurement range between 7 to 28 (nC).02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The BPM Electronics shall have a single turn measurement horizontal and vertical resolution resolution greater than or equal to (H=50 V=10 um) TBD (RMS).02/09/2026In ProcessFALSE
- 6.02.02.05.01.01The BPM Electronics shall have an average orbit measurement resolution over 1 second greater than or equal to TBD (RMS).02/09/2026In ProcessFALSE
- 6.02.02.05.01.01The BPM Electronics shall have an reproducibility from run to run greater than or equal to TBD (RMS).02/09/2026In ProcessFALSE
- 6.02.02.05.01.01The BPM electronics measurement drift due to thermal variations (0.5hrs) shall be no greater than 5 (µm).02/09/2026ReviewedFALSE
- 6.02.02.05.01.01For stored beam low charge refill bunches the ESR BPM electronics shall have the following measurement resolutions defined for beam energies:02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The BPM Electronics shall have a measurement range grater than or equal to 2 (nC).02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The BPM Electronics shall have a single turn measurement horizontal and vertical resolution resolution greater than or equal to (30um) TBD (RMS).02/09/2026In ProcessFALSE
- 6.02.02.05.01.01The BPM Electronics shall have an average orbit measurement resolution over 1 second greater than or equal to TBD (RMS).02/09/2026In ProcessFALSE
- 6.02.02.05.01.01The BPM Electronics shall have an reproducibility from run to run greater than or equal to TBD (RMS).02/09/2026In ProcessFALSE
- 6.02.02.05.01.01The BPM electronics measurement drift due to thermal variations (0.5hrs) shall be no greater than 30 (µm).02/09/2026ReviewedFALSE
- 6.02.02.05.01.01For stored beam high charge refill bunches the ESR BPM electronics shall have the following measurement resolutions defined for beam energies:02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The BPM Electronics shall have a measurement range between 7 to 28 (nC).02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The BPM Electronics shall have a single turn measurement horizontal and vertical resolution resolution greater than or equal to (10 um) TBD (RMS).02/09/2026In ProcessFALSE
- 6.02.02.05.01.01The BPM Electronics shall have an average orbit measurement resolution over 1 second greater than or equal to (5um) TBD (RMS).02/09/2026In ProcessFALSE
- 6.02.02.05.01.01The BPM Electronics shall have an reproducibility from run to run greater than or equal to (5um) TBD (RMS).02/09/2026In ProcessFALSE
- 6.02.02.05.01.01The BPM electronics measurement drift due to thermal variations (0.5hrs) shall be no greater than 10 (µm).02/09/2026ReviewedFALSE
- 6.04.06.01Instrumentation Group shall provide design details that defines the building, rack layouts and power and LCW utilities for beam position monitor electronics and its associated subsystems.09/24/2025In ProcessFALSE
- 6.04.06.01Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the beam position monitor electronics and its subcomponents which satisfies the Instrumentation Group design.09/24/2025In ProcessFALSE
- 6.04.06.01Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the beam position monitor electronics and its subcomponents which satisfies the Instrumentation Group design.09/24/2025In ProcessFALSE
- 6.04.06.01Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the beam position monitor electronics and its subcomponents which satisfies the Instrumentation Group design.09/24/2025In ProcessFALSE
- 6.04.06.01Infrastructure Group shall provide indoor enviromental control for the beam position monitor electronic buildings which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.01Instrumentation Group shall provide the beam position monitor electronic rack and its subsystems design, including the spacial location, thermal and weight details.09/24/2025In ProcessFALSE
- 6.04.06.01Instrumentation Group shall provide the plan and funding for the procurement of the racks to house beam position monitor electronics and its sub components which satisfies the design.09/24/2025In ProcessFALSE
- 6.04.06.01ASR System Installation and Final Integration shall provide funding and scheduling to move and install beam position monitor electronic racks by the appropriate technical support group and its subsystems which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.01ASR System Installation and Final Integration shall provide funding and scheduling for the installation of beam position monitor electronics into the racks by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.01Instrumentation Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each beam position monitor electronic rack.09/24/2025In ProcessFALSE
- 6.04.06.01ASR System Installation and Final Integration shall provide funding and scheduling for the design and AC cable tray to contain the AC cable distribution from the wall mount distribution to each beam position monitor electronic rack.01/08/2026In ProcessFALSE
- 6.04.06.01ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each beam position monitor electronic rack by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.01Instrumentation Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.09/24/2025In ProcessFALSE
- 6.04.06.01Infrastructure Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.01ASR System Installation and Final Integration shall provide funding and scheduling for the LCW piping design and procurement of materials from the wall distribution to connections to the beam position monitor electronic cooling loops which satisfies the Instrumentation Group design, including waterflow switches and one contact per switch.01/08/2026In ProcessFALSE
- 6.04.06.01ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each beam position monitor electronic DC Buss by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.01Instrumentation Group shall provide the design and funding for procurement for each beam position monitor electronic UPS, including AC cable distribution from the wall mount distribution to each beam position monitor electronic rack.09/24/2025In ProcessFALSE
- 6.04.06.01ASR System Installation and Final Integration shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the Instrumentation Group design into each beam position monitor electronic rack.01/08/2026In ProcessFALSE
- 6.04.06.01Instrumentation Group shall provide the design details defining the signal cable routing from the beam position monitor electronic and its associated subsystems into the tunnels.09/24/2025In ProcessFALSE
- 6.04.06.01Infrastructure group shall provide tunnel penetrations for signal cables which satisfies the Instrumentation Group design.09/24/2025In ProcessFALSE
- 6.04.06.01Reference related beam position monitor interface document for signal cable termination iterface details inside of tunnel. (I-ESR-INST-BPM-PU.XX)09/24/2025In ProcessFALSE
- 6.04.06.01Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor beam position monitor electronic status.09/24/2025In ProcessFALSE
- 6.04.06.01Instrumentation Group shall provide output from the MPS interface the data which satisfies MPS design.09/24/2025In ProcessFALSE
- 6.04.06.01Reference related controls interface document for Controls interface signal details. (I-ESR-CNTRL-XXX.XX)09/24/2025In ProcessFALSE
- ESR-INST-BPM-ELEC EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02.05.01.01The ESR Beam Position Monitor (BPM) Electronics shall have the following capabilities defined for the low intensity pilot injection energies and high intensity collision energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR Beam Position Monitor (BPM) Electronics shall have the following time resolutions for data refresh defined for the beam energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]:02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM Electronics shall have the following time resolutions for data logging defined for the beam energies:02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM Electronics shall have the following measurement resolutions defined for beam energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]:02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM Electronics shall be designed to operate reliability with capability to withstand a lifetime radiation dose of TBD MGy.02/09/2026ReviewedFALSE
- 6.02.02.05.01.01The ESR BPM Electronics shall be designed to operate in an ambient temperature degree from X (C) to X (C).02/09/2026ReviewedFALSE
ESR-INST-BPM-PU : ESR Instrumentation Beam Postion Monitor Pick-up (WBS 6.04.06)
- 6.02.02.05.01.02The first ESR 20 BPMs downstream of injection shall have the capability to measure the position of injected bunches, in the presence of already circulating bunches that are spaced ~10.15 (ns) apart.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The ESR BPM system shall have single-turn / turn-by-turn trajectory (TbT) measurements at a rate of 12 (us) measurement (averaging) time with turns separated based on the 1 (μs) abort gap.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The ESR BPM system shall have Closed Orbit (CO) measurements for beam orbit feedback and for day-to-day orbit correction purposes, polarization optimization, trouble shooting, etc.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The ESR BPM system shall have Closed Orbit (CO) measurements averaging over n= TBD1 Turns or TBD1 (s).02/09/2026In ProcessFALSE
- 6.02.02.05.01.02The ESR BPMs shall have +/- 3 (mm) horizontal and vertical beam position range in the 80 (mm) ×36 (mm) chamber for position measurements in luminosity (LUMI) and fill (FILL) operations, and for Beam-Based Alignment (BBA) measurements.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The ESR BPMs shall have +/- 10 (mm) horizontal and vertical beam position range in the 80 (mm) ×36 (mm) chamber for position measurements in machine commissioning (COMM) operations.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The resolution, RMS, short term (ns, µs time scales) of the ESR BPMs shall be ≤ 100 (μm) for position measurements in single-bunch / bunch-by-bunch (BbB) and single-turn / turn-by-turn trajectory (TbT) modes during machine commissioning (COMM) operation.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The resolution, RMS, short term (ns, µs time scales) of the first 20 ESR BPMs after injection shall be ≤ 15 (μm) for position measurements in single-bunch / bunch-by-bunch (BbB) during ESR luminosity (LUMI) operation.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The resolution, RMS, short term (ns, µs time scales) of the ESR BPMs shall be ≤ 30 (μm) for position measurements in single-turn / turn-by-turn trajectory (TbT) modes in ESR luminosity (LUMI) operation.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The ESR resolution, RMS, short term (ns, µs time scales) of the ESR BPMs shall be ≤ 5 (μm) for position measurements in Closed Orbit (CO) mode in ESR luminosity (LUMI) operation.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The resolution, RMS, short term (ns, µs time scales) of the ESR BPMs shall be ≤ 2 (μm) for position measurements in Closed Orbit (CO) mode when performing ESR Beam Based Alignment (BBA) measurements.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The allowable measurement drift of the ESR BPMs shall be ≤ +/-1 (μm) in Closed Orbit (CO) mode in ESR luminosity (LUMI) operation with a time window of 1 (s).02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The allowable measurement drift of the ESR BPMs shall be ≤ +/-30 (μm) in Closed Orbit (CO) mode in ESR fill (FILL) operation with a time window of ~30 (min).02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The allowable measurement drift of the ESR BPMs shall be ≤ +/-5 (μm) in Closed Orbit (CO) mode in ESR luminosity (LUMI) operation within the store ~8 (hours).02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The scaling accuracy of the ESR BPMs shall be ≤ +/- 100 (μm) in the +/-3 (mm) measurement range defined for fill (FILL), luminosity (LUMI), and Beam Based Alignment (BBA) operations.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The scaling accuracy of the ESR BPMs shall be ≤ +/- 300 (μm) in the +/-10 (mm) range defined for the beam commissioning (COMM) operation.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The mechanical center of the ESR Beam Position Monitor Pickups, i.e., the horizontal and vertical position alignment tolerances with respect to its fiducials shall be known to a certainty within +/- 200 (um).02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The ESR beam position monitor pick-up mechanical center x-y offset alignment tolerances with respect to its fiducials to the nearby quad magnetic center shall be ≤ TBD1 (um).02/09/2026In ProcessFALSE
- 6.02.02.05.01.02The ESR beam position monitor pick-up mechanical roll alignment tolerances with respect to its fiducials to the nearby quad magnetic center shall be ≤ TBD1 (mrad).02/09/2026In ProcessFALSE
- 6.02.02.05.01.02Wakefields and beam impedance of the ESR Beam Position Monitor Pickup design shall be meet the beam physics needs, with the geometric loss faction being below 2e-4 (V/pC) for 7 (\mm) bunch length and any strong eigen-resonances above approximately 15 (GHz).02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The ESR beam position monitor pick-ups assembly shall be a radiation hardened device.02/09/2026ApprovedFALSE
- 6.04.06.01Instrumentation Group shall provide design details that defines the mechanical connection for beam position monitor button to the beam position monitor pick-up assembly.01/08/2026ReviewedFALSE
- 6.04.06.01Instrumentation Group shall provide thermal design limits for the beam position monitor pick-up assembly deformation due to thermal exposure.01/08/2026ReviewedFALSE
- 6.04.06.01Mechanical engineering group shall define the design details for beam position monitor pickup assembly to satisfy the instrumentation thermal regulation design.01/08/2026ReviewedFALSE
- 6.04.06.01Vacuum group shall provide provisions to incorporate the beam position monitor pick-up assembly which satisfies the instrumentation and mechanical Group design into the beamline.01/08/2026ReviewedFALSE
- 6.04.06.01Instrumentation Group shall provide the BPM buttons to be installed onto the beam position monitor pick-up assembly01/08/2026ReviewedFALSE
- 6.04.06.01The physics group shall indicate the location of the beam position monitor pick-up assembly in the lattice designated by a marker.01/08/2026ReviewedFALSE
- 6.04.06.01Vacuum group shall define the installation details for the mechanical connection of beam position monitor pick-up assembly to the beamline.01/08/2026ReviewedFALSE
- 6.04.06.01Vacuum group shall install the beam position monitor pick-up assembly into the vacuum chamber assembly.01/08/2026ReviewedFALSE
- 6.04.06.01Physics Group shall provide the expected radiation dose in its installation location and if required the physics design of the radiation shielding for the beam position monitor pick-up assembly and its associated subsystems to mitigate exposure.01/08/2026ReviewedFALSE
- 6.04.06.01Instrumentation Group shall provide radiation design limits for the beam position monitor and cable radiation hardness and/or sheilding required to mitigate damage from the expected radiation dose.01/08/2026ReviewedFALSE
- 6.04.06.01Instrumentation Group shall provide design details that defines the signal cable connection for beam position monitor pick-up assembly and its associated subsystems.01/08/2026ReviewedFALSE
- 6.04.06.01ASR System Installation and Final Integration shall provide funding and scheduling to connect the beam position monitor required signal cable by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026ReviewedFALSE
- 6.04.06.01Reference related beam position monitor electronics interface document for signal cable routing and installation interface details inside of tunnel. (I-ESR-INST-BPM-ELEC.XX)01/08/2026ReviewedFALSE
- 6.04.06.01Instrumentation Group shall provide thermal design details for beam position monitor buttons installed into the beam position monitor pick-up assembly.01/08/2026ReviewedFALSE
- 6.04.06.01Vacuum group shall incorporate the defined thermal design limits for the beam position monitor pick-up assembly into its bakeout procedure for the ESR beamline which satisfies the Instrumentation Group design.01/08/2026ReviewedFALSE
- 6.04.06.01Vacuum group shall define the cleaniness and installation details for the mechanical connection of the beam position monitor pick-up assembly to the beamline.01/08/2026ReviewedFALSE
- 6.04.06.01Instrumentation Group shall provide funding to insure cleanliness installation of the beam position monitor pick-up design by the appropriate technical support group which satisfies the Vacuum Group design.01/08/2026ReviewedFALSE
- ESR-INST-BPM-PU EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02.05.01.02The ESR beam position monitor pick-up shall provide dual plane (horizontal and vertical) beam positional measurements.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The ESR BPM system shall fulfill resolution and accuracy requirements over the following two defined transverse beam position ranges with respect vacuum chamber center, referenced to the mechanical fiducials on the BPM pickups.02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The roll angle error of the ESR BPM pickup, given as the horizontal measurement plane defined by the BPM fiducials witrh respect to. the horizontal plane of the ESR ring shall be less than +/- 20 (mrad).02/09/2026ApprovedFALSE
- 6.02.02.05.01.02The beam position monitor pick-up assembly shall operate in ultra-high vacuum.02/09/2026ApprovedFALSE
ESR-INST-DCCT : ESR Instrumentation Current and Charge Monitor (WBS 6.04.06)
- 6.02.02.05.03The ESR DC Current Transformer beamline device impedance shall be approved by beam physics.02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer digitizer rate shall be 720 (Hz) and stored in an array of 1 (s) duration for post mortum use.02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer shall be a radiation hardened device.02/09/2026ApprovedFALSE
- ESR-INST-DCCT EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02.05.03The ESR DC Current Transformer shall have the ability to measure the average beam current over a range of 0.15 (mA) to 2500 (mA).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer shall provide an average current measurement with a resolution of less than 5 (uA /√Hz).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer measurement drift tolerance shall be less than 10 (uA) over 1 (hr).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer system average beam current measurement shall have an absolute accuracy of better than +/- 1 (%) at 250 (mA).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer system average beam current measurement shall have an absolute accuracy between the range of 250 (mA) to 2.5 (A) at +/- 0.5 (%).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer system shall operate in ultra-high vacuum.02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer system shall have a remote controlled self calibration system02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer Calibration system shall be capable of providing an equivalent ESR DC current over the full operating range within 0.25% over the beam current range of 0.15 (mA) to 2500 (mA).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR DC Current Transformer measured average current shall be archived at a rate of 1 Hz02/09/2026ApprovedFALSE
ESR-INST-DCCT-CM
- 6.04.06.02Instrumentation Group shall provide design details that defines the location limitations and the mechanical connection for the DC current transformer assembly and its associated subsystems.01/08/2026ReviewedFALSE
- 6.04.06.02The physics group shall indicate the location of the DC current transformer in the lattice designated by a marker that satisfies the instrumentation groups design limits01/08/2026ReviewedFALSE
- 6.04.06.02Vacuum group shall define the installation details for the mechanical connection for DC current transformer assembly and its associated subsystems to the vacuum beamline.01/08/2026ReviewedFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling to install DC current transformer by the appropriate technical support group and its subsystems which satisfies the Vacuum Group design.01/08/2026ReviewedFALSE
- 6.04.06.02Instrumentation Group shall provide radiation design limits for the DC current transformer assembly and its associated subsystems.01/08/2026ReviewedFALSE
- 6.04.06.02Physics Group shall provide the expected radiation dose in its installation location and if required the physics design of the radiation shielding for the DC Current Transformer and its associated subsystems to mitigate exposure.01/08/2026ReviewedFALSE
- 6.04.06.02Mechanical engineering group shall define the installation details of the required radiation shielding design for the DC current transformer assembly and its associated subsystems to mitigate exposure which satisfies the Physics Group design.01/08/2026ReviewedFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling to install DC current transformer required radiation shielding design by the appropriate technical support group which satisfies the Vacuum Group design.01/08/2026ReviewedFALSE
- 6.04.06.02Instrumentation Group shall provide thermal design limits and required mitigation design for the DC current transformer assembly and its associated subsystems exposure01/08/2026ReviewedFALSE
- 6.04.06.02Mechanical engineering group shall define the installation details for DC current transformer temperature control design.01/08/2026ReviewedFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling to install DC current transformer temperature control design by the appropriate technical support group which satisfies the Vacuum Group design.01/08/2026ReviewedFALSE
- 6.04.06.02Instrumentation Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.04.06.02Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the Instrumentation Group design.01/08/2026ReviewedFALSE
- 6.04.06.02Infustructure mechanical cooling shall provide the piping design and procurement of materials from the cooling water distribution to connections to the DC current transformer cooling loops which satisfies the Instrumentation Group design.01/08/2026ReviewedFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling for the installation of piping from the cooling water distribution to each DC current transformer cooling loops by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026ReviewedFALSE
- 6.04.06.02Instrumentation Group shall provide design details that defines the signal cable connection for DC current transformer assembly and its associated subsystems.01/08/2026ReviewedFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling to connect the DC curent transformer required signal cable by the appropriate technical support group which satisfies the Vacuum Group design.01/08/2026ReviewedFALSE
- 6.04.06.02Reference related DC Current Transformer electronics interface document for signal cable routing interface details inside of tunnel. (I-ESR-INST-DCCT-ELEC.XX)01/08/2026ReviewedFALSE
- 6.05.05.03Instrumentation Group shall provide thermal design parameters for the DC current transformer assembly and its associated subsystems exposure.01/08/2026ReviewedFALSE
- 6.05.05.03Vacuum group shall incorporate the defined thermal design limits for the DC current transformer assembly into its bakeout procedure for the ESR beamline which satisfies the Instrumentation Group design.01/08/2026ReviewedFALSE
- 6.05.05.03Vacuum group shall define the cleaniness and installation details for the mechanical connection of the DC current transformer to the beamline.01/08/2026ReviewedFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling to insure cleanliness installation of the DC current transformer design by the appropriate technical support group which satisfies the Vacuum Group design.01/08/2026ReviewedFALSE
ESR-INST-DCCT-ELEC
- 6.04.06.02Instrumentation Group shall provide design details that defines the building, rack layouts and power utilities for DC current transformer electronics and its associated subsystems.09/24/2025In ProcessFALSE
- 6.04.06.02Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the DC current transformer electronics and its subcomponents which satisfies the Instrumentation Group design.09/24/2025In ProcessFALSE
- 6.04.06.02Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the DC current transformer electronics and its subcomponents which satisfies the Instrumentation Group design.09/24/2025In ProcessFALSE
- 6.04.06.02Infrastructure Group shall provide reliable air conditioning and humidity control in the DC current transformer electronic buildings which satisfies the Instrumentation Group design.09/24/2025In ProcessFALSE
- 6.04.06.02Instrumentation Group shall provide the DC current transformer electronic rack and its subsystems design, including the spacial location, thermal and weight details.09/24/2025In ProcessFALSE
- 6.04.06.02Instrumentation Group shall provide the plan and funding for the procurement of the racks to house DC current transformer electronics and its sub components which satisfies the design.09/24/2025In ProcessFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling to move and install DC current transformer electronic racks by the appropriate technical support group and its subsystems which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling for the installation of DC current transformer electronics into the racks by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.02Instrumentation Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each DC current transformer electronic rack.09/24/2025In ProcessFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling for the design and AC cable tray to contain the AC cable distribution from the wall mount distribution to each DC current transformer electronic rack.01/08/2026In ProcessFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each DC current transformer electronic rack by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.02Instrumentation Group shall provide the design details defining the signal cable routing from the DC current transformer electronic and its associated subsystems into the tunnels.09/24/2025In ProcessFALSE
- 6.04.06.02Infrastructure group shall provide tunnel penetrations for signal cables which satisfies the Instrumentation Group design.09/24/2025In ProcessFALSE
- 6.04.06.02Reference related DC current transformer interface document for signal cable termination iterface details inside of tunnel. (I-ESR-INST-BPM-PU.XX)09/24/2025In ProcessFALSE
- 6.04.06.02Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor DC current transformer electronic status.09/24/2025In ProcessFALSE
- 6.04.06.02Instrumentation Group shall provide output from the MPS interface the data which satisfies MPS design.09/24/2025In ProcessFALSE
- 6.04.06.02Reference related controls interface document for Controls interface signal details. (I-ESR-CNTRL-XXX.XX)09/24/2025In ProcessFALSE
ESR-INST-LONGIFB : ESR Instrumentation Longitudinal Bunch-by-Bunch Feedback (WBS 6.04.06)
- ESR-INST-LONGIFB EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02.05.05.02The requirements for longitudinal feedback are ??? TBD02/09/2026In ProcessFALSE
- 6.02.02.05.05.02The Longitudinal feedback systems shall be capable of counteracting single-bunch rise times of 1 ms02/09/2026In ProcessFALSE
ESR-INST-SLM : ESR Instrumentation Synchrotron Light Monitors (WBS 6.04.06)
- ESR-INST-SLM EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02.05.04The ESR shall have two synchrotron light monitors (SLM) and one X-ray pin hole monitor02/09/2026In ProcessFALSE
- 6.02.02.05.04The longitudinal bunch profile monitor shall have a turn-by-turn capability based on a single bunch in the fully filled bunch train.02/09/2026In ProcessFALSE
- 6.02.02.05.04TThe SLM systems shall measure the crabbing angle, longitudinal bunch parameters, H & V beam size and global coupling.02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure a crabbing angle of 12.5 mrad with accuracy of 10 %02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the Longitudinal bunch parameters with accuracy of TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the H & V beam size with accuracy of H=?? V=?? units02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the Global coupling with accuracy of TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04One SLM port shall be located downstream of a dipole in an appropriate location in the ESR, exact location not critical.02/09/2026In ProcessFALSE
- 6.02.02.05.04The second SLM port shall be located in a complimentary location in the lattice to ensure all the necessary SLM measurements can be made. TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM light extraction port mirrors shall be good quality, having a surface finish better than 1/10 Lambda02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM light extraction port mirrors shall be water cooled to avoid image distortion.02/09/2026In ProcessFALSE
- 6.02.02.05.04There shall be an enclosed SL transport from the light extraction port to the SLM optical lab rooms. Length to be determined by the distance to optical lab room, should be minimized to reduce vibration problems.02/09/2026In ProcessFALSE
- 6.02.02.05.04The locations of the SLM optical lab rooms shall be TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The double-slit interferometer method shall be used to measure transverse beam size02/09/2026In ProcessFALSE
- 6.02.02.05.04The standard transverse resolution of an SLM using visible light shall be ~60 um02/09/2026In ProcessFALSE
- 6.02.02.05.04The resolution using the double-slit method shall equal to 10 um02/09/2026In ProcessFALSE
- 6.02.02.05.04A streak camera shall be used to measure the bunch longitudinal profiles02/09/2026In ProcessFALSE
- 6.02.02.05.04A position sensitive photo-diode will provide photon beam centroid information which shall supplement the orbit stability measurements by the BPMs02/09/2026In ProcessFALSE
- 6.02.02.05.04A GigE CCD/CMOS camera, externally triggerable with exposure times ranging from 10 nsec to 5 sec, shall be used to image the visible radiation02/09/2026In ProcessFALSE
- 6.02.02.05.04A commercially available gated camera with gate width of <2 nsec (compared to a minimum bunch spacing of 10 nsec) shall be used to detect injection oscillations and for beam studies.02/09/2026In ProcessFALSE
- 6.02.02.05.04The location of the X-ray pinhole monitoring system shall be TBD02/09/2026In ProcessFALSE
- 6.02.02.05.04The target resolution of the X-ray pin hole monitoring system shall be ~ 5 um (or as best that can be achieved with the machine parameters and commercial equipment) 5 um02/09/2026In ProcessFALSE
- 6.02.02.05.04The X-ray pin hole monitor shall provide independent measurement of the energy spread and horizontal/vertical emittance. H=V=15.4 nm02/09/2026In ProcessFALSE
- 6.02.02.05.04The X-ray pinhole photon beamline shall be equipped with gated cameras that will be employed to provide high resolution turn-by-turn profile measurements02/09/2026In ProcessFALSE
- 6.02.02.05.04A pinhole assembly including tungsten slits shall provide sufficient resolution to precisely measure the beam size02/09/2026In ProcessFALSE
- 6.02.02.05.04Several different size pinholes sizes shall be incorporated to allow easy alignment and measurements at different beam currents and energies.02/09/2026In ProcessFALSE
ESR-INST-TMK : ESR Instrumentation Horizontal and Vertical Tune Meter Kicker (WBS 6.04.06)
- ESR-INST-TMK EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02.05.03Stripline kickers (H & V) shall be used to excite the beam so tunes can be measured using turn-by-turn BPM data.02/09/2026In ProcessFALSE
- 6.02.02.05.03The magnitude of the kick required for the horizontal kicker shall be TBD units02/09/2026In ProcessFALSE
- 6.02.02.05.03The magnitude of the kick required for the vertical kicker shall be TBD units02/09/2026In ProcessFALSE
- 6.02.02.05.03The kicker waveform (risetime and shape) requirements shall be TBD units02/09/2026In ProcessFALSE
- 6.02.02.05.03The location of the tune meter kicker striplines in the ESR shall be TBD units02/09/2026In ProcessFALSE
- 6.02.02.05.03The impedance of the kicker beamline device shall be approved by beam Physics.02/09/2026In ProcessFALSE
ESR-INST-TRANSFB : ESR Instrumentation Transverse Bunch-by-Bunch Feedback (WBS 6.04.06)
- ESR-INST-TRANSFB EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02.05.05.01Placeholder, Input needed TBD02/09/2026In ProcessFALSE
- 6.02.02.05.05.01The transverse feedback systems shall be capable of counteracting single-bunch rise times of 1 ms02/09/2026In ProcessFALSE
- 6.02.02.05.05.01Placeholder, Input needed TBD02/09/2026In ProcessFALSE
ESR-INST-TRANSSLFB : ESR Instrumentation Transverse Slow Feedback (WBS 6.04.06)
- ESR-INST-TRANSSLFB EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02.05.05.01The transverse slow feedback system bandwidth shall bs 10 Hz02/09/2026In ProcessFALSE
ESR-INST-FCM
- 6.02.02.05.03The ESR fast charge monitor shall be able to measure the integrated charge of a single bunch averaged over 1000 turns with a resolution of 100 (pC).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR fast charge monitor charge measurement shall maintain its accuracy with a thermal drift of < TBD nC/K02/09/2026In ProcessFALSE
- 6.02.02.05.03The ESR fast charge monitor charge measurement shall not vary more than +/- 1% per (mm) of beam offset.02/09/2026ApprovedFALSE
- 6.02.02.05.03A fast charge monitor shall be installed in the ESR to measure bunch charge with an accuracy 2 (%).02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR fast charge monitor system shall operate in ultra-high vacuum.02/09/2026ApprovedFALSE
- 6.02.02.05.03The impedance of the ESR fast charge monitor shall be approved by beam physics02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR fast charge monitor system shall, at a rate of 1 Hz, provide the charge of all bunches within a single turn.02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR fast charge monitor system shall, at a rate of 1 Hz, provide an array of the average bunch charge per turn.02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR fast charge monitor system shall, at a rate of 1 Hz, provide a turn-by-turn bunch charge measurement for a user-selected bunch.02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR fast charge monitor shall be a radiation hardened device.02/09/2026ApprovedFALSE
- ESR-INST-FCM EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02.05.03The ESR fast charge monitor shall be capable of measuring bunch patterns ranging from a single bunch, to a filled ring with 1,160 bunches.02/09/2026ApprovedFALSE
- 6.02.02.05.03The ESR fast charge monitor shall be capable of measuring witness bunch for 1/e for a fixed gain over the beam lifetime.02/09/2026ApprovedFALSE
ESR-INST-FCM-CM
- 6.04.06.02Instrumentation Group shall provide design details that defines the location limitations and the mechanical connection for the fast charge monitor assembly and its associated subsystems.01/08/2026ReviewedFALSE
- 6.04.06.02The physics group shall indicate the location of the fast charge monitor in the lattice designated by a marker that satisfies the instrumentation groups design limits01/08/2026ReviewedFALSE
- 6.04.06.02Vacuum group shall define the installation details for the mechanical connection of fast charge monitor assembly and its associated subsystems to the vacuum beamline.01/08/2026ReviewedFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling to install fast charge monitor by the appropriate technical support group and its subsystems which satisfies the Vacuum Group design.01/08/2026ReviewedFALSE
- 6.04.06.02Instrumentation Group shall provide radiation design limits for the fast charge monitor assembly and its associated subsystems.01/08/2026ReviewedFALSE
- 6.04.06.02Physics Group shall provide the expected radiation dose in its installation location and if required the physics design of the radiation shielding for the fast charge monitor assembly and its associated subsystems to mitigate exposure.01/08/2026ReviewedFALSE
- 6.04.06.02Mechanical engineering group shall define the installation details of the required radiation shielding design for fast charge monitor assembly and its associated subsystems to mitigate exposure which satisfies the Physics Group design.01/08/2026ReviewedFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling to install fast charge monitor required radiation shielding design by the appropriate technical support group which satisfies the Vacuum Group design.01/08/2026ReviewedFALSE
- 6.04.06.02Instrumentation Group shall provide thermal design limits and required temperature control design for the fast charge monitor assembly and its associated subsystems exposure.01/08/2026ReviewedFALSE
- 6.04.06.02Mechanical engineering group shall define the installation details for fast charge monitor temperature control design.01/08/2026ReviewedFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling to install fast charge monitor temperature control design by the appropriate technical support group which satisfies the Vacuum Group design.01/08/2026ReviewedFALSE
- 6.04.06.02Instrumentation Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026ReviewedFALSE
- 6.04.06.02Infustructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the Instrumentation Group design.01/08/2026ReviewedFALSE
- 6.04.06.02Infustructure mechanical cooling shall provide the piping design and procurement of materials from the cooling water distribution to connections to the fast charge monitor cooling loops which satisfies the Instrumentation Group design.01/08/2026ReviewedFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling for the installation of piping from the cooling water distribution to each fast charge monitor cooling loops by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026ReviewedFALSE
- 6.04.06.02Instrumentation Group shall provide design details that defines the signal cable connection for fast charge monitor assembly and its associated subsystems.01/08/2026ReviewedFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling to connect the fast charge monitor required signal cable by the appropriate technical support group which satisfies the Vacuum Group design.01/08/2026ReviewedFALSE
- 6.04.06.02Reference related fast charge monitor electronics interface document for signal cable routing and installation interface details inside of tunnel. (I-ESR-INST-FCM-ELEC.XX)01/08/2026ReviewedFALSE
- 6.04.06.02Instrumentation Group shall provide thermal design parameters for the fast charge monitor assembly and its associated subsystems exposure.01/08/2026ReviewedFALSE
- 6.04.06.02Vacuum group shall incorporate the defined thermal design limits for the fast charge monitor assembly into its bakeout procedure for the ESR beamline which satisfies the Instrumentation Group design.01/08/2026ReviewedFALSE
- 6.04.06.02Vacuum group shall define the cleaniness and installation details for the mechanical connection of the fast charge monitor to the beamline.01/08/2026ReviewedFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling to insure cleanliness installation of the fast charge monitor design by the appropriate technical support group which satisfies the Vacuum Group design.01/08/2026ReviewedFALSE
ESR-INST-FCM-ELEC
- 6.04.06.02Instrumentation Group shall provide design details that defines the building, rack layouts and power utilities for fast charge monitor electronics and its associated subsystems.09/24/2025In ProcessFALSE
- 6.04.06.02Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the fast charge monitor electronics and its subcomponents which satisfies the Instrumentation Group design.09/24/2025In ProcessFALSE
- 6.04.06.02Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the fast charge monitor electronics and its subcomponents which satisfies the Instrumentation Group design.09/24/2025In ProcessFALSE
- 6.04.06.02Infrastructure Group shall provide reliable air conditioning and humidity control in the fast charge monitor electronic buildings which satisfies the Instrumentation Group design.09/24/2025In ProcessFALSE
- 6.04.06.02Instrumentation Group shall provide the fast charge monitor electronic rack and its subsystems design, including the spacial location, thermal and weight details.09/24/2025In ProcessFALSE
- 6.04.06.02Instrumentation Group shall provide the plan and funding for the procurement of the racks to house fast charge monitor electronics and its sub components which satisfies the design.09/24/2025In ProcessFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling to move and install fast charge monitor electronic racks by the appropriate technical support group and its subsystems which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling for the installation of fast charge monitor electronics into the racks by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.02Instrumentation Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each fast charge monitor electronic rack.09/24/2025In ProcessFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling for the design and AC cable tray to contain the AC cable distribution from the wall mount distribution to each fast charge monitor electronic rack.01/08/2026In ProcessFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each fast charge monitor electronic rack by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.02Instrumentation Group shall provide the design details defining the signal cable routing from the fast charge monitor electronic and its associated subsystems into the tunnels.09/24/2025In ProcessFALSE
- 6.04.06.02Infrastructure group shall provide tunnel penetrations for signal cables which satisfies the Instrumentation Group design.09/24/2025In ProcessFALSE
- 6.04.06.02Reference related fast charge monitor interface document for signal cable termination iterface details inside of tunnel. (I-ESR-INST-BPM-PU.XX)09/24/2025In ProcessFALSE
- 6.04.06.02Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor fast charge monitor electronic status.09/24/2025In ProcessFALSE
- 6.04.06.02Instrumentation Group shall provide output from the MPS interface the data which satisfies MPS design.09/24/2025In ProcessFALSE
- 6.04.06.02Reference related controls interface document for Controls interface signal details. (I-ESR-CNTRL-XXX.XX)09/24/2025In ProcessFALSE
ESR-MPS : ESR Machine Protection System (WBS 6.06.03.01)
ESR-MPS-EXT_KICK : ESR Machine Protection System Single Turn Extraction Kicker (WBS 6.06.03.01)
- ESR-MPS-EXT_KICK EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.04.03.01.02The number of kickers shall be 602/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Rise time shall be 900 ns02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Fall time shall be NA sec02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The flat top time shall be 13 us02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The waveshape shall be trap02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The painting shall be vertical02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The maximum field shall be 0.12 T02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The total deflection shall be 16 mrad02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The maximum current shall be TBD02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The maximum voltage shall be TBD02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The inductance with cable shall be TBD (uH)02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Max rep rate shall be 100 kV/pC02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The flat top repeatability shall be NA Hz02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The flatness of flat top/pulse form shall be 1 %02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The beam abort kicker shall be tbd %02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The cooling type shall be w (W,A)02/09/2026In ProcessFALSE
ESR-MPS-EXT_KICK-DUMP_BLK : ESR Machine Protection System Dump block (WBS 6.06.03.01)
- ESR-MPS-EXT_KICK-DUMP_BLK EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.04.03.01.02The diameter shall be 90 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The length shall be 2 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The materials shall be C / Al / Cu02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The energy deposited during abort shall be 320 kJ02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The frequency of thermal cycle shall be 1 hour02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The window thickness shall be tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The window material shall be tbd02/09/2026In ProcessFALSE
ESR-MPS-EXT_KICK-INST_BP : ESR Machine Protection System Beam Pipe & Instrumentation (WBS 6.06.03.01)
- ESR-MPS-EXT_KICK-INST_BP EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.04.03.01.02The Length shall be 50 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Internal diameter shall be 90 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Temperature sensors shall be yes02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The BPMs shall be 402/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Correctors shall be 402/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Corrector PS shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The power supply accuracy shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Cooling / pumping shall be yes02/09/2026In ProcessFALSE
ESR-MPS-EXT_KICK-LAMBERT : ESR Machine Protection System Lamberton Magnet (WBS 6.06.03.01)
- ESR-MPS-EXT_KICK-LAMBERT EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.04.03.01.02The deflection shall be 2 mrad02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The length shall be 1.2 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The power supply shall be 1600 A02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The power supply accuracy shall be TBD02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Y-chamber aperture shall be 36 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02May need to add additional window requirements for other leg of Lambertson magnet TBD02/09/2026In ProcessFALSE
ESR-MPS-EXT_KICK-QUAD : ESR Machine Protection System Line Quads (WBS 6.06.03.01)
- ESR-MPS-EXT_KICK-QUAD EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.04.03.01.02The gradient shall be 17 T/m02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The power supply shall be 1600 A02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The power supply accuracy shall be TBD02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The length shall be 70 cm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The aperture radius shall be 50 mm02/09/2026In ProcessFALSE
ESR-MPS-ABORT
- 6.04.04.03.01.02The ESR fast abort system shall receive its trigger from the ESR machine protection system.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The ESR fast abort system shall consist of a set of kickers, a septum magnet, and a beam dump02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The ESR fast abort beam dump shall be external to the circulating beam line.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The ESR fast abort beam dump shall be installed in the stub tunnel in IR2.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The ESR beam dump shall be capable of absorbing the entire ESR beam (1160 bunches, 28 nC each, at 5 to 10 GeV, or 290 bunches, 11 nC each, at 18 GeV) without sustaining permanent damage.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The ESR beam dump shall be capable of absorbing the entire ESR beam at a rate of up to once every 20 minutes at 5-10 GeV, or once every 5 minutes at 18 GeV, respectively.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02Radiation shielding shall be provided as part of the ESR beam dump assembly such that the radiation on the outer surface of the beam dump does not exceed TBD after TBD beam aborts at full intensity.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The ESR abort kickers shall be installed in the IR2 straight section, inside the IR2 experimental hall.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The rise time of the ESR abort kicker system shall not exceed 0.8 usec.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The ESR abort kicker pulse shall remain at or near its peak value for a duration of at least 13 usec.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The ESR abort kicker pulse amplitude shall be sufficiently large to detect the beam safely past the abort extraction septum.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02A septum magnet shall separate the extracted ESR beam from the circulating ESR Beam.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The ESR septum magnet shall be designed such that the magnetic field in the circulating ESR beam enclosure does not compromise the circulating beam.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02Between the ESR septum magnet and the ESR beam dump, DC magnets shall be installed to dilute the beam at the entrance face of the beam dump, such that at least a 50 percent safety margin on beam intensity is guaranteed before permanent damage to the beam dump occurs.02/09/2026ApprovedFALSE
- ESR-MPS-ABORT EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.04.03.01.02The ESR shall contain an Abort system to dump the beam.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The diameter shall be 90 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The length shall be 2 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The materials shall be C / Al / Cu02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The energy deposited during abort shall be 320 kJ02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The frequency of thermal cycle shall be 1 hour02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The window thickness shall be tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The window material shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Length shall be 50 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Internal diameter shall be 90 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Temperature sensors shall be yes02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The BPMs shall be 402/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Correctors shall be 402/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Corrector PS shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The power supply accuracy shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Cooling / pumping shall be yes02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The deflection shall be 2 mrad02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The length shall be 1.2 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The power supply shall be 1600 A02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The power supply accuracy shall be TBD02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Y-chamber aperture shall be 36 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02May need to add additional window requirements for other leg of Lambertson magnet TBD02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The gradient shall be 17 T/m02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The power supply shall be 1600 A02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The power supply accuracy shall be TBD02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The length shall be 70 cm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The aperture radius shall be 50 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The number of kickers shall be 602/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Rise time shall be 900 ns02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Fall time shall be NA sec02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The flat top time shall be 13 us02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The waveshape shall be trap02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The painting shall be vertical02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The maximum field shall be 0.12 T02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The total deflection shall be 16 mrad02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The maximum current shall be TBD02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The maximum voltage shall be TBD02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The inductance with cable shall be TBD (uH)02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Max rep rate shall be 100 kV/pC02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The flat top repeatability shall be NA Hz02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The beam abort kicker shall be tbd %02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The flatness of flat top/pulse form shall be 1 %02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The cooling type shall be w (W,A)02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The ESR Abort system shall contain a beam dump to safely absorb the energy of the stored beam in a controlled fashion.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The diameter shall be 90 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The length shall be 2 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The materials shall be C / Al / Cu02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The energy deposited during abort shall be 320 kJ02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The window thickness shall be tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The frequency of thermal cycle shall be 1 hour02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The window material shall be tbd02/09/2026In ProcessFALSE
ESR-MPS-COLLIMATION
- 6.04.04.03.01.01The ESR collimation system shall consist of betatron and momentum collimators.02/09/2026ApprovedFALSE
- 6.04.04.03.01.01The ESR collimation system shall reduce the electron-induced detector background such that the detector can operate safely and efficiently.02/09/2026ApprovedFALSE
- 6.04.04.03.01.01All ESR collimator stations shall be double-sided if available space allows. If only a single-sided collimator can be installed due to space constraints, a second collimator shall be installed on the same side as the first, at a betatron phase of 180 degrees from the first one.02/09/2026ApprovedFALSE
- 6.04.04.03.01.01The ESR Collimators shall be placed at accelerator locations suitable for back-ground reduction at 5, 10, and 18 GeV electron beam current.02/09/2026ApprovedFALSE
- 6.04.04.03.01.01The ESR Collimator jaws shall be independently and remotely movable over a range of TBD millimeters.02/09/2026ApprovedFALSE
- 6.04.04.03.01.01The ESR Collimator jaw material shall be chosen such that the collimator jaw can absorb TBD electrons at TBD energies without sustaining permanent damage.02/09/2026ApprovedFALSE
- 6.04.04.03.01.01All ESR collimator stations shall be equipped with appropriate beam loss monitors to protect the collimator jaws from excessive beam losses by aborting the beam via the Machine Protection System (MPS).02/09/2026ApprovedFALSE
- 6.04.04.03.01.01The ESR collimator jaws shall be wide enough to still be effective in the presence of beam orbit errors of TBD millimeters.02/09/2026ApprovedFALSE
- 6.04.04.03.01.01The ESR collimator jaws need to be replaceable within TBD days.02/09/2026ApprovedFALSE
- 6.04.04.03.01.01The ESR collimation stations shall be designed such as to minimize their beam impedance.02/09/2026ApprovedFALSE
- 6.04.04.03.01.01The ESR collimation stations shall be designed for operation in a vacuum system with pressure in the TBD nTorr range.02/09/2026ApprovedFALSE
- 6.04.04.03.01.01The total number of ESR collimators shall be minimized in order to keep their contribution to the accelerator impedance at a minimum.02/09/2026ApprovedFALSE
- ESR-MPS-COLLIMATION EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.04.03.01.01The ESR shall have a collimation system capable of ensuring a sufficiently low background at the detector.02/09/2026ApprovedFALSE
- 6.04.04.03.01.01The ESR Injection absorber shall be placed in Sector 12 adjacent to the Momentum collimator.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR Injection absorber shall be vertical.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall be 17.5 mm half gap. +/- 17.5 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall be fixed.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR injection absorber has dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 550 W. 550 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be steady-state.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be negligible. ~0 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 275 J (1 bunch). 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The thermal duty cycle shall be 2 Hz. 2 Hz02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 0.89 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Al-Ti02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 1.1 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR detector absorbers shall be placed at Sector 5.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall be fixed.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall be fixed.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall be tbd mm half gap. tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall be tbd.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The detector absorbers have dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be negligible. ~0 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be tbd kW. tbd kW02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam failure energy deposition shall be 275 J (1 bunch). 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The failure thermal duty cycle shall be intermittent.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 21 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Cu02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 560-720 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR momentum collimators shall be placed in Sector 12 adjacent to the Injection absorber.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR momentum collimator shall be horizontal.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall be tbd mm half gap. tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall be range shall be tbd.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR momentum collimator has dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 550 W. 550 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be steady-state.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be negligible. ~0 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam failure energy deposition shall be 275 J (1 bunch). 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The failure thermal duty cycle shall be intermittent.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 0.89 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Al-Ti02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 1.1 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR primary vertical collimator shall be placed at Sector 4.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR primary horizontal collimator shall be placed at Sector 2.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall range from 5 to 10 mm (half gap, +/- 10 µm).02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall range from 8 to 23 mm (half gap, +/- 10 µm).02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR primary collimators have dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 300 W on the tip of the jaw. 300 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The duty cycle shall be steady state.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be 2.5 kW (horizontal only). 2.5 kW02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01Jaw angle in position relative to beam axshall be 1 mrad02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam failure energy deposition shall be 275 J (1 bunch) on the tip of the jaw. 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The failure thermal duty cycle shall be intermittent.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 180 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Mo-Gr02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 762-995 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR secondary vertical collimators shall be placed at Sector 4.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR secondary horizontal collimators shall be placed at Sector 2.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall range from 6 to 11 mm (half gap, +/- tbd). tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall range from 9 to 25 mm (half gap, +/- tbd).02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR collimators have dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 300 W. 300 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The duty cycle shall be steady state.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be 2.5 kW (horizontal only). 2.5 kW02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01Jaw angle in position relative to beam axshall be 1 mrad02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam failure energy deposition shall be 275 J (1 bunch). 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The failure thermal duty cycle shall be intermittent.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Mo-Gr02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 180 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 762-995 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR shall have a collimation system capable protecting all machine elements in case of failure.02/09/2026ApprovedFALSE
- 6.04.04.03.01.01The ESR Injection absorber shall be placed in Sector 12 adjacent to the Momentum collimator.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR Injection absorber shall be vertical.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall be 17.5 mm half gap. +/- 17.5 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall be fixed.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR injection absorber has dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 550 W. 550 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be steady-state.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be negligible. ~0 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 275 J (1 bunch). 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The thermal duty cycle shall be 2 Hz. 2 Hz02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 0.89 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Al-Ti02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 1.1 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR detector absorbers shall be placed at Sector 5.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall be fixed.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall be fixed.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall be tbd mm half gap. tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall be tbd.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The detector absorbers have dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be negligible. ~0 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be tbd kW. tbd kW02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam failure energy deposition shall be 275 J (1 bunch). 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The failure thermal duty cycle shall be intermittent.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 21 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Cu02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 560-720 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR momentum collimators shall be placed in Sector 12 adjacent to the Injection absorber.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR momentum collimator shall be horizontal.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall be tbd mm half gap. tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall be range shall be tbd.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR momentum collimator has dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 550 W. 550 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be steady-state.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be negligible. ~0 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam failure energy deposition shall be 275 J (1 bunch). 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The failure thermal duty cycle shall be intermittent.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 0.89 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Al-Ti02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 1.1 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR primary vertical collimator shall be placed at Sector 4.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR primary horizontal collimator shall be placed at Sector 2.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall range from 5 to 10 mm (half gap, +/- 10 µm).02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall range from 8 to 23 mm (half gap, +/- 10 µm).02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR primary collimators have dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 300 W on the tip of the jaw. 300 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The duty cycle shall be steady state.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be 2.5 kW (horizontal only). 2.5 kW02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01Jaw angle in position relative to beam axshall be 1 mrad02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam failure energy deposition shall be 275 J (1 bunch) on the tip of the jaw. 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The failure thermal duty cycle shall be intermittent.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 180 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Mo-Gr02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 762-995 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR secondary vertical collimators shall be placed at Sector 4.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR secondary horizontal collimators shall be placed at Sector 2.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall range from 6 to 11 mm (half gap, +/- tbd). tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall range from 9 to 25 mm (half gap, +/- tbd).02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR collimators have dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 300 W. 300 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The duty cycle shall be steady state.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be 2.5 kW (horizontal only). 2.5 kW02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01Jaw angle in position relative to beam axshall be 1 mrad02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam failure energy deposition shall be 275 J (1 bunch). 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The failure thermal duty cycle shall be intermittent.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Mo-Gr02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 180 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 762-995 mm02/09/2026In ProcessFALSE
ESR-MPS-GENERAL
- 6.04.04.03.01The ESR machine protection system (MPS) shall protect the detector and accelerator from permanent beam-induced or synchrotron radiation induced damage.02/09/2026ReviewedFALSE
- 6.04.04.03.01The ESR MPS shall consist of a set of inputs (beam loss monitors, detector background signals, manual operator input, quench protection system, ...), a electronic trigger and a fast abort system.02/09/2026ReviewedFALSE
- 6.04.04.03.01The ESR MPS thresholds at the input devices shall be set such that a sufficient safety margin remains until permanent damage occurs to machine or detector component.02/09/2026ReviewedFALSE
- 6.04.04.03.01The ESR electronic triggers shall be fast enough such that for any realistic failure scenario the beam loss or detector background occurring between loss or background detection and actual beam abort does not result in permanent damage.02/09/2026ReviewedFALSE
- 6.04.04.03.01The ESR electronic triggers shall be synchronized with the beam abort gap in the ESR bunch train such that the rising edge of the fast abort kicker pulse falls into the abort gap and all ESR bunches receive a sufficiently large kick to detect them safely past the extraction septum and into the fast beam dump.02/09/2026ReviewedFALSE
ESR-COLL : ESR Momentum Collimator System (WBS 6.06.03.02)
ESR-COLL-ABS : ESR Momentum Collimator Injection Absorbers (WBS 6.06.03.02)
- ESR-COLL-ABS EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.04.03.01.01The ESR Injection absorber shall be placed in Sector 12 adjacent to the Momentum collimator.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR Injection absorber shall be vertical.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall be 17.5 mm half gap. +/- 17.5 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall be fixed.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR injection absorber has dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 550 W. 550 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be steady-state.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be negligible. ~0 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 275 J (1 bunch). 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The thermal duty cycle shall be 2 Hz. 2 Hz02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 0.89 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Al-Ti02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 1.1 m02/09/2026In ProcessFALSE
ESR-COLL-DET : ESR Momentum Collimator Detector Absorbers (WBS 6.06.03.02)
- ESR-COLL-DET EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.04.03.01.01The ESR detector absorbers shall be placed at Sector 5.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall be fixed.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall be fixed.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall be tbd mm half gap. tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall be tbd.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The detector absorbers have dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be negligible. ~0 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be tbd kW. tbd kW02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam failure energy deposition shall be 275 J (1 bunch). 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The failure thermal duty cycle shall be intermittent.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 21 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Cu02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 560-720 mm02/09/2026In ProcessFALSE
ESR-COLL-MOM : ESR Momentum Collimator (WBS 6.06.03.02)
- ESR-COLL-MOM EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.04.03.01.01The ESR momentum collimators shall be placed in Sector 12 adjacent to the Injection absorber.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR momentum collimator shall be horizontal.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall be tbd mm half gap. tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall be range shall be tbd.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR momentum collimator has dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 550 W. 550 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be steady-state.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be negligible. ~0 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam failure energy deposition shall be 275 J (1 bunch). 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The failure thermal duty cycle shall be intermittent.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 0.89 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Al-Ti02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 1.1 m02/09/2026In ProcessFALSE
ESR-COLL-PRIM : ESR Momentum Collimator Primary Collimators (WBS 6.06.03.02)
- ESR-COLL-PRIM EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.04.03.01.01The ESR primary vertical collimator shall be placed at Sector 4.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR primary horizontal collimator shall be placed at Sector 2.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall range from 5 to 10 mm (half gap, +/- 10 µm).02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall range from 8 to 23 mm (half gap, +/- 10 µm).02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR primary collimators have dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 300 W on the tip of the jaw. 300 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The duty cycle shall be steady state.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be 2.5 kW (horizontal only). 2.5 kW02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01Jaw angle in position relative to beam axshall be 1 mrad02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam failure energy deposition shall be 275 J (1 bunch) on the tip of the jaw. 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The failure thermal duty cycle shall be intermittent.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 180 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Mo-Gr02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 762-995 mm02/09/2026In ProcessFALSE
ESR-COLL-SECDRY : ESR Momentum Collimator Secondary Collimators (WBS 6.06.03.02)
- ESR-COLL-SECDRY EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.04.03.01.01The ESR secondary vertical collimators shall be placed at Sector 4.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR secondary horizontal collimators shall be placed at Sector 2.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The vertical aperture shall range from 6 to 11 mm (half gap, +/- tbd). tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The horizontal aperture shall range from 9 to 25 mm (half gap, +/- tbd).02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The ESR collimators have dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The aperture shall be centered on the beam axshall be.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam energy deposition shall be 300 W. 300 W02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The duty cycle shall be steady state.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The energy deposition from synchrotron radiation shall be 2.5 kW (horizontal only). 2.5 kW02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The impedance shall be less than the Impedance budget (100 kV/pc). 100 kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.01.01Jaw angle in position relative to beam axshall be 1 mrad02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The beam failure energy deposition shall be 275 J (1 bunch). 275 J02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The failure thermal duty cycle shall be intermittent.02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The tapered jaw slope shall be 1/10. 1/1002/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw tip length shall be 180 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The jaw material shall be Mo-Gr02/09/2026In ProcessFALSE
- 6.04.04.03.01.01The total length shall be 762-995 mm02/09/2026In ProcessFALSE
ESR-CONT : ESR Controls System (WBS 6.07.02)
- ESR-CONT EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.04.02The ESR control system shall facilitate all ESR global control requirements.02/09/2026ApprovedFALSE
- 6.02.04.02The BBA quad strength command output rate shall be 1 Hz02/09/2026In ProcessFALSE
- 6.02.04.02The tune feedback measurement sample rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The tune feedback correction rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.04.02The ESR control system shall facilitate all network, relational database and data archiving required.02/09/2026ApprovedFALSE
- 6.02.04.02The tune feedback measurement sample rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The BBA quad strength command output rate shall be 1 Hz02/09/2026In ProcessFALSE
- 6.02.04.02The tune feedback correction rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The control system shall facilitate all machine protection systems required02/09/2026ApprovedFALSE
- 6.02.04.02The tune feedback measurement sample rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The BBA quad strength command output rate shall be 1 Hz02/09/2026In ProcessFALSE
- 6.02.04.02The tune feedback correction rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The ESR control system shall facilitate all EIC machine timing required.02/09/2026ApprovedFALSE
- 6.02.04.02The tune feedback measurement sample rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The BBA quad strength command output rate shall be 1 Hz02/09/2026In ProcessFALSE
- 6.02.04.02The tune feedback correction rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The ESR control system shall facilitate fast orbit feedback integration systems as required.02/09/2026ApprovedFALSE
- 6.02.04.02The BBA quad strength command output rate shall be 1 Hz02/09/2026In ProcessFALSE
- 6.02.04.02Placeholder for fast orbit feedback requirements02/09/2026In ProcessFALSE
- 6.02.04.02Placeholder for fast orbit feedback requirements02/09/2026In ProcessFALSE
- 6.02.04.02The tune feedback measurement sample rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02Placeholder for fast orbit feedback requirements02/09/2026In ProcessFALSE
- 6.02.04.02The tune feedback correction rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The ESR control system shall facilitate all physics application support required.02/09/2026ApprovedFALSE
- 6.02.04.02The BBA quad strength command output rate shall be 1 Hz02/09/2026In ProcessFALSE
- 6.02.04.02The tune feedback measurement sample rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The tune feedback correction rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The ESR controls system shall be capable of producing arbitrary spin pattern at injection02/09/2026In ProcessFALSE
- 6.02.04.02The number of bunches @ 18GeV shall be 290 cnt02/09/2026In ProcessFALSE
- 6.02.04.02The Spin pattern control granularity shall be 1 bunch02/09/2026In ProcessFALSE
- 6.02.04.02The number of bunches @ 10GeV and below shall be 1160 cnt02/09/2026In ProcessFALSE
ESR-CONT-ALGNMNT : ESR Controls Beam Based Alignment (WBS 6.07.02)
- ESR-CONT-ALGNMNT EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.04.02The BBA quad strength command output rate shall be 1 Hz02/09/2026In ProcessFALSE
ESR-CONT-FEEDBACK : ESR Controls Slow Orbit Feedback (WBS 6.07.02)
- ESR-CONT-FEEDBACK EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.04.02The slow orbit feedback BPM data averaging period shall be tbd -02/09/2026In ProcessFALSE
- 6.02.04.02The slow orbit feedback correction output rate shall be 10 Hz02/09/2026In ProcessFALSE
- 6.02.04.02Placeholder for fast orbit feedback requirements02/09/2026In ProcessFALSE
- 6.02.04.02Placeholder for fast orbit feedback requirements02/09/2026In ProcessFALSE
- 6.02.04.02Placeholder for fast orbit feedback requirements02/09/2026In ProcessFALSE
- 6.02.04.02The tune feedback measurement sample rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The tune feedback correction rate shall be tbd Hz02/09/2026In ProcessFALSE
ESR-CONT-SPIN : ESR Controls Spin Pattern (WBS 6.07.02)
- ESR-CONT-SPIN EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.04.02The ESR controls system shall be capable of producing arbitrary spin pattern at injection02/09/2026In ProcessFALSE
- 6.02.04.02The Spin pattern control granularity shall be 1 bunch02/09/2026In ProcessFALSE
- 6.02.04.02The number of bunches @ 18GeV shall be 290 cnt02/09/2026In ProcessFALSE
- 6.02.04.02The number of bunches @ 10GeV and below shall be 1160 cnt02/09/2026In ProcessFALSE
ESR-RF : ESR RF System (WBS 6.08.03.02)
- 6.02.02The ESR RF Systems shall meet ambient magnetic field hygiene requirements.02/09/2026ApprovedFALSE
- 6.08.04.01The SRF cryomodule maximum design ambient magnetic field amplitude shall be 700 mG.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum magnetic shield attenuation factor at SRF cavity equator shall be 250.11/17/2025ApprovedFALSE
- 6.02.02The ESR RF Systems shall be designed to protect cryogenic surfaces utilizing passive thermal control systems to reduce radiative heat transfer on all 2K, 5K and 50K surfaces.02/09/2026ApprovedFALSE
- 6.08.04.01The cold insulating maximum vacuum shall be 5.0e-7 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The warm insulating maximum vacuum shall be 1.0e-5 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The insulating vacuum maximum leak rate shall be 1.0e-8 mbar L/s.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum thermal radiative heat transfer to all 2K and 5K surfaces shall be 2 W/m^2.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum thermal radiative heat transfer to all 50K surfaces shall be 5 W/m^2.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems shall be designed to utilize common transportation methods without degradation of performance.02/09/2026ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be capable of withstanding a maximum allowable vertical acceleration of ±4 G.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be capable of withstanding a maximum allowable beamline axis acceleration of ±5 G.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be capable of withstanding a maximum allowable lateral acceleration of ±1.5 G.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to withstand a tilt around the beamline axis (roll) up to ± 0.03 radians.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems shall interface to all required accelerator systems.02/09/2026ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cavity helium jacket shall have a minimum helium bath vapor surface area of 0.049 m^2.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed helium supply operational temperature shall be 5.5 K.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed helium supply operational pressure shall be 3 to 3.5 bar.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed combined helium return temperature shall be 20 to 100 K.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed combined helium return pressure shall be 2.4 to 2.6 bar.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed sub-atmospheric helium return temperature shall be 4.5 K.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed sub-atmospheric helium return pressure shall be 30 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cooling water subsystem shall be designed to utilize the supply characteristics as defined by the EIC Infrastructure Utility Requirements Document (Doc. No. EIC-IFD-RSI-012).05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cavity aperture radius shall be 30 mm.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems shall be able to accommodate 0.1 W/m electron beam losses.02/09/2026ApprovedFALSE
- 6.02.02The ESR RF Systems shall provide conditioning capabilities necessary for ESR operations.02/09/2026ApprovedFALSE
- 6.08.04.01Conditioning for individual components shall have a maximum average cryogenic power dissipation of 200 W.05/29/2025ApprovedFALSE
- 6.08.04.01Conditioning for individual components shall be achieved with a maximum temperature of 2.1 K.05/29/2025ApprovedFALSE
- 6.02.02The ESR RF Systems shall have an active frequency tuning system to maintain and tune the resonant frequency in order to accommodate radial beam offset and changes in the synchronous trajectory circumference.02/09/2026ApprovedFALSE
- 6.08.04.01The minimum SRF Cavity Slow Tuner tuning range shall be 600 kHz.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum SRF Cavity Slow Tuner resolution shall be ± 1 Hz.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cavity slow tuner tuning rate shall be 800 Hz/s.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum SRF Cavity Slow Tuner hysteresis shall be ± 20 Hz.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems shall be rotatable around the beamline axis (roll) to facilitate installation without degradation of performance.02/09/2026ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to withstand a tilt around the beamline axis (roll) up to ± 0.03 radians.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems shall have alignment verification designed into the system.02/09/2026ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in X shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Y shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Z shall be ± 5 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the pitch shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the roll shall be ± 0.04 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the yaw shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems shall achieve an independent beam line vacuum level equivalent to the ESR operational vacuum level.02/09/2026ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.08.04.01The cold beamline maximum vacuum shall be 1.0e-9 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The warm beamline maximum vacuum shall be 5.0e-7 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The beamline vacuum maximum leak rate shall be 5e-10 mbar L/s.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems shall provide all necessary controls and diagnostics necessary for system operation but not extending beyond the RF System interfaces.02/09/2026ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems shall provide 0.1% field amplitude stability02/09/2026ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cryomodule FPC external quality factors shall all be within ± 0.1e5 of all other FPC external quality factor design values.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems shall provide 0.02 degree phase stability02/09/2026ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cryomodule FPC external quality factors shall all be within ± 0.1e5 of all other FPC external quality factor design values.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems shall be protected from degradation due to adjacent beam lines and hardware.02/09/2026ApprovedFALSE
- 6.08.04.01The manufactured SRF Cryomodule Cavity shall produce no field emission at 4 MV.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems design shall be protected against beam loss and RF field collapse events.02/09/2026ApprovedFALSE
- 6.02.02The ESR RF Systems shall maintain ESR operations in the event of single RF system failure.02/09/2026ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured voltage shall be 4 MV.05/29/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cavity Slow Tuner tuning range shall be 600 kHz.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems active frequency tuning system shall be maintainable in-situ.02/09/2026ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.08.04.01The active SRF cavity tuning mechanism components (motor/gearbox/drive mechanism) shall be replaceable and maintainable in-situ.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems air-side FPC components shall be maintainable in-situ.02/09/2026ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.02.02The ESR Crabbing RF System shall be designed to crab electron bunches.02/09/2026ApprovedFALSE
- 6.02.02The ESR Storage RF System design shall protect against common electron beam instabilities.02/09/2026ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF longitudinal impedance (accelerator definition) shall be 52 MΩ Ghz.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF horizontal impedance (accelerator definition) shall be 24 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF vertical impedance (accelerator definition) shall be 24 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cavity aperture radius shall be 30 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured quality factor (Qo) shall be 1.5E10.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF pressure sensitivity maximum shall be 10 Hz/mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum SRF Cavity Slow Tuner resolution shall be ± 1 Hz.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF maximum lorentz force detuning shall be 5 Hz/(MV/m)^2.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum SRF Cavity Slow Tuner hysteresis shall be ± 20 Hz.05/16/2025ApprovedFALSE
- 6.02.02The ESR Storage RF System shall be designed as identical modular components to provide the full system functionality.02/09/2026ApprovedFALSE
- 6.02.02The ESR Storage RF System shall maintain constant electron beam energy after injection.02/09/2026ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to operate with a beam current up to 2.5 A.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule loaded quality factor shall be 2.9e5 ± 0.2e5.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured voltage shall be 4 MV.05/29/2025ApprovedFALSE
- 6.08.04.01The SRF cavity shall be designed to handle a minimum forward power of 800 kW.05/16/2025ApprovedFALSE
- 6.02.02The ESR Storage RF System shall be capable of coupling 10 MW of RF power to the beam.02/09/2026ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured voltage shall be 4 MV.05/29/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to operate with a beam current up to 2.5 A.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity shall be designed to handle a minimum forward power of 800 kW.05/16/2025ApprovedFALSE
- 6.02.02The ESR Storage RF System shall maintain beam energy from 5 to 18 GeV.02/09/2026ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to operate with a beam current up to 2.5 A.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule loaded quality factor shall be 2.9e5 ± 0.2e5.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured voltage shall be 4 MV.05/29/2025ApprovedFALSE
- 6.08.04.01The SRF cavity shall be designed to handle a minimum forward power of 800 kW.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cavity Slow Tuner tuning range shall be 600 kHz.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum SRF Cavity Slow Tuner resolution shall be ± 1 Hz.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum SRF Cavity Slow Tuner hysteresis shall be ± 20 Hz.05/16/2025ApprovedFALSE
- 6.02.02The ESR Storage RF System shall be able to provide 68 MV peak voltage for an RF bucket height 10x greater than the rms energy spread of the beam.02/09/2026ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured voltage shall be 4 MV.05/29/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to operate with a beam current up to 2.5 A.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity shall be designed to handle a minimum forward power of 800 kW.05/16/2025ApprovedFALSE
- ESR-RF EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02The ESR RF Systems shall be designed to fulfill all necessary parameters as set by the Master Parameter Table (MPT). [Document#: EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured voltage shall be 4 MV.05/29/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to operate with a beam current up to 2.5 A.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity shall be designed to handle a minimum forward power of 800 kW.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF System shall utilize superconductivity.02/09/2026ApprovedFALSE
- 6.08.04.01The cavity helium bath maximum designed operational temperature shall be 2 K.05/16/2025ApprovedFALSE
- 6.08.04.01The cavity helium bath maximum designed operational pressure shall be 30 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The cavity helium bath designed operational pressure stability shall be ±0.1 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cavity helium jacket shall have a minimum helium bath vapor surface area of 0.049 m^2.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed helium supply operational temperature shall be 5.5 K.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed helium supply operational pressure shall be 3 to 3.5 bar.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed combined helium return temperature shall be 20 to 100 K.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed combined helium return pressure shall be 2.4 to 2.6 bar.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed sub-atmospheric helium return temperature shall be 4.5 K.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed sub-atmospheric helium return pressure shall be 30 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity maximum Niobium temperature shall be 5 K during operation.05/16/2025ApprovedFALSE
- 6.08.04.01The warm beamline maximum vacuum shall be 5.0e-7 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The cold beamline maximum vacuum shall be 1.0e-9 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The beamline vacuum maximum leak rate shall be 5e-10 mbar L/s.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems shall conform to the ESR lattice.02/09/2026ApprovedFALSE
- 6.02.02.05.04The ESR shall have two synchrotron light monitors (SLM) and one X-ray pin hole monitor02/09/2026In ProcessFALSE
- 6.02.02.05.04The longitudinal bunch profile monitor shall have a turn-by-turn capability based on a single bunch in the fully filled bunch train.02/09/2026In ProcessFALSE
- 6.02.02.05.04TThe SLM systems shall measure the crabbing angle, longitudinal bunch parameters, H & V beam size and global coupling.02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure a crabbing angle of 12.5 mrad with accuracy of 10 %02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the Longitudinal bunch parameters with accuracy of TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the H & V beam size with accuracy of H=?? V=?? units02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the Global coupling with accuracy of TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04One SLM port shall be located downstream of a dipole in an appropriate location in the ESR, exact location not critical.02/09/2026In ProcessFALSE
- 6.02.02.05.04The second SLM port shall be located in a complimentary location in the lattice to ensure all the necessary SLM measurements can be made. TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM light extraction port mirrors shall be good quality, having a surface finish better than 1/10 Lambda02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM light extraction port mirrors shall be water cooled to avoid image distortion.02/09/2026In ProcessFALSE
- 6.02.02.05.04There shall be an enclosed SL transport from the light extraction port to the SLM optical lab rooms. Length to be determined by the distance to optical lab room, should be minimized to reduce vibration problems.02/09/2026In ProcessFALSE
- 6.02.02.05.04The locations of the SLM optical lab rooms shall be TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The double-slit interferometer method shall be used to measure transverse beam size02/09/2026In ProcessFALSE
- 6.02.02.05.04The standard transverse resolution of an SLM using visible light shall be ~60 um02/09/2026In ProcessFALSE
- 6.02.02.05.04The resolution using the double-slit method shall equal to 10 um02/09/2026In ProcessFALSE
- 6.02.02.05.04A streak camera shall be used to measure the bunch longitudinal profiles02/09/2026In ProcessFALSE
- 6.02.02.05.04A position sensitive photo-diode will provide photon beam centroid information which shall supplement the orbit stability measurements by the BPMs02/09/2026In ProcessFALSE
- 6.02.02.05.04A GigE CCD/CMOS camera, externally triggerable with exposure times ranging from 10 nsec to 5 sec, shall be used to image the visible radiation02/09/2026In ProcessFALSE
- 6.02.02.05.04A commercially available gated camera with gate width of <2 nsec (compared to a minimum bunch spacing of 10 nsec) shall be used to detect injection oscillations and for beam studies.02/09/2026In ProcessFALSE
- 6.02.02.05.04The location of the X-ray pinhole monitoring system shall be TBD02/09/2026In ProcessFALSE
- 6.02.02.05.04The target resolution of the X-ray pin hole monitoring system shall be ~ 5 um (or as best that can be achieved with the machine parameters and commercial equipment) 5 um02/09/2026In ProcessFALSE
- 6.02.02.05.04The X-ray pin hole monitor shall provide independent measurement of the energy spread and horizontal/vertical emittance. H=V=15.4 nm02/09/2026In ProcessFALSE
- 6.02.02.05.04The X-ray pinhole photon beamline shall be equipped with gated cameras that will be employed to provide high resolution turn-by-turn profile measurements02/09/2026In ProcessFALSE
- 6.02.02.05.04A pinhole assembly including tungsten slits shall provide sufficient resolution to precisely measure the beam size02/09/2026In ProcessFALSE
- 6.02.02.05.04Several different size pinholes sizes shall be incorporated to allow easy alignment and measurements at different beam currents and energies.02/09/2026In ProcessFALSE
- 6.08.04.01The SRF cryomodule cavity beam axis to the tunnel floor shall be vertically alignable to 1381.09 ± 20 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in X shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Y shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Z shall be ± 5 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the pitch shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the roll shall be ± 0.04 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the yaw shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems shall be installed in the straight sections of the ESR lattice within the existing RHIC tunnel in IR10.02/09/2026ApprovedFALSE
- 6.02.02.05.04The ESR shall have two synchrotron light monitors (SLM) and one X-ray pin hole monitor02/09/2026In ProcessFALSE
- 6.02.02.05.04The longitudinal bunch profile monitor shall have a turn-by-turn capability based on a single bunch in the fully filled bunch train.02/09/2026In ProcessFALSE
- 6.02.02.05.04TThe SLM systems shall measure the crabbing angle, longitudinal bunch parameters, H & V beam size and global coupling.02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure a crabbing angle of 12.5 mrad with accuracy of 10 %02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the Longitudinal bunch parameters with accuracy of TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the H & V beam size with accuracy of H=?? V=?? units02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the Global coupling with accuracy of TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04One SLM port shall be located downstream of a dipole in an appropriate location in the ESR, exact location not critical.02/09/2026In ProcessFALSE
- 6.02.02.05.04The second SLM port shall be located in a complimentary location in the lattice to ensure all the necessary SLM measurements can be made. TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM light extraction port mirrors shall be good quality, having a surface finish better than 1/10 Lambda02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM light extraction port mirrors shall be water cooled to avoid image distortion.02/09/2026In ProcessFALSE
- 6.02.02.05.04There shall be an enclosed SL transport from the light extraction port to the SLM optical lab rooms. Length to be determined by the distance to optical lab room, should be minimized to reduce vibration problems.02/09/2026In ProcessFALSE
- 6.02.02.05.04The locations of the SLM optical lab rooms shall be TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The double-slit interferometer method shall be used to measure transverse beam size02/09/2026In ProcessFALSE
- 6.02.02.05.04The standard transverse resolution of an SLM using visible light shall be ~60 um02/09/2026In ProcessFALSE
- 6.02.02.05.04The resolution using the double-slit method shall equal to 10 um02/09/2026In ProcessFALSE
- 6.02.02.05.04A streak camera shall be used to measure the bunch longitudinal profiles02/09/2026In ProcessFALSE
- 6.02.02.05.04A position sensitive photo-diode will provide photon beam centroid information which shall supplement the orbit stability measurements by the BPMs02/09/2026In ProcessFALSE
- 6.02.02.05.04A GigE CCD/CMOS camera, externally triggerable with exposure times ranging from 10 nsec to 5 sec, shall be used to image the visible radiation02/09/2026In ProcessFALSE
- 6.02.02.05.04A commercially available gated camera with gate width of <2 nsec (compared to a minimum bunch spacing of 10 nsec) shall be used to detect injection oscillations and for beam studies.02/09/2026In ProcessFALSE
- 6.02.02.05.04The location of the X-ray pinhole monitoring system shall be TBD02/09/2026In ProcessFALSE
- 6.02.02.05.04The target resolution of the X-ray pin hole monitoring system shall be ~ 5 um (or as best that can be achieved with the machine parameters and commercial equipment) 5 um02/09/2026In ProcessFALSE
- 6.02.02.05.04The X-ray pin hole monitor shall provide independent measurement of the energy spread and horizontal/vertical emittance. H=V=15.4 nm02/09/2026In ProcessFALSE
- 6.02.02.05.04The X-ray pinhole photon beamline shall be equipped with gated cameras that will be employed to provide high resolution turn-by-turn profile measurements02/09/2026In ProcessFALSE
- 6.02.02.05.04A pinhole assembly including tungsten slits shall provide sufficient resolution to precisely measure the beam size02/09/2026In ProcessFALSE
- 6.02.02.05.04Several different size pinholes sizes shall be incorporated to allow easy alignment and measurements at different beam currents and energies.02/09/2026In ProcessFALSE
- 6.08.04.01The SRF Cryomodule maximum length shall be 7.2 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule maximum width shall be 2.15 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule maximum height shall be 1.7 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cryomodule cavity beam axis to the tunnel floor shall be vertically alignable to 1381.09 ± 20 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in X shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Y shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Z shall be ± 5 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the roll shall be ± 0.04 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the pitch shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the yaw shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic box maximum height shall be 2.1m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic box maximum length (not including vacuum jacketed lines) shall be 1.5 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic box maximum width shall be 1.0 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic valve box minimum vertical stay clear height above the cryomodule shall be 0.92 m.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems shall conform to the EIC Code of Record.02/09/2026ApprovedFALSE
- 6.08.04.01All cryomodule surfaces accessible to workers shall be within the temperature range of 283 to 333 K.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by ASME B31.3.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by ASME BPVC.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by ASTM C1055.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by NFPA 70.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by NFPA 70E.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by API 520 & API 521.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by AWS.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by CGA S1.3.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards as directed by the DOE Vacuum Vessel Consensus Standards.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to meet or exceed the maximum working pressures defined by the EIC pressure document (Document No. TBD).05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems within the tunnel shall operate within its yearly radiation exposure budget.02/09/2026ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that cannot be maintained in-situ shall be designed with a minimum lifetime radiation tolerance of 1 MGy.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF Systems shall have a minimum operating lifetime of 20 years02/09/2026ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall operate through a minimum of 200 thermal cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner 1% range tuning cycles shall be 100,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner full range tuning cycles shall be 1,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that cannot be maintained in-situ shall be designed with a minimum lifetime radiation tolerance of 1 MGy.05/16/2025ApprovedFALSE
- 6.08.04.01All critical monitoring and control instruments that cannot be maintained in-situ shall utilize a back-up instrument.05/16/2025ApprovedFALSE
- 6.02.02The ESR RF System shall be designed to minimize unscheduled downtime, maintenance time and repair time to achieve ESR operational availability.02/09/2026ApprovedFALSE
- 6.02.04.02The ESR controls system shall be capable of producing arbitrary spin pattern at injection02/09/2026In ProcessFALSE
- 6.02.04.02The Spin pattern control granularity shall be 1 bunch02/09/2026In ProcessFALSE
- 6.02.04.02The number of bunches @ 18GeV shall be 290 cnt02/09/2026In ProcessFALSE
- 6.02.04.02The number of bunches @ 10GeV and below shall be 1160 cnt02/09/2026In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 300K to 150K shall be 10 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 150K to 50K shall be 30 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 50K to 4.5K shall be 10 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 4.5K to 2K shall be 0.5 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum warmup rate of the SRF cavity between 50K to 150K shall be 30 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall achieve steady state temperature with the cavity bath at 4K in a maximum of 2 days.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall achieve a full warm-up cycle from 4K to 295K in a maximum of 2 days.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall operate through a minimum of 200 thermal cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner 1% range tuning cycles shall be 100,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner full range tuning cycles shall be 1,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The manufactured SRF Cryomodule Cavity shall produce no field emission at 4 MV.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that cannot be maintained in-situ shall be designed with a minimum lifetime radiation tolerance of 1 MGy.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.08.04.01All critical monitoring and control instruments that cannot be maintained in-situ shall utilize a back-up instrument.05/16/2025ApprovedFALSE
- 6.08.04.01The active SRF cavity tuning mechanism components (motor/gearbox/drive mechanism) shall be replaceable and maintainable in-situ.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cavity slow tuner tuning rate shall be 800 Hz/s.05/16/2025ApprovedFALSE
- 6.02.02The ESR Storage RF System shall be designed to accelerate electrons.02/09/2026ApprovedFALSE
- 6.08.04.01The total SRF maximum RF longitudinal impedance (accelerator definition) shall be 52 MΩ Ghz.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF horizontal impedance (accelerator definition) shall be 24 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF vertical impedance (accelerator definition) shall be 24 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum broadband RF power emitted from the cryomodule shall be 30 kW for all EIC design energies and currents.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to operate with a beam current up to 2.5 A.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured voltage shall be 4 MV.05/29/2025ApprovedFALSE
- 6.08.04.01The SRF cavity nominal cold frequency shall be 591.149 MHz.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity field probe Qext range shall be 1.00E11 to 2.00E11.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity shall be designed to handle a minimum forward power of 800 kW.05/16/2025ApprovedFALSE
ESR-RF-SRF : Superconducting RF (WBS 6.08.04)
ESR-RF-SRF-591_1Cell : 591MHz 1 Cell Cryomodule (WBS 6.08.04.01)
ESR-RF-SRF-400KW
ESR-RF-ACAV:591S : 591MHz 1 Cell Cryomodule (WBS 6.08.04.01)
- 6.08.04Infrastructure shall provide supply and return headers within the tunnel for Low Conductivity Water (LCW) to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04Infrastructure shall provide Low Conductivity Water (LCW) to/from the common supply/return header(s) to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04RF Pre-Installation shall provide all distribution design, materials, and installation of the piping (or hoses) for Low Conductivity Water (LCW) from the tunnel header to the Cryomodules to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide Low Conductivity Water (LCW) supply/return receptacles at the Cryomodule to facilitate installation by RF Pre-Installation.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide instrument air receptables to be utilized by TBD.07/25/2025In ProcessFALSE
- 6.08.04TBD shall provide an instrument air supply system for the required SRF Systems Cryomodule components in the tunnel.07/25/2025In ProcessFALSE
- 6.08.04TBD shall provide all routing design, installation, and control logic to the instrument air receptacles on the SRF Systems Cryomodule.07/25/2025In ProcessFALSE
- 6.08.04RF Pre-Installation shall provide the helium blowdown system design, materials (including helium gas), and installation labor to any water circuit required on the SRF cryomodule inside the tunnel.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide a helium blowdown receptacle to be utilized by Pre-Installation.07/25/2025In ProcessFALSE
- 6.08.04The 2K Cryogenics Distribution System shall provide all distribution design, materials, and installation of the helium piping for the 2K helium distribution system inside the tunnel to the Cryomodules to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04The 2K Cryogenics Distribution System shall provide Supercritical Helium to/from the supply/return header(s) to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide Helium supply and return receptacle(s) at the cryomodule to be utilized by the 2K Cryogenics Distribution System.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide calculations and analyses necessary for sizing the piping and supply by the 2K Cryogenics Distribution.07/25/2025In ProcessFALSE
- 6.08.04The 2K Cryogenics Distribution System shall provide all distribution design, materials, and installation of the helium piping for the helium relief system inside the tunnel to the cryomodule to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide a helium pressure relief valve with common relief header receptacle to be utilized by the 2K Cryogenics Distribution Relief System.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide calculations and analyses necessary for sizing the relief piping by the 2K Cryogenics Distribution relief header.07/25/2025In ProcessFALSE
- 6.08.04The 2K Cryogenics Distribution System shall provide all distribution design, materials, and installation of the helium piping for the guard vacuum inside the tunnel to the cryomodule to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide a helium pressure relief valve with common guard vacuum receptacle to be utilized by the 2K Cryogenics Distribution System.07/25/2025In ProcessFALSE
- 6.08.04Cryogenics Controls shall provide all cabling, routing design, installation, and control logic to the cryomodule control receptacles at the SRF Systems Cryomodules.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide helium liquid level monitor receptacles to be utilized by Cryogenics Controls.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide pressure monitor receptacles to be utilized by Cryogenics Controls.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide temperature monitors receptacles to be utilized by Cryogenics Controls.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide heater control receptacles to be utilized by Cryogenics Controls.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide cryogenic control valve receptacles to be utilized by Cryogenics Controls.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide Beamline All Metal Gate Valve receptacles to be utilized by ESR Vacuum System.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide Beamline Ion pump receptacles to be utilized by ESR Vacuum System.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide Vacuum pressure receptacles to be utilized by ESR Vacuum System.07/25/2025In ProcessFALSE
- 6.08.04TBD shall provide all cabling, routing design, installation, and control logic to the cryomodule vacuum control receptacles at the Cryomodules to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide RF feedback and control receptacles to be utilized by RF Controls.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide temperature monitors receptacles to be utilized by RF Controls.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide tuner control receptacles to be utilized by RF Controls.07/25/2025In ProcessFALSE
- 6.08.04RF Controls shall provide all cabling, routing design, installation, and control logic to the cryomodule RF control receptacles at the Cryomodules to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04High Power RF shall design and provide a waveguide to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide a receptacle for the High Power RF waveguide to be utilized by High Power RF.07/25/2025In ProcessFALSE
- 6.08.04Accelerator Installation shall provide the schedule and funding for the waveguide installation to the SRF Cryomodule.07/25/2025In ProcessFALSE
- 6.08.04High Power RF shall provide DC Bias to be utilized by the SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide a receptable on the cryomodule for the DC Bias connection to be used by High Power RF.07/25/2025In ProcessFALSE
- 6.08.04High Power RF shall provide all design, fabrication, and controls of the DC Bias system to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04Beamline Components shall provide a doorknob waveguide to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04Beamline Components shall provide a BLA to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04Beamline Components shall provide conditioned FPC to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide fiducialization points on the Cryomodule relating back to the electromagnetic center of the beamline to be utilized by Accelerator Installation.07/25/2025In ProcessFALSE
- 6.08.04RF Pre-Installation shall arrange the installation location/area to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04Accelerator Installation shall provide the schedule and funding for the SRF Cryomodule installation and app technician support (lag bolts/rough alignment/pedestal/etc...).07/25/2025In ProcessFALSE
- 6.08.04The Mechanical Design Group shall model the tunnel to define the required spatial locations to be utilized by SRF Systems.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide a receptacle for the beamline connection on both ends of the SRF cryomodule to be utilized by RF System07/25/2025In ProcessFALSE
- 6.08.04ESR Vacuum System shall provide installation labor of the SRF Systems Cryomodule to the beamline.07/25/2025In ProcessFALSE
- 6.08.04RF System shall ensure that during installation the SRF Systems Cryomodule cleanliness does not degrade.07/25/2025In ProcessFALSE
- 6.08.04RF System shall ensure that the beamline components surrounding the SRF Systems Cryomodule does not degrade the performance of the SRF Systems Cryomodule during its lifetime.07/25/2025In ProcessFALSE
- 6.08.04Cryomodule Verification shall ensure TJNAF has a bunker that can high power test the SRF Systems Cryomodule.07/25/2025In ProcessFALSE
- 6.08.04RF Pre-Installation shall ensure BNL has a bunker that can high power test the SRF Systems Cryomodule.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide insulating vacuum gate valve receptables to be utilized by TBD.07/25/2025In ProcessFALSE
- 6.08.04TBD shall provide a vacuum system for the insulating vacuum of the SRF Systems Cryomodule in the tunnel to be utilized by SRF Systems07/25/2025In ProcessFALSE
- 6.08.04TBD shall provide all cabling, routing design, installation, and control logic to the insulating vacuum control receptacles at the SRF Systems Cryomodule.07/25/2025In ProcessFALSE
- 6.08.04RF Pre-Installation shall ensure BNL has a bunker that can high power test the SRF Systems Cryomodule.07/25/2025In ProcessFALSE
- 6.08.04SRF Systems shall provide insulating vacuum gate valve receptables to be utilized by TBD.07/25/2025In ProcessFALSE
- 6.08.04TBD shall provide a vacuum system for the insulating vacuum of the SRF Systems Cryomodule in the tunnel to be utilized by SRF Systems07/25/2025In ProcessFALSE
- 6.08.04TBD shall provide all cabling, routing design, installation, and control logic to the insulating vacuum control receptacles at the SRF Systems Cryomodule.07/25/2025In ProcessFALSE
- ESR-RF-ACAV:591S EXTERNALSRequirements who's parents are in other sub-systems.
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ApprovedFALSE
- 6.08.04.01The cavity helium bath maximum designed operational temperature shall be 2 K.05/16/2025ApprovedFALSE
- 6.08.04.01The cavity helium bath maximum designed operational pressure shall be 30 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The cavity helium bath designed operational pressure stability shall be ±0.1 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cavity helium jacket shall have a minimum helium bath vapor surface area of 0.049 m^2.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed helium supply operational temperature shall be 5.5 K.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed helium supply operational pressure shall be 3 to 3.5 bar.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed combined helium return temperature shall be 20 to 100 K.05/16/2025ApprovedFALSE
- 6.08.04.01The range of the designed combined helium return pressure shall be 2.4 to 2.6 bar.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed sub-atmospheric helium return temperature shall be 4.5 K.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum designed sub-atmospheric helium return pressure shall be 30 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 300K to 150K shall be 10 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 150K to 50K shall be 30 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 50K to 4.5K shall be 10 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 4.5K to 2K shall be 0.5 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum warmup rate of the SRF cavity between 50K to 150K shall be 30 K/hour.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall achieve steady state temperature with the cavity bath at 4K in a maximum of 2 days.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall achieve a full warm-up cycle from 4K to 295K in a maximum of 2 days.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cooling water subsystem shall be designed to utilize the supply characteristics as defined by the EIC Infrastructure Utility Requirements Document (Doc. No. EIC-IFD-RSI-012).05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall operate through a minimum of 200 thermal cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner 1% range tuning cycles shall be 100,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner full range tuning cycles shall be 1,000 cycles.05/16/2025ApprovedFALSE
- 6.08.04.01The manufactured SRF Cryomodule Cavity shall produce no field emission at 4 MV.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that cannot be maintained in-situ shall be designed with a minimum lifetime radiation tolerance of 1 MGy.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.08.04.01The active SRF cavity tuning mechanism components (motor/gearbox/drive mechanism) shall be replaceable and maintainable in-situ.05/16/2025ApprovedFALSE
- 6.08.04.01All critical monitoring and control instruments that cannot be maintained in-situ shall utilize a back-up instrument.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF longitudinal impedance (accelerator definition) shall be 52 MΩ Ghz.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF horizontal impedance (accelerator definition) shall be 24 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.04.01The total SRF maximum RF vertical impedance (accelerator definition) shall be 24 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum cavity aperture radius shall be 30 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum broadband RF power emitted from the cryomodule shall be 30 kW for all EIC design energies and currents.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to operate with a beam current up to 2.5 A.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule loaded quality factor shall be 2.9e5 ± 0.2e5.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cryomodule FPC external quality factors shall all be within ± 0.1e5 of all other FPC external quality factor design values.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured quality factor (Qo) shall be 1.5E10.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity minimum manufactured voltage shall be 4 MV.05/29/2025ApprovedFALSE
- 6.08.04.01The SRF cavity field probe Qext range shall be 1.00E11 to 2.00E11.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity nominal cold frequency shall be 591.149 MHz.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF pressure sensitivity maximum shall be 10 Hz/mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF maximum lorentz force detuning shall be 5 Hz/(MV/m)^2.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity maximum Niobium temperature shall be 5 K during operation.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cavity shall be designed to handle a minimum forward power of 800 kW.05/16/2025ApprovedFALSE
- 6.08.04.01The warm beamline maximum vacuum shall be 5.0e-7 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The cold beamline maximum vacuum shall be 1.0e-9 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The beamline vacuum maximum leak rate shall be 5e-10 mbar L/s.05/16/2025ApprovedFALSE
- 6.08.04.01The warm insulating maximum vacuum shall be 1.0e-5 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The cold insulating maximum vacuum shall be 5.0e-7 mbar.05/16/2025ApprovedFALSE
- 6.08.04.01The insulating vacuum maximum leak rate shall be 1.0e-8 mbar L/s.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cavity Slow Tuner tuning range shall be 600 kHz.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum SRF Cavity slow tuner tuning rate shall be 800 Hz/s.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum SRF Cavity Slow Tuner resolution shall be ± 1 Hz.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum SRF Cavity Slow Tuner hysteresis shall be ± 20 Hz.05/16/2025ApprovedFALSE
- 6.08.04.01All cryomodule surfaces accessible to workers shall be within the temperature range of 283 to 333 K.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by ASME B31.3.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by ASME BPVC.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by ASTM C1055.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by NFPA 70.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by NFPA 70E.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by API 520 & API 521.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by CGA S1.3.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by AWS.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards as directed by the DOE Vacuum Vessel Consensus Standards.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule maximum length shall be 7.2 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule maximum width shall be 2.15 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule maximum height shall be 1.7 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cryomodule cavity beam axis to the tunnel floor shall be vertically alignable to 1381.09 ± 20 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in X shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Y shall be ± 250 μm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Z shall be ± 5 mm.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the roll shall be ± 0.04 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the pitch shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the yaw shall be ± 0.01 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic box maximum height shall be 2.1m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic box maximum width shall be 1.0 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic box maximum length (not including vacuum jacketed lines) shall be 1.5 m.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule cryogenic valve box minimum vertical stay clear height above the cryomodule shall be 0.92 m.05/16/2025ApprovedFALSE
- 6.08.04.01Conditioning for individual components shall have a maximum average cryogenic power dissipation of 200 W.05/29/2025ApprovedFALSE
- 6.08.04.01Conditioning for individual components shall be achieved with a maximum temperature of 2.1 K.05/29/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be capable of withstanding a maximum allowable vertical acceleration of ±4 G.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be capable of withstanding a maximum allowable lateral acceleration of ±1.5 G.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be capable of withstanding a maximum allowable beamline axis acceleration of ±5 G.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to withstand a tilt around the beamline axis (roll) up to ± 0.03 radians.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF cryomodule maximum design ambient magnetic field amplitude shall be 700 mG.05/16/2025ApprovedFALSE
- 6.08.04.01The minimum magnetic shield attenuation factor at SRF cavity equator shall be 250.11/17/2025ApprovedFALSE
- 6.08.04.01The maximum thermal radiative heat transfer to all 2K and 5K surfaces shall be 2 W/m^2.05/16/2025ApprovedFALSE
- 6.08.04.01The maximum thermal radiative heat transfer to all 50K surfaces shall be 5 W/m^2.05/16/2025ApprovedFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to meet or exceed the maximum working pressures defined by the EIC pressure document (Document No. TBD).05/16/2025ApprovedFALSE
ESR-RF-ACAV:591S-FPC
- 6.08.04.01The FPC shall be designed and fabricated to deliver an average forward RF power of 400 kW under all reflection conditions expected during SRF operation and during SRF cavity quench.06/05/2025ApprovedFALSE
- 6.08.04.01The FPC’s window bandwidth shall be (591 ± 10) MHz with S11 < -30 dB.06/05/2025ApprovedFALSE
- 6.08.04.01The FPC shall be capable to withstand a maximum allowable 5G acceleration in all directions.06/05/2025ApprovedFALSE
- 6.08.04.01The FPC lowest order mode mechanical frequency of the FPC during all events shall be greater than 60 Hz.06/05/2025ApprovedFALSE
- 6.08.04.01The FPC design shall prevent modal mechanical resonance frequencies at multiples of 60 Hz up to 240 Hz.06/05/2025ApprovedFALSE
- 6.08.04.01The maximum temperature of all surfaces on the FPC not accessible to workers shall be 100°C.06/05/2025ApprovedFALSE
- 6.08.04.01The minimum temperature for all water-cooled FPC components shall be 0°C to prevent freezing.06/05/2025ApprovedFALSE
- 6.08.04.01The FPC shall be designed and fabricated to provide a minimum bias voltage of ± 5 kV.06/05/2025ApprovedFALSE
- 6.08.04.01The FPC air-side components shall be maintainable in-situ.06/05/2025ApprovedFALSE
- 6.08.04.01The FPC shall have an air side purge with a minimum flow rate of 5 SCFH nitrogen gas with less than 10 ppm water and filtered to 25 µm.06/05/2025ApprovedFALSE
- 6.08.04.01The FPC design shall protect against multipacting.06/05/2025ApprovedFALSE
- 6.08.04.01The extension of the thermal transition from 2 K to room temperature shall not exceed 317 mm from the beam line axis.06/05/2025ApprovedFALSE
- 6.08.04.01The FPC shall include arc detectors, independent vacuum monitoring, thermosensors, and heaters.06/05/2025ApprovedFALSE
ESR-RF-400KW
- 6.08.06.01The RF Amplifier system shall utilize watercooling to dissipate a minimum of 80 % heat.11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier system shall have a maximum die temperature of 130 C.11/20/2025ApprovedFALSE
- 6.08.06.01The minimum acceptable system loss of RF Amplifiers due to faults shall be 10 %.11/20/2025ApprovedFALSE
- 6.08.06.01The maximum RF Amplifier shutoff switch time shall be 100 ns.11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier shall be designed to self-protect to a maximum overdrive power of 10 %.11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier phase linearity over a 40dB dynamic range shall be 30 deg.11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplified input/output impedance shall be 50 ohms.11/20/2025ApprovedFALSE
- 6.08.06.01The maximum RF Amplifier input VSWR shall be 1.5:1 .11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier input RF overdrive shall be 10 dBm.11/20/2025ApprovedFALSE
- 6.08.06.01All RF Amplifier harmonics shall not exceed -30 dBc.11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier spurious and line harmonics shall not exceed -80 dBc.11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier noise power output in the ON state shall be -90 dBm/Hz.11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier noise power output in the STANDBY state shall be -154 dBm/Hz.11/20/2025ApprovedFALSE
- 6.08.06.01The maximum RF Amplifier group delay shall be 200 ns.11/20/2025ApprovedFALSE
- 6.08.06.01The minimum RF Amplifier AC to RF efficiency at full rated power shall be 45 %.11/20/2025ApprovedFALSE
- 6.08.06.01The operational frequency band of the RF Amplifier system shall be 591 ± 5 MHz.11/20/2025ApprovedFALSE
- 6.08.06.01The minimum RF on/off ratio (Δgain between on/standby) shall be 86 dB.11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier system shall be designed to operate in an ambient temperature range of 18-30 C.11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier system shall be designed to operate in a maximum relative humidity of 60-65 %.11/20/2025ApprovedFALSE
- 6.08.06.01With the load mismatch of less than 3:1, the RF Amplifier shall maintain 100% forward power. .11/20/2025ApprovedFALSE
- 6.08.06.01With the load mismatch of greater than 3:1, the RF Amplifier shall utilize 0% forward power. .11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier forward RF sample coupling across the amplifier bandwidth shall be 70±0.5 dB.11/20/2025ApprovedFALSE
- 6.08.06.01The minimum RF Amplifier forward directivity across the amplifier bandwidth shall be 30 dB.11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier reflected RF sample coupling across the amplifier bandwidth shall be 70±0.5 dB.11/20/2025ApprovedFALSE
- 6.08.06.01The minimum RF Amplifier reflected directivity across the amplifier bandwidth shall be 30 dB.11/20/2025ApprovedFALSE
- 6.08.06.01The maximum RF Amplifier audible noise at 1m shall be 70 dB(A).11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier pulse width range shall be .001-100 ms.11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier duty cycle range shall be 1-50 %.11/20/2025ApprovedFALSE
- 6.08.06.01The maximum RF Amplifer rise time during pulsed operation shall be 0.75 μs.11/20/2025ApprovedFALSE
- 6.08.06.01The maximum RF Amplifer fall time during pulsed operation shall be 0.75 μs.11/20/2025ApprovedFALSE
- 6.08.06.01The maximum RF Amplifier pulse drop at max pulse width shall be 0.5-1 dB.11/21/2025ApprovedFALSE
- 6.08.06.01The maximum RF Amplifier phase error over pulse at max pulse width shall be 2.5-5 deg.11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier AC Voltage input shall remain between 432-528 VAC.11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier controls AC Voltage input shall remain between 108-132 VAC.11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier AC frequency shall be 60 Hz .11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier power factor shall be between 0.90-0.95 .11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier input power for the rated output power shall be ±1.5 dBm.11/20/2025ApprovedFALSE
- 6.08.06.01The minimum output power of the RF Amplifier for all operational modes shall be 200/400 kW.11/20/2025ApprovedFALSE
- 6.08.06.01The minimum linear power of the RF Amplifier for all operational modes shall be 200/400 kW.11/20/2025ApprovedFALSE
- 6.08.06.01The nominal power gain for the RF Amplifier system over a 40 dB dynamic range shall be 86 dB.11/20/2025ApprovedFALSE
- 6.08.06.01The maximum power gain deviation of the RF Amplifier system shall be 1.5 dB.11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier maximum height shall be 3 m.11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier maximum width shall be 3 m.11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier maximum length shall be 3 m.11/20/2025ApprovedFALSE
- 6.08.06.01The RF Amplifier shall be designed to have a minimum MTBF of 10,000 hours.11/20/2025ApprovedFALSE
- 6.08.06.01The RF devices shall be designed to have a minimum MTBF of 35,000 hours.11/20/2025ApprovedFALSE
- 6.08.06.01The RF amplifier shall be designed to meet all applicable standards as defined by ASTM C1055 as directed by the EIC Code of Records Doc No. EIC-ORG-RSI-026 and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA) .11/20/2025ApprovedFALSE
- 6.08.06.01The RF amplifier shall be designed to meet all applicable standards as defined by 29 CFR 1910 as directed by the EIC Code of Records Doc No. EIC-ORG-RSI-026 and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA) .11/20/2025ApprovedFALSE
- 6.08.06.01The RF amplifier shall be designed to meet all applicable standards as defined by NFPA 70E-2021 as directed by the EIC Code of Records Doc No. EIC-ORG-RSI-026 and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA) .11/20/2025ApprovedFALSE
- 6.08.06.01The RF amplifier shall be designed to meet all applicable standards as defined by UL 508 as directed by the EIC Code of Records Doc No. EIC-ORG-RSI-026 and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA) .11/20/2025ApprovedFALSE
- 6.08.06.01The RF amplifier shall be designed to meet all applicable standards as defined by Occupatioanl Radiation Protection 10 CFR 835 as directed by the EIC Code of Records Doc No. EIC-ORG-RSI-026 and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA) .11/20/2025ApprovedFALSE
ESR-RF-CCAV:394
- 6.08.04.05The SRF CM shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing05/16/2025In ProcessFALSE
- 6.08.04.05The cavity helium bath maximum operational temperature shall be TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The cavity helium bath maximum operational pressure shall be TBD mbar05/16/2025In ProcessFALSE
- 6.08.04.05The cavity helium bath operation pressure stability shall be ±TBD mbar05/16/2025In ProcessFALSE
- 6.08.04.05The maximum helium supply operational temperature shall be TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The range of the helium supply operational pressure shall be TBD to TBD bar05/16/2025In ProcessFALSE
- 6.08.04.05The range of the combined helium return temperature shall be TBD to TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The range of the combined helium return pressure shall be TBD to TBD bar05/16/2025In ProcessFALSE
- 6.08.04.05The maximum sub-atmospheric helium return temperature shall be TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The maximum Subatmospheric helium return pressure shall be TBD mbar05/16/2025In ProcessFALSE
- 6.08.04.05The minimum cooldown rate of the SRF cavity between 300K and 4.5K shall be TBD K/hour05/16/2025In ProcessFALSE
- 6.08.04.05The minimum cooldown rate of the SRF cavity between 4.5K to 2K shall be TBD K/hour05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall achieve steady state temperature with the cavity bath at 4K in a maximum of TBD days05/16/2025In ProcessFALSE
- 6.08.04.05The chilled water and low-conductivity water operational temperature range shall be TBD to TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The chilled water and low-conductivity water operational pressure range shall be TBD to TBD bar05/16/2025In ProcessFALSE
- 6.08.04.05The minimum magnetic shield attenuation factor at SRF cavity equator shall be TBD05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall operate through a minimum of TBD thermal cycles05/16/2025In ProcessFALSE
- 6.08.04.05The minimum SRF Cavity Slow tuner minimum lifetime shall be TBD years05/16/2025In ProcessFALSE
- 6.08.04.05The minimum SRF CM Slow Tuner 1% range tuning cycles shall be TBD cycles05/16/2025In ProcessFALSE
- 6.08.04.05The minimum SRF CM Slow Tuner full range tuning cycles shall be TBD cycles05/16/2025In ProcessFALSE
- 6.08.04.05The manufactured SRF CM Cavity shall produce no field emission at TBD MV05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM components that are not replaceable in-situ shall be designed with a radiation tolerance greater than TBD MGy05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM components that are replaceable in-situ shall have a radiation tolerance greater than TBD kGy05/16/2025In ProcessFALSE
- 6.08.04.05The active SRF cavity tuning mechanism components (bearings/motor/piezo) shall be replaceable and maintainable in-situ.05/16/2025In ProcessFALSE
- 6.08.04.05All critical monitoring and control instruments that cannot be maintained in-situ shall utilize a back-up instrument.05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM instrument should have maximized instruments that can be maintained and replaced in-situ05/16/2025In ProcessFALSE
- 6.08.04.05The SRF maximum (per cavity) RF longitudinal impedance shall be TBD MΩ GHz05/16/2025In ProcessFALSE
- 6.08.04.05The SRF maximum (per cavity) RF horizontal impedance shall be TBD MΩ/m05/16/2025In ProcessFALSE
- 6.08.04.05The SRF maximum (per cavity) RF vertical impedance shall be TBD MΩ/m05/16/2025In ProcessFALSE
- 6.08.04.05The minimum cavity aperture radius shall be TBD mm05/16/2025In ProcessFALSE
- 6.08.04.05The maximum broadband RF power emitted from the CM shall be TBD kW05/16/2025In ProcessFALSE
- 6.08.04.05The Maximum Quadrupole multipole content shall be TBD mT05/16/2025In ProcessFALSE
- 6.08.04.05The Maximum Sextupole multipole content shall be TBD mT/m05/16/2025In ProcessFALSE
- 6.08.04.05The Maximum Octupole multipole content shall be TBD T/m^205/16/2025In ProcessFALSE
- 6.08.04.05The Maximum Decapole multipole content shall be TBD T/m^305/16/2025In ProcessFALSE
- 6.08.04.05The SRF cavity minimum manufactured quality factor (Qo) shall be TBD05/16/2025In ProcessFALSE
- 6.08.04.05The SRF cavity minimum manufactured voltage shall be TBD MV05/16/2025In ProcessFALSE
- 6.08.04.05The SRF cavity fundamental power coupler Qext shall be TBD05/16/2025In ProcessFALSE
- 6.08.04.05The SRF cavity field probe Qext range shall be TBD05/16/2025In ProcessFALSE
- 6.08.04.05The SRF cavity nominal cold frequency shall be TBD MHz05/16/2025In ProcessFALSE
- 6.08.04.05The SRF cavity maximum Niobium temperature shall be TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The SRF Pressure sensitivity maximum shall be TBD Hz/mBar05/16/2025In ProcessFALSE
- 6.08.04.05The SRF maximum Lorentz force detuning shall be TBD Hz/(Mv/m)^205/16/2025In ProcessFALSE
- 6.08.04.05The warm beamline maximum vacuum shall be TBD mbar05/16/2025In ProcessFALSE
- 6.08.04.05The cold beamline maximum vacuum shall be TBD mbar05/16/2025In ProcessFALSE
- 6.08.04.05The beamline vacuum maximum leak rate shall be TBD mbar L/s05/16/2025In ProcessFALSE
- 6.08.04.05The warm insulating maximum vacuum shall be TBD mbar05/16/2025In ProcessFALSE
- 6.08.04.05The cold insulating maximum vacuum shall be TBD mbar05/16/2025In ProcessFALSE
- 6.08.04.05The insulating vacuum maximum leak rate shall be TBD mbar L/s05/16/2025In ProcessFALSE
- 6.08.04.05The minimum SRF Cavity Slow Tuner tuning range shall be shall be -TBD, +TBD kHz05/16/2025In ProcessFALSE
- 6.08.04.05The minimum SRF Cavity slow tuner tuning rate shall be TBD Hz/s05/16/2025In ProcessFALSE
- 6.08.04.05The maximum SRF Cavity Slow Tuner resolution shall be TBD Hz05/16/2025In ProcessFALSE
- 6.08.04.05The maximum SRF Cavity Slow Tuner hysteresis shall be ±TBD Hz05/16/2025In ProcessFALSE
- 6.08.04.05The external warm maximum allowable working pressure of the SRF cavity shall not exceed TBD bar05/16/2025In ProcessFALSE
- 6.08.04.05The external cold maximum allowable working pressure of the SRF cavity shall not exceed TBD bar05/16/2025In ProcessFALSE
- 6.08.04.05The internal maximum allowable working pressure of the SRF cavity shall not exceed TBD bar05/16/2025In ProcessFALSE
- 6.08.04.05All cryomodule surfaces accessible to workers shall be within the temperature range of TBD to TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the EIC code of records to meet all applicable safety standards as defined by ASME B31.305/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the EIC code of records to meet all applicable safety standards as defined by ASME BPVC05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the EIC code of records to meet all applicable safety standards as defined by ASTM C105505/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the EIC code of records to meet all applicable safety standards as defined by NFPA 7005/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by API 520 & API 52105/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the EIC code of records to meet all applicable safety standards as defined by NFPA 70E05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by CGA S1.305/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by AWS05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM maximum length shall be TBD m05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM maximum width shall be TBD m05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM maximum height shall be TBD m05/16/2025In ProcessFALSE
- 6.08.04.05The distance from the beamline to the tunnel floor shall be TBD m05/16/2025In ProcessFALSE
- 6.08.04.05The Cavity Electromagnetic Center Alignment Tolerance in X shall be ±TBD μm05/16/2025In ProcessFALSE
- 6.08.04.05The Cavity Electromagnetic Center Alignment Tolerance in Y shall be ±TBD μm05/16/2025In ProcessFALSE
- 6.08.04.05The Cavity Electromagnetic Center Alignment Tolerance in Z shall be ±TBD mm05/16/2025In ProcessFALSE
- 6.08.04.05The Cavity Electromagnetic Center Alignment Tolerance for the roll shall be ±TBD degrees05/16/2025In ProcessFALSE
- 6.08.04.05The Cavity Electromagnetic Center Alignment Tolerance for the pitch shall be ±TBD degrees05/16/2025In ProcessFALSE
- 6.08.04.05The Cavity Electromagnetic Center Alignment Tolerance for the yaw shall be ±TBD degrees05/16/2025In ProcessFALSE
- 6.08.04.05Conditioning for individual cavities shall have a maximum average cryogenic power dissipation of TBD W05/16/2025In ProcessFALSE
- 6.08.04.05Conditioning for individual cavities shall be achieved with a maximum temperature of TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be capable of withstanding a maximum allowable vertical acceleration of TBD G05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be capable of withstanding a maximum allowable lateral acceleration of TBD G05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be capable of withstanding a maximum allowable beamline axis acceleration of TBD G05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed to withstand a minimum tilt around the beamline axis (roll) of ±TBD radians05/16/2025In ProcessFALSE
- 6.08.04.05The SRF Cryomodule loaded quality factor shall be TBD ± TBD.05/16/2025In ProcessFALSE
- 6.08.04.05The SRF Cryomodule FPC external quality factor balance shall be TBD.05/16/2025In ProcessFALSE
ESR-ARC : Arc Sections
- ESR-ARC EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02The ESR lattice arc magnet structure shall contain an array of regular FODO cells02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.02/09/2026ApprovedFALSE
- 6.02.02The ESR lattice arc magnet structure shall consists of a quadrupole, a sextupole, a bending section, and a dipole corrector in each arc half-cell.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.02/09/2026ApprovedFALSE
- 6.02.02The ESR lattice arc magnet structure shall accommodate slightly different average arc radii in the individual arcs by adjusting the drift spaces between individual elements in each FODO cell.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The ESR beamline bending sections shall contain three individual dipole magnets, referred to as “super-bends”.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The ESR super-bends shall generate additional synchrotron radiation damping to support a large beam-beam parameter of 0.1 and to create the required horizontal design emittance in the Master Parameter Table (MPT) when the ESR is operated at energies below 10 GeV. [Document: EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.02.02.05.04The ESR shall have two synchrotron light monitors (SLM) and one X-ray pin hole monitor02/09/2026In ProcessFALSE
- 6.02.02.05.04The longitudinal bunch profile monitor shall have a turn-by-turn capability based on a single bunch in the fully filled bunch train.02/09/2026In ProcessFALSE
- 6.02.02.05.04TThe SLM systems shall measure the crabbing angle, longitudinal bunch parameters, H & V beam size and global coupling.02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure a crabbing angle of 12.5 mrad with accuracy of 10 %02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the Longitudinal bunch parameters with accuracy of TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the H & V beam size with accuracy of H=?? V=?? units02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM shall be able to measure the Global coupling with accuracy of TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04One SLM port shall be located downstream of a dipole in an appropriate location in the ESR, exact location not critical.02/09/2026In ProcessFALSE
- 6.02.02.05.04The second SLM port shall be located in a complimentary location in the lattice to ensure all the necessary SLM measurements can be made. TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM light extraction port mirrors shall be good quality, having a surface finish better than 1/10 Lambda02/09/2026In ProcessFALSE
- 6.02.02.05.04The SLM light extraction port mirrors shall be water cooled to avoid image distortion.02/09/2026In ProcessFALSE
- 6.02.02.05.04There shall be an enclosed SL transport from the light extraction port to the SLM optical lab rooms. Length to be determined by the distance to optical lab room, should be minimized to reduce vibration problems.02/09/2026In ProcessFALSE
- 6.02.02.05.04The locations of the SLM optical lab rooms shall be TBD -02/09/2026In ProcessFALSE
- 6.02.02.05.04The double-slit interferometer method shall be used to measure transverse beam size02/09/2026In ProcessFALSE
- 6.02.02.05.04The standard transverse resolution of an SLM using visible light shall be ~60 um02/09/2026In ProcessFALSE
- 6.02.02.05.04The resolution using the double-slit method shall equal to 10 um02/09/2026In ProcessFALSE
- 6.02.02.05.04A streak camera shall be used to measure the bunch longitudinal profiles02/09/2026In ProcessFALSE
- 6.02.02.05.04A position sensitive photo-diode will provide photon beam centroid information which shall supplement the orbit stability measurements by the BPMs02/09/2026In ProcessFALSE
- 6.02.02.05.04A GigE CCD/CMOS camera, externally triggerable with exposure times ranging from 10 nsec to 5 sec, shall be used to image the visible radiation02/09/2026In ProcessFALSE
- 6.02.02.05.04A commercially available gated camera with gate width of <2 nsec (compared to a minimum bunch spacing of 10 nsec) shall be used to detect injection oscillations and for beam studies.02/09/2026In ProcessFALSE
- 6.02.02.05.04The location of the X-ray pinhole monitoring system shall be TBD02/09/2026In ProcessFALSE
- 6.02.02.05.04The target resolution of the X-ray pin hole monitoring system shall be ~ 5 um (or as best that can be achieved with the machine parameters and commercial equipment) 5 um02/09/2026In ProcessFALSE
- 6.02.02.05.04The X-ray pin hole monitor shall provide independent measurement of the energy spread and horizontal/vertical emittance. H=V=15.4 nm02/09/2026In ProcessFALSE
- 6.02.02.05.04The X-ray pinhole photon beamline shall be equipped with gated cameras that will be employed to provide high resolution turn-by-turn profile measurements02/09/2026In ProcessFALSE
- 6.02.02.05.04A pinhole assembly including tungsten slits shall provide sufficient resolution to precisely measure the beam size02/09/2026In ProcessFALSE
- 6.02.02.05.04Several different size pinholes sizes shall be incorporated to allow easy alignment and measurements at different beam currents and energies.02/09/2026In ProcessFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The polarity of the ESR center bending magnet shall be capable of being wired in reverse to control the beam emittance and to damp the beam. The polarity will be dictated by the beam energy.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02The FODO cell shall operate with a horizontal and vertical betatron phase advance of 60 degrees per arc section at beam energies of 10 GeV and below.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02The ESR Sextupole wiring scheme shall create the required sextupole families needed per arc to maximize dynamic aperture at the 60 degrees per FODO cell phase advance at < 10 GeV.02/09/2026ApprovedFALSE
- 6.02.02The FODO cell shall operate with a horizontal and vertical betatron phase advance of 90 degrees per arc section to maintain the required horizontal beam emittance defined in the MPT at 18 GeV. [Document#: EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.02.02The ESR Sextupole wiring scheme shall create the required sextupole families needed per arc to maximize dynamic aperture at the 90 degrees per FODO cell phase advance at 18 GeV.02/09/2026ApprovedFALSE
- 6.02.02The vertical emittance shall be controlled by appropriate beam orbit manipulations and horizontal-vertical cross coupling.02/09/2026ApprovedFALSE
ESR-CRYO_CENT_PLANT : Cryogenics Central Plant
ESR-CRYO_IR10_SAT_PLANT : IR10 Satellite Cryogenics Plant
ESR-INJ
- 6.02.02The ESR injection system shall inject a single bunch onto the closed orbit.02/09/2026ApprovedFALSE
- 6.02.02The ESR injection system shall be installed in IR4.02/09/2026ApprovedFALSE
- 6.02.02The ESR injection point shall be upstream of IP4, where the ESR is installed along the outer tunnel wall.02/09/2026ApprovedFALSE
- 6.02.02The ESR injection system shall be capable of injecting one bunch per second.02/09/2026ApprovedFALSE
- 6.02.02The ESR injection system kickers shall deflect the incoming beam in the horizontal direction.02/09/2026ApprovedFALSE
- 6.02.02The ESR injection kicker pulse form shall be such that fewer than 10 stored bunches receive a kick that leads to betatron oscillations of these bunches that correspond to less than 0.1 RMS transverse beam sizes.02/09/2026ApprovedFALSE
- 6.02.02The ESR injection system shall upon injection of a new bunch into a given bucket extract the spent stored bunch by the same kicker pulse.02/09/2026ApprovedFALSE
- 6.02.02The ESR injection system shall deflect replaced (extracted) bunches towards a dedicated beam dump.02/09/2026ApprovedFALSE
- 6.02.02The ESR injection system beam dump for replaced bunches (replacement dump) shall be internal to the beam pipe.02/09/2026ApprovedFALSE
- 6.02.02The ESR injection system replacement dump shall be capable of absorbing one bunch per second, with the bunch parameters listed in the Master Parameter Table. [Document#: EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.02.02The ESR injection system shall be designed with a 50 percent safety margin for absorption of spent bunches into the replacement dump.02/09/2026ApprovedFALSE
- 6.02.02The ESR injection system shall have radiation shielding provided around the replacement dump.02/09/2026ApprovedFALSE
- 6.02.02There shall be no slow injection/extraction bump in the ESR.02/09/2026ApprovedFALSE
- 6.02.02Incoming bunches from the RCS shall have their transverse emittances matched to the equilibrium emittances in the ESR within 10 percent.02/09/2026ApprovedFALSE
- 6.02.02The energy, bunch length, and momentum spread of the incoming bunches from the RCS shall be matched to the ESR bucket.02/09/2026ApprovedFALSE
- 6.02.02The layout of the ESR injection and extraction beam lines shall minimize the required kick angle by taking advantage of the split yokes of the APS quadrupoles in the area.02/09/2026ApprovedFALSE
ESR-INJ-DUMP
- 6.04.04.03.01.02The ESR replacement beam dump shall be located in IR4.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The ESR replacement beam dump shall be located downstream of the ESR injection kicker.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The ESR replacement beam dump shall be internal.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The ESR replacement beam dump shall be based on the ESR injection kicker, which extracts a single bunch towards the replacement dump as it injects a fresh bunch into the ESR.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The spent ESR bunch shall be extracted in the horizontal plane.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The ESR horizontal half aperture for the circulating beam at the location of the replacement beam dump shall correspond to at least 15 horizontal RMS beam sizes, based on the emittances defined in the Master Parameter Table (MPT), plus an additional 10 mm. [Document#: EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The ESR vertical half aperture for the circulating beam at the location of the replacement beam dump shall correspond to at least 15 vertical RMS beam sizes, assuming a fully coupled beam based on the emittances defined in the MPT, plus an additional 5 mm. [Document#: EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The ESR replacement beam dump shall be capable of safely absorbing one bunch per second, with the bunch parameters defined in the MPT. [Document#: EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The material(s) of the ESR replacement beam dump shall be consistent with these requirements.02/09/2026ApprovedFALSE
- 6.04.04.03.01.02The geometry of the ESR replacement dump shall be consistent with the impedance budget requirements of the ESR.02/09/2026ApprovedFALSE
ESR-STRAIGHT : Straight Sections
- ESR-STRAIGHT EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.02The phase advance of each straight section shall be tunable in order to optimize the dynamic aperture of the ESR.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet integrated gradient field, G, shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet-to-magnet field variability between magnets shall be less than 0.25%.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The field harmonic measurements shall be measured at the reference radius of 25mm.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The reference integrated field for the measurement shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The integrated field over the length of the magnet at the reference radius shall meet the following harmonic multipole content:02/09/2026ApprovedFALSE
- 6.02.02.03.04.01b2=10000, a2 = N/A02/09/2026ApprovedFALSE
- 6.02.02.03.04.01-2.00 < b3 < 2.00, -1.00 < a3 < 1.0002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b4 < 1.75, -0.47 < a4 < 0.4602/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.50 < b5 < 0.50, -0.30 < a5 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.75 < b6 < 1.75, -0.20 < a6 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b7 < 1.00, -0.50 < a7 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b8 < 1.00, -0.50 < a8 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b9 < 1.00, -0.50 < a9 < 0.5002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b10 < 1.00, -0.20 < a10 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b11 < 1.00, -0.40 < a11 < 0.4002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b12 < 1.00, -0.30 < a12 < 0.3002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b13 < 1.00, -0.20 < a13 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-0.30 < b14 < 0.30, -0.02 < a14 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b15 < 1.00, -0.20 < a15 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.04.01-1.00 < b16 < 1.00, -0.20 < a16 < 0.2002/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum magnet-to-magnet variability shall be 0.5%.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within reference radius at half and full field excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < b15 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < b16 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet integrated dipole field (B) shall be 12 milli T-m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum magnet-to-magnet variability shall be 0.5%.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall be measured using the field homogeneity measurement methodology defined to satisfy its operational harmonic multipole content constraints.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet field quality shall be measured within the reference radius at half and full excitation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The integrated field over the length of the magnet shall have a variation with respect to transverse offset of less than |dB|/B = 0.003 and shall meet the following multipole content requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01a1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a2 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a3 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a4 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a5 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a6 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a7 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a8 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a9 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a10 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a11 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a12 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-5 < a14 < 502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a13 < 2502/09/2026ApprovedFALSE
- 6.02.02.03.05.01-25 < a15 < 2502/09/2026ApprovedFALSE
- 6.02.02The ESR straight sections IR02, IR04, IR10 and IR12 shall be based on FODO cells.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The reference integrated field for the measurement shall be 11.3 T.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.02/09/2026ApprovedFALSE
- 6.02.02Ther ESR shall have matching sections at the ends of each of the straight sections to compensate for the different FODO cell lengths with respect to the arc FODO cells imposed by geometric constraints.02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be single function quadrupole with a normal field rotation.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The maximum physical magnet length shall be 0.88 m.02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The magnet shall be designed to fit within the following envelope:02/09/2026ApprovedFALSE
- 6.02.02.03.04.01The maximum magnet axial dimensions shall be X = 45 cm and Y = 45 cm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The magnet shall operate with a single functions with a Dipole field type and Horizontal field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum physical magnet length shall be 0.2 m.02/09/2026ApprovedFALSE
- 6.02.02.03.05.01The maximum physical magnet length shall be 0.2 m.02/09/2026ApprovedFALSE

Hadron Storage Ring Requirements
General, functional and performance requirements associated with the Hadron Storage Ring of the Electron Ion Collider.
- NameWBSDescriptionUpdatedStatusTBD
HSR : Hadron Storage Ring
- 6.02.03The range of unpolarized ion species currently produced by the Relativistic Heavy Ion Collider (RHIC) complex shall be preserved for Electron-Ion Collider (EIC) Hadron Storage Ring (HSR) operation (from deuterons to uranium) defined in the Master Parameter Table. Refer to [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03The HSR shall deliver Protons bunches having at least a 70% polarization at full beam energy ready for collision.02/09/2026ApprovedFALSE
- 6.02.03The HSR shall deliver 3He bunches having at least a 70% polarization at full beam energy ready for collision.02/09/2026ApprovedFALSE
- 6.02.03Design of the Hadron storage ring shall allow the possibility of future operation with a polarized deuteron beam.02/09/2026ApprovedFALSE
- 6.02.03The HSR shall provide the capability to collide protons at beam energies of 41 GeV, and from 100 to 275 GeV.02/09/2026ApprovedFALSE
- 6.02.03The HSR shall provide the capability to collide 3He at beam energies of 41 GeV/nucleon, and from 100 to 183 GeV/nucleon.02/09/2026ApprovedFALSE
- 6.02.03The HSR shall provide the capability to collide electrons with Au ions at 41 GeV/nucleon and from 100 to 110 GeV/nucleon energies.02/09/2026ApprovedFALSE
- 6.02.03The HSR shall provide the capability to collide other ion species at a maximum energy equivalent to a beam rigidity Bρ value of 916.67 Tm.02/09/2026ApprovedFALSE
- 6.02.03The HSR shall provide the capability to vary the hadron revolution frequency to match it at different hadron energies (41 GeV/nucleon and 100 - 275 GeV/nucleon) with the revolution frequency of electron beam in the ESR.02/09/2026ApprovedFALSE
- 6.02.03The HSR Ion bunches shall meet the parameters specified for different species defined in MPT. [Document#:EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.02.03The HSR shall be able to provide beams of required species for collision having the beam currents as specified in the MPT. [Document#:EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.02.03The HSR Injection system transport line shall be modified to add septum magnets in the Q3-Q4 warm straight section of the HSR on 4 o’clock side of the IR4 for hadron beam transfer into the HSR beam pipe.02/09/2026ApprovedFALSE
- 6.02.03The HSR shall utilize a vacuum system capable of operating with peak and average beam current defined in MPT. [Document#:EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.02.03The Relativistic Heavy Ion Collider (RHIC) lattice shall be preserved and where required modified for Electron Ion Collider (EIC) Hadron Storage Ring (HSR) operations defined in the Master Parameter Table (MPT). [Document#:EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.02.03The HSR shall have a instrumentation system to operate for all beam species which need monitoring and will, where possible utilize the existing RHIC instrumentation system.02/09/2026ApprovedFALSE
- 6.02.03All HSR components and systems shall be designed and installed in line with all relevant regulatory codes and in full compliance with BNL SBMS.02/09/2026ApprovedFALSE
- 6.02.03The HSR uptime shall be consistent with the overall uptime requirements of the EIC.02/09/2026ApprovedFALSE
- 6.02.03The operational availability design target for the HSR Injection System shall be consistent with the operational availability target for the overall EIC as set forth in Electron-Ion Collider Global Requirements. Refer to [EIC-ORG-PLN-010].02/09/2026ApprovedFALSE
- 6.02.03The HSR shall meet the beam parameters specified for different species at injection defined in MPT. [Document#:EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.02.03The HSR injection system shall utilize the existing RHIC injector chain upstream of the RHIC-ATR D26 Dipole magnet with no modifications.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection system, consisting of the transport beamline, septum magnet and injection kickers, shall be capable of transporting a maximum beam rigidity of 81.12Tm from the transport line to IR4 central area and injecting it into the HSR.02/09/2026ApprovedFALSE
- 6.02.03The HSR Injection System design shall use a warm transport line in arc 6-4 as continuation of the Injection line to transport the hadron beam to the injection system located in IR4.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection transport beamline shall be able to transport polarized beam with less than 5% polarization loss.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection system shall be able to inject all beam species with less than 5% beam emittance increase.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection system shall be able to fill the HSR with 290 consecutive bunches without interruption.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection system shall be able to fill the HSR with one(1) bunch per AGS cycle for polarized proton, two(2) bunches per AGS cycle for ion beams.02/09/2026ApprovedFALSE
- 6.02.03The operational availability design target for the HSR Injection System shall be consistent with the operational availability target for the overall EIC as set forth in Electron-Ion Collider Global Requirements. Refer to [EIC-ORG-PLN-010].02/09/2026ApprovedFALSE
- 6.02.03The HSR injection system transfer line shall provide the following physical aperture:02/09/2026ApprovedFALSE
- 6.02.03The HSR Injection system transport line shall be modified to add septum magnets in the Q3-Q4 warm straight section of the HSR on 4 o’clock side of the IR4 for hadron beam transfer into the HSR beam pipe.02/09/2026ApprovedFALSE
- 6.02.03The HSR shall utilize an Injection system to provide the ability for single bunch transport and Injection at IR4.02/09/2026ApprovedFALSE
- 6.02.03Any reused existing RHIC-ATR transfer line magnets shall meet the requirements of the new approved HSR Injection line lattice.02/09/2026ApprovedFALSE
- 6.02.03New magnets shall only be used where any available existing magnets do not meet the requirements of the new approved HSR Injection line lattice.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection kickers shall provide a half aperture greater than 10σ for the stored beam at Collison energies.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection kickers shall provide a half aperture greater than 7σ for the stored beam at injection energies.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection kickers shall provide a half aperture greater than 6σ for the injected beam.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection kicker system shall be able to deflect the injected beam to be on axis02/09/2026ApprovedFALSE
- 6.02.03The HSR injection kicker system shall be installed in the straight section of the IR4 area.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection kicker system shall be capable of single-bunch on-axis injection to fill the ring with 290 bunches.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection kicker system rise time shall be short enough so that it does not step on the previous bunch.02/09/2026ApprovedFALSE
- 6.02.03The present RHIC injection kicker system including the Lambertson magnet and current injection kicker magnets at the 5 o’clock area shall be removed.02/09/2026ApprovedFALSE
- 6.02.03The HSR Injection System magnets shall be fed by a system of power supplies matched in voltage and maximum current to the specifications and requirements of the respective magnets02/09/2026ApprovedFALSE
- 6.02.03The vacuum level in the HSR transport line shall be kept at the same level as in the current RHIC-ATR line.02/09/2026ApprovedFALSE
- 6.02.03A ~20m section of the warm injection beamline near the HSR including the injection septum shall have a vacuum pressure of ~1E-10 torr or better, after baking .02/09/2026ApprovedFALSE
- 6.02.03The HSR injection system shall utilize the existing RHIC injector chain upstream of the RHIC-ATR D26 Dipole magnet with no modifications.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection system, consisting of the transport beamline, septum magnet and injection kickers, shall be capable of transporting a maximum beam rigidity of 81.12Tm from the transport line to IR4 central area and injecting it into the HSR.02/09/2026ApprovedFALSE
- 6.02.03The HSR Injection System design shall use a warm transport line in arc 6-4 as continuation of the Injection line to transport the hadron beam to the injection system located in IR4.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection transport beamline shall be able to transport polarized beam with less than 5% polarization loss.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection system shall be able to inject all beam species with less than 5% beam emittance increase.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection system shall be able to fill the HSR with 290 consecutive bunches without interruption.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection system shall be able to fill the HSR with one(1) bunch per AGS cycle for polarized proton, two(2) bunches per AGS cycle for ion beams.02/09/2026ApprovedFALSE
- 6.02.03The operational availability design target for the HSR Injection System shall be consistent with the operational availability target for the overall EIC as set forth in Electron-Ion Collider Global Requirements. Refer to [EIC-ORG-PLN-010].02/09/2026ApprovedFALSE
- 6.02.03The HSR injection system transfer line shall provide the following physical aperture:02/09/2026ApprovedFALSE
- 6.02.03The HSR Injection system transport line shall be modified to add septum magnets in the Q3-Q4 warm straight section of the HSR on 4 o’clock side of the IR4 for hadron beam transfer into the HSR beam pipe.02/09/2026ApprovedFALSE
- 6.02.03The HSR shall utilize an RF system capable of operating over the parameters defined in MPT. [Document#:EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.02.04.02The HSR shall have a control system which can operate the HSR consistent will the overall control of the other EIC system's and to ensure the HSR meets all the Physics requirements needed to deliver the physics goals of the EIC.02/09/2026ApprovedFALSE
- 6.02.04.04The HSR shall have a cryogenic system to cool and operate all elements which need cryogenic cooling and will, where possible utilize the existing RHIC cooling system.02/09/2026ApprovedFALSE
- 6.02.03The HSR proton beam shall be ramped from injection energy to a maximum collision energy of 275 GeV.02/09/2026ApprovedFALSE
- 6.02.03The HSR shall be designed for changing beam optics between the injection configuration to collision configuration with beam in the machine.02/09/2026ApprovedFALSE
- 6.02.03The HSR beam at collision energies shall be synchronized to the revolution frequency of the electron beam.02/09/2026ApprovedFALSE
- 6.02.03The HSR systems shall provide the capability to operate with a radial shift, having a full range of +/-21 (mm) beam orbit in all arcs.02/09/2026ApprovedFALSE
- 6.02.03The HSR systems shall operate with a vertical orbit excursion having a full range of +/-2 (mm) beam orbit in all arcs.02/09/2026ApprovedFALSE
- 6.02.03The HSR decoupling system shall provide the capability to maintain a flat beam with the required beam size ratios.02/09/2026ApprovedFALSE
- 6.02.03The HSR orbit tune chromaticity correction, nonlinear correction and gamma-T jump systems, shall be provided with the same capability as in the present RHIC machine.02/09/2026ApprovedFALSE
- 6.02.03The HSR shall provide a dynamic aperture greater than 6σ under colliding beam conditions.02/09/2026ApprovedFALSE
- 6.02.03The physical aperture for the circulating hadron beam at the store energies shall be greater than 10σ in the horizontal and vertical planes.02/09/2026ApprovedFALSE
- 6.02.03The physical aperture for the circulating hadron beam at the injection energy shall be greater than 7σ in the horizontal and 6σ in the vertical plane in all locations, for normalized beam emittance of 2.5 um.02/09/2026ApprovedFALSE
- 6.02.03The physical aperture for the circulating hadron beam at the injection energy in the beam dump beam pipe shall be greater than 6σ in the horizontal and vertical planes.02/09/2026In ProcessFALSE
- 6.02.03The apertures of the downstream, near-IR magnets, within the IR hadron lattice, shall be large enough to transport a 4 mrad cone of neutral particles from the IP without obstruction.02/09/2026ApprovedFALSE
- 6.02.03The apertures of the forward side near-IR magnets, within the IR hadron lattice, shall be large enough to transport particles having a transverse momentum of up to 1.3 GeV/c with a 275GeV proton beam without obstruction.02/09/2026ApprovedFALSE
- 6.02.03The apertures of the forward side, near-IR magnets, within the IR hadron lattice, shall accommodate off beam-axis detectors which can detect forward scattered protons with a transverse momentum of 0.2GeV to 1.3GeV at a proton beam energy of 275GeV.02/09/2026ApprovedFALSE
- 6.02.03At the store energies the vacuum chamber shall provide sufficient horizontal and vertical aperture to accommodate, a +/-10 sigma beam, where the vertical RMS beam size is based on the emittance of a fully coupled beam. In the arcs an additional 20 mm horizontally and 2 mm vertically shall be included to account for the radially shifted beam and orbit errors.02/09/2026ApprovedFALSE
- 6.02.03The HSR alignment requirements are established by dynamic aperture and polarization tracking. The HSR RMS alignment tolerances shall be such that all the beam parameters listed in the MPT can be satisfied. Refer to [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03The operational availability design target for the HSR shall be consistent with the operational availability target for the overall EIC as set forth in Electron-Ion Collider Global Requirements Document. Refer to [EIC-ORG-PLN-010].02/09/2026ApprovedFALSE
- 6.02.03The HSR shall deliver spin polarized ion beams with store-averaged polarization of at least 70 percent at collision.02/09/2026ApprovedFALSE
- 6.02.03The HSR lattice shall have features to preserve the polarization from injection to collision energies.02/09/2026ApprovedFALSE
- 6.02.03The HSR lattice will utlise RHIC snakes and spin rotators to control the hadron spin.02/09/2026ApprovedFALSE
- 6.02.03The HSR shall be capable of delivering bunches with longitudinal spins to the IP.02/09/2026ApprovedFALSE
- 6.02.03The HSR Lattice shall contain provisions for correctors such as horizontal and vertical dipole correctors, skew quadrupoles, octupoles, etc. as needed.02/09/2026ApprovedFALSE
HSR-MAG : HSR Magnet (WBS 6.05.02.01)
- 6.02.03The Lattice designs shall use existing RHIC magnets, where possible to meet the requirements for all operational scenarios required to meet the MPT [Document#:EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03The HSR sections consisting of Blue Ring segments shall provide the same quench protection functionality as Yellow Ring segments (diode polarity).02/09/2026ApprovedFALSE
- 6.02.03The HSR sextupole families shall be wired to allow for the compensation of for linear and non-linear chromaticity.02/09/2026ApprovedFALSE
HSR-MAG-D5I : HSR Magnet D5I (WBS 6.05.02.01)
- 6.02.03.10The Dipole shall be a 'D5I' RHIC Magnet in a 'D5I' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 6.92 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be 3.45 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rref=TBD(mm) \ TBD (A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10b1=10000,a1=002/09/2026In ProcessFALSE
- 6.02.03.10b2=tbd, a2=tbd02/09/2026In ProcessFALSE
- 6.02.03.10b3=tbd, a3=tbd02/09/2026In ProcessFALSE
- 6.02.03.10b4=tbd, a4=tbd02/09/2026In ProcessFALSE
- 6.02.03.10b5=tbd, a5=tbd02/09/2026In ProcessFALSE
- 6.02.03.10b6=tbd, a6=tbd02/09/2026In ProcessFALSE
- 6.02.03.10b7=tbd, a7=tbd02/09/2026In ProcessFALSE
- 6.02.03.10b8=tbd, a8=tbd02/09/2026In ProcessFALSE
- 6.02.03.10b9=tbd, a9=tbd02/09/2026In ProcessFALSE
- 6.02.03.10b10=tbd, a10=tbd02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- HSR-MAG-D5I EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.03.10The magnet is a Dipole(D5I) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a Dipole(D5I) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a Dipole(D5I) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-D5O : HSR Magnet D5O (WBS 6.05.02.01)
- 6.02.03.10The Dipole shall be a 'D5O' RHIC Magnet in a 'D5O' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 8.71 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be 3.45 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Ref#1: Rr=80(mm), Ir=660(A) Ref#2: Rr=80(mm), Ir=5000(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: b1=10000,a1=0 Ref#2: b1=10000,a1=002/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.2<b2<0.36, -1.25<a2<1.81 Ref#2: -0.18<b2<0.38, -3.02<a2<002/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -2.39<b3<2.05, -1.2<a3<-0.86 Ref#2: -0.93<b3<2.59, -1.25<a3<-0.8902/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.08<b4<0.08, -0.45<a4<0.39 Ref#2: -0.07<b4<0.09, -0.77<a4<0.0502/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.9<b5<0.24, 0.15<a5<0.27 Ref#2: -0.44<b5<0.74, 0.14<a5<0.2602/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.03<b6<0.03, -0.13<a6<0.17 Ref#2: -0.07<b6<0.01, -0.22<a6<0.102/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.26<b7<0, -0.12<a7<-0.08 Ref#2: 1.05<b7<1.33, -0.12<a7<-0.0802/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.02<b8<0, -0.06<a8<0.04 Ref#2: -0.02<b8<0, -0.06<a8<0.0402/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: 0.02<b9<0.26, 0.01<a9<0.03 Ref#2: 0<b9<0.24, 0.01<a9<0.0302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: 0<b10<0.04, 0.02<a10<0.06 Ref#2: 0<b10<0.04, 0.02<a10<0.0602/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- HSR-MAG-D5O EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.03.10The magnet is a Dipole(D5O) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a Dipole(D5O) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a Dipole(D5O) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-D6 : HSR Magnet D6 (WBS 6.05.02.01)
- 6.02.03.10The Dipole shall be a 'D96' RHIC Magnet in a 'D6' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 2.95 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be 3.45 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Ref#1: Rr=80(mm), Ir=660(A) Ref#2: Rr=80(mm), Ir=5000(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: b1=10000,a1=0 Ref#2: b1=10000,a1=002/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.2<b2<0.36, -1.25<a2<1.81 Ref#2: -0.18<b2<0.38, -3.02<a2<002/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -2.39<b3<2.05, -1.2<a3<-0.86 Ref#2: -0.93<b3<2.59, -1.25<a3<-0.8902/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.08<b4<0.08, -0.45<a4<0.39 Ref#2: -0.07<b4<0.09, -0.77<a4<0.0502/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.9<b5<0.24, 0.15<a5<0.27 Ref#2: -0.44<b5<0.74, 0.14<a5<0.2602/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.03<b6<0.03, -0.13<a6<0.17 Ref#2: -0.07<b6<0.01, -0.22<a6<0.102/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.26<b7<0, -0.12<a7<-0.08 Ref#2: 1.05<b7<1.33, -0.12<a7<-0.0802/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.02<b8<0, -0.06<a8<0.04 Ref#2: -0.02<b8<0, -0.06<a8<0.0402/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: 0.02<b9<0.26, 0.01<a9<0.03 Ref#2: 0<b9<0.24, 0.01<a9<0.0302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: 0<b10<0.04, 0.02<a10<0.06 Ref#2: 0<b10<0.04, 0.02<a10<0.0602/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- HSR-MAG-D6 EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.03.10The magnet is a Dipole(D6) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a Dipole(D6) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a Dipole(D6) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-D8(DRG) : HSR Magnet D8/DRG Dipole Magnet (WBS 6.05.02.01)
HSR-MAG-D9 : HSR Magnet D9 (WBS 6.05.02.01)
- 6.02.03.10The Dipole shall be a 'D96' RHIC Magnet in a 'D9' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 2.95 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be 3.45 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Ref#1: Rr=80(mm), Ir=660(A) Ref#2: Rr=80(mm), Ir=5000(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: b1=10000,a1=0 Ref#2: b1=10000,a1=002/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.2<b2<0.36, -1.25<a2<1.81 Ref#2: -0.18<b2<0.38, -3.02<a2<002/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -2.39<b3<2.05, -1.2<a3<-0.86 Ref#2: -0.93<b3<2.59, -1.25<a3<-0.8902/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.08<b4<0.08, -0.45<a4<0.39 Ref#2: -0.07<b4<0.09, -0.77<a4<0.0502/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.9<b5<0.24, 0.15<a5<0.27 Ref#2: -0.44<b5<0.74, 0.14<a5<0.2602/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.03<b6<0.03, -0.13<a6<0.17 Ref#2: -0.07<b6<0.01, -0.22<a6<0.102/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.26<b7<0, -0.12<a7<-0.08 Ref#2: 1.05<b7<1.33, -0.12<a7<-0.0802/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.02<b8<0, -0.06<a8<0.04 Ref#2: -0.02<b8<0, -0.06<a8<0.0402/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: 0.02<b9<0.26, 0.01<a9<0.03 Ref#2: 0<b9<0.24, 0.01<a9<0.0302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: 0<b10<0.04, 0.02<a10<0.06 Ref#2: 0<b10<0.04, 0.02<a10<0.0602/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- HSR-MAG-D9 EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.03.10The magnet is a Dipole(D9) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a Dipole(D9) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a Dipole(D9) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ1(Q1) : HSR Q1 Magnet(CQ1_QRI_Q1)
- 6.02.03.10The Quadrupole shall be a 'QRI' RHIC Magnet in a 'CQ1' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 1.44 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 65 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet gradient field (G) shall be 48.1 (T/m).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ1(QRI) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=40(mm), Ir=5000A.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10-0.3<b3<0.58, -0.79<a3<0.3302/09/2026In ProcessFALSE
- 6.02.03.10-0.58<b4<0.3, -0.27<a4<0.2302/09/2026In ProcessFALSE
- 6.02.03.10-0.23<b5<0.27, -0.37<a5<0.2102/09/2026In ProcessFALSE
- 6.02.03.101.56<b6<2.74, -0.86<a6<-0.6202/09/2026In ProcessFALSE
- 6.02.03.10-0.19<b7<0.25, -0.09<a7<0.4902/09/2026In ProcessFALSE
- 6.02.03.10-0.32<b8<0.04, -0.12<a8<0.0402/09/2026In ProcessFALSE
- 6.02.03.10-0.03<b9<0.07, -0.07<a9<0.0302/09/2026In ProcessFALSE
- 6.02.03.10-0.27<b10<0.07, 0.16<a10<0.202/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ1(QRI) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ1(QRI) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ2(LA_KickH) : HSR Q2 Magnet(CQ2_CRI_Q2)
- 6.02.03.10The Horizontal Kicker shall be a 'CRI' RHIC Magnet in a 'CQ2' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 65 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B at 40mm,50(A)=0.0446 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ2(CRI) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=40(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10-120<b5<120, a5~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b6<100, a6~002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ2(CRI) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ2(CRI) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ2(LA_KickV) : HSR CQ2_CRI_LA_KickH
- 6.02.03.10The Vertical Kicker shall be a 'CRJ' RHIC Magnet in a 'CQ2' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 65 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B at 40mm,50(A)=0.285 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ2(CRJ) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=40(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10b1=10000,a1=002/09/2026In ProcessFALSE
- 6.02.03.10-30<b2<30, a2~002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10-120<b5<120, a5~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b6<100, a6~002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ2(CRJ) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ2(CRJ) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ2(Q2)
- 6.02.03.10The Quadrupole shall be a 'QRK' RHIC Magnet in a 'CQ2' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 3.4 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 65 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet gradient field (G) shall be 47.1 (T/m).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ2(QRK) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=40(mm), Ir=5000A.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10-0.51<b3<0.35, -0.69<a3<0.3302/09/2026In ProcessFALSE
- 6.02.03.10-1.43<b4<-1.05, -0.09<a4<0.3502/09/2026In ProcessFALSE
- 6.02.03.10-0.14<b5<0.3, -0.23<a5<0.3302/09/2026In ProcessFALSE
- 6.02.03.100.15<b6<0.91, -0.36<a6<0.1802/09/2026In ProcessFALSE
- 6.02.03.10-0.17<b7<0.21, -0.09<a7<0.3502/09/2026In ProcessFALSE
- 6.02.03.10-0.23<b8<-0.05, -0.11<a8<0.0902/09/2026In ProcessFALSE
- 6.02.03.10-0.05<b9<0.05, -0.06<a9<0.0602/09/2026In ProcessFALSE
- 6.02.03.10-0.44<b10<-0.3, 0.03<a10<0.0702/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ2(QRK) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ2(QRK) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ3(LA_KickH)
- 6.02.03.10The Horizontal Kicker shall be a 'CRL' RHIC Magnet in a 'CQ3' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 65 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B at 40mm,50(A)=0.0446 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ3(CRL) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=40(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10-120<b5<120, a5~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b6<100, a6~002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ3(CRL) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ3(CRL) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ3(LA_KickV)
- 6.02.03.10The Vertical Kicker shall be a 'CRM' RHIC Magnet in a 'CQ3' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 65 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B at 40mm,50(A)=0.285 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ3(CRM) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=40(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10b1=10000,a1=002/09/2026In ProcessFALSE
- 6.02.03.10-30<b2<30, a2~002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10-120<b5<120, a5~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b6<100, a6~002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ3(CRM) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ3(CRM) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ3(LA_SkewQuad)
- 6.02.03.10The LA SkewQuad shall be a 'CRK' RHIC Magnet in a 'CQ3' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 65 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ3(CRK) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rref=TBD(mm) \ TBD (A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10b1=10000,a1=002/09/2026In ProcessFALSE
- 6.02.03.10b2=tbd, a2=tbd02/09/2026In ProcessFALSE
- 6.02.03.10b3=tbd, a3=tbd02/09/2026In ProcessFALSE
- 6.02.03.10b4=tbd, a4=tbd02/09/2026In ProcessFALSE
- 6.02.03.10b5=tbd, a5=tbd02/09/2026In ProcessFALSE
- 6.02.03.10b6=tbd, a6=tbd02/09/2026In ProcessFALSE
- 6.02.03.10b7=tbd, a7=tbd02/09/2026In ProcessFALSE
- 6.02.03.10b8=tbd, a8=tbd02/09/2026In ProcessFALSE
- 6.02.03.10b9=tbd, a9=tbd02/09/2026In ProcessFALSE
- 6.02.03.10b10=tbd, a10=tbd02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ3(CRK) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ3(CRK) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ3(Q3)
- 6.02.03.10The Quadrupole shall be a 'QRJ' RHIC Magnet in a 'CQ3' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 2.1 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 65 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet gradient field (G) shall be 47.3 (T/m).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ3(QRJ) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=40(mm), Ir=5000A.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10-0.72<b3<0.74, -0.19<a3<0.9902/09/2026In ProcessFALSE
- 6.02.03.10-0.85<b4<0.17, -0.21<a4<0.4502/09/2026In ProcessFALSE
- 6.02.03.10-0.46<b5<0, -0.09<a5<0.2102/09/2026In ProcessFALSE
- 6.02.03.101.54<b6<1.8, -0.34<a6<-0.202/09/2026In ProcessFALSE
- 6.02.03.10-0.1<b7<0.24, -0.1<a7<0.2802/09/2026In ProcessFALSE
- 6.02.03.10-0.13<b8<0.13, -0.08<a8<0.0602/09/2026In ProcessFALSE
- 6.02.03.10-0.01<b9<0.11, -0.02<a9<0.0402/09/2026In ProcessFALSE
- 6.02.03.10-0.34<b10<-0.28, 0.06<a10<0.102/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ3(QRJ) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ3(QRJ) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ4(KickH)
- 6.02.03.10The Horizontal Kicker shall be a 'CRF' RHIC Magnet in a 'CQ4' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,52(A)=0.596 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ4(CRF) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10-30<b1<30, a1~002/09/2026In ProcessFALSE
- 6.02.03.10b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ4(CRF) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ4(CRF) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ4(KickV)
- 6.02.03.10The Vertical Kicker shall be a 'CRC' RHIC Magnet in a 'CQ4' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,52(A)=0.596 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ4(CRC) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10b1=10000,a1=002/09/2026In ProcessFALSE
- 6.02.03.10-30<b2<30, a2~002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ4(CRC) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ4(CRC) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ4(Q4)
- 6.02.03.10The Quadrupole shall be a 'QR4' RHIC Magnet in a 'CQ4' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 1.83 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet gradient field (G) shall be 75.5 (T/m).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ4(QR4) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be: Ref#1: Rr=25(mm), Ir=10(A) Ref#2: Rr=25(mm), Ir=5000(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: b2=10000,a2=0 Ref#2: b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -2.22<b3<1, -3.59<a3<-0.27 Ref#2:-1.98<b3<1.56, -3.51<a3<-0.1502/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-2.46<b4<-0.56, -0.47<a4<1.43 Ref#2:-2<b4<0.78, -0.67<a4<1.1302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.35<b5<0.63, -0.42<a5<0.54 Ref#2:-1<b5<2.14, -1.66<a5<1.1402/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:1<b6<1.84, -4.05<a6<-3.47 Ref#2:5.08<b6<6.32, -4.15<a6<-3.5302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.12<b7<0.14, -0.09<a7<0.17 Ref#2:-0.08<b7<0.18, -0.08<a7<0.202/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.61<b8<-0.43, -0.1<a8<0.12 Ref#2:-0.63<b8<-0.41, -0.05<a8<0.1302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.04<b9<0.06, -0.05<a9<0.05 Ref#2:-0.08<b9<0.2, -0.07<a9<0.1302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-1.35<b10<-1.23, 0.33<a10<0.37 Ref#2:-1.52<b10<-1.36, 0.35<a10<0.4302/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ4(QR4) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ4(QR4) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ4(Q4T)
- 6.02.03.10The Quadrupole shall be a 'QRT' RHIC Magnet in a 'CQ4' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.75 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet gradient field (G) shall be 29.4 (T/m).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ4(QRT) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=31(mm), Ir=25(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.100.01<b3<1.38, -2.35<a3<0.6702/09/2026In ProcessFALSE
- 6.02.03.10-4.56<b4<-3.4, -0.24<a4<0.1602/09/2026In ProcessFALSE
- 6.02.03.10-0.2<b5<0.14, -0.13<a5<0.2602/09/2026In ProcessFALSE
- 6.02.03.10-10.47<b6<-9.97, -0.27<a6<-0.0402/09/2026In ProcessFALSE
- 6.02.03.100.09<b10<-1.55, 0.03<a10<0.0302/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ4(QRT) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ4(QRT) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ4(SkewQuad)
- 6.02.03.10The SkewQuad shall be a 'CRF' RHIC Magnet in a 'CQ4' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,49,6(A)=0.067(T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ4(CRF) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10-30<b1<30, a1~002/09/2026In ProcessFALSE
- 6.02.03.10b2=0,a2=1000002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ4(CRF) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ4(CRF) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ5(GammaTQuad)
- 6.02.03.10The GammaTQuad shall be a 'CRB' RHIC Magnet in a 'CQ5' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,49,6(A)=0.067(T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ5(CRB) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10-30<b1<30, a1~002/09/2026In ProcessFALSE
- 6.02.03.10b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ5(CRB) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ5(CRB) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ5(KickH)
- 6.02.03.10The Horizontal Kicker shall be a 'CRB' RHIC Magnet in a 'CQ5' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,52(A)=0.596 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ5(CRB) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10-30<b1<30, a1~002/09/2026In ProcessFALSE
- 6.02.03.10b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ5(CRB) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ5(CRB) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ5(KickV)
- 6.02.03.10The Vertical Kicker shall be a 'CRC' RHIC Magnet in a 'CQ5' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,52(A)=0.596 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ5(CRC) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10b1=10000,a1=002/09/2026In ProcessFALSE
- 6.02.03.10-30<b2<30, a2~002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ5(CRC) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ5(CRC) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ5(Q5)
- 6.02.03.10The Quadrupole shall be a 'QRG' RHIC Magnet in a 'CQ5' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 1.13 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet gradient field (G) shall be 75.5 (T/m).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ5(QRG) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be: Ref#1: Rr=25(mm), Ir=10(A) Ref#2: Rr=25(mm), Ir=5000(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: b2=10000,a2=0 Ref#2: b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -2.22<b3<1, -3.59<a3<-0.27 Ref#2:-1.98<b3<1.56, -3.51<a3<-0.1502/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-2.46<b4<-0.56, -0.47<a4<1.43 Ref#2:-2<b4<0.78, -0.67<a4<1.1302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.35<b5<0.63, -0.42<a5<0.54 Ref#2:-1<b5<2.14, -1.66<a5<1.1402/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:1<b6<1.84, -4.05<a6<-3.47 Ref#2:5.08<b6<6.32, -4.15<a6<-3.5302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.12<b7<0.14, -0.09<a7<0.17 Ref#2:-0.08<b7<0.18, -0.08<a7<0.202/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.61<b8<-0.43, -0.1<a8<0.12 Ref#2:-0.63<b8<-0.41, -0.05<a8<0.1302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.04<b9<0.06, -0.05<a9<0.05 Ref#2:-0.08<b9<0.2, -0.07<a9<0.1302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-1.35<b10<-1.23, 0.33<a10<0.37 Ref#2:-1.52<b10<-1.36, 0.35<a10<0.4302/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ5(QRG) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ5(QRG) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ5(Q5T)
- 6.02.03.10The Trim quadrupole shall be a 'QRT' RHIC Magnet in a 'CQ5' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.75 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet gradient field (G) shall be 29.4 (T/m).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ5(QRT) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=31(mm), Ir=25(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.100.01<b3<1.38, -2.35<a3<0.6702/09/2026In ProcessFALSE
- 6.02.03.10-4.56<b4<-3.4, -0.24<a4<0.1602/09/2026In ProcessFALSE
- 6.02.03.10-0.2<b5<0.14, -0.13<a5<0.2602/09/2026In ProcessFALSE
- 6.02.03.10-10.47<b6<-9.97, -0.27<a6<-0.0402/09/2026In ProcessFALSE
- 6.02.03.100.09<b10<-1.55, 0.03<a10<0.0302/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ5(QRT) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ5(QRT) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ5(SkewQuad)
- 6.02.03.10The SkewQuad shall be a 'CRC' RHIC Magnet in a 'CQ5' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,49,6(A)=0.067(T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ5(CRC) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10-30<b1<30, a1~002/09/2026In ProcessFALSE
- 6.02.03.10b2=0,a2=1000002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ5(CRC) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ5(CRC) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ6(GammaTQuad)
- 6.02.03.10The GammaTQuad shall be a 'CRB' RHIC Magnet in a 'CQ6' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,49,6(A)=0.067(T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ6(CRB) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10-30<b1<30, a1~002/09/2026In ProcessFALSE
- 6.02.03.10b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ6(CRB) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ6(CRB) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ6(KickH)
- 6.02.03.10The Horizontal Kicker shall be a 'CRB' RHIC Magnet in a 'CQ6' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,52(A)=0.596 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ6(CRB) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10-30<b1<30, a1~002/09/2026In ProcessFALSE
- 6.02.03.10b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ6(CRB) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ6(CRB) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ6(KickV)
- 6.02.03.10The Vertical Kicker shall be a 'CRC' RHIC Magnet in a 'CQ6' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,52(A)=0.596 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ6(CRC) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10b1=10000,a1=002/09/2026In ProcessFALSE
- 6.02.03.10-30<b2<30, a2~002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ6(CRC) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ6(CRC) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ6(Q6)
- 6.02.03.10The Quadrupole shall be a 'QRG' RHIC Magnet in a 'CQ6' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 1.13 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet gradient field (G) shall be 75.5 (T/m).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ6(QRG) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be: Ref#1: Rr=25(mm), Ir=10(A) Ref#2: Rr=25(mm), Ir=5000(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: b2=10000,a2=0 Ref#2: b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -2.22<b3<1, -3.59<a3<-0.27 Ref#2:-1.98<b3<1.56, -3.51<a3<-0.1502/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-2.46<b4<-0.56, -0.47<a4<1.43 Ref#2:-2<b4<0.78, -0.67<a4<1.1302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.35<b5<0.63, -0.42<a5<0.54 Ref#2:-1<b5<2.14, -1.66<a5<1.1402/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:1<b6<1.84, -4.05<a6<-3.47 Ref#2:5.08<b6<6.32, -4.15<a6<-3.5302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.12<b7<0.14, -0.09<a7<0.17 Ref#2:-0.08<b7<0.18, -0.08<a7<0.202/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.61<b8<-0.43, -0.1<a8<0.12 Ref#2:-0.63<b8<-0.41, -0.05<a8<0.1302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.04<b9<0.06, -0.05<a9<0.05 Ref#2:-0.08<b9<0.2, -0.07<a9<0.1302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-1.35<b10<-1.23, 0.33<a10<0.37 Ref#2:-1.52<b10<-1.36, 0.35<a10<0.4302/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ6(QRG) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ6(QRG) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ6(Q6T)
- 6.02.03.10The Quadrupole shall be a 'QRT' RHIC Magnet in a 'CQ6' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.75 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet gradient field (G) shall be 29.4 (T/m).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ6(QRT) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=31(mm), Ir=25(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.100.01<b3<1.38, -2.35<a3<0.6702/09/2026In ProcessFALSE
- 6.02.03.10-4.56<b4<-3.4, -0.24<a4<0.1602/09/2026In ProcessFALSE
- 6.02.03.10-0.2<b5<0.14, -0.13<a5<0.2602/09/2026In ProcessFALSE
- 6.02.03.10-10.47<b6<-9.97, -0.27<a6<-0.0402/09/2026In ProcessFALSE
- 6.02.03.100.09<b10<-1.55, 0.03<a10<0.0302/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ6(QRT) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ6(QRT) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ6(SkewQuad)
- 6.02.03.10The SkewQuad shall be a 'CRC' RHIC Magnet in a 'CQ6' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,49,6(A)=0.067(T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ6(CRC) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10-30<b1<30, a1~002/09/2026In ProcessFALSE
- 6.02.03.10b2=0,a2=1000002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ6(CRC) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ6(CRC) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ7(GammaTQuad)
- 6.02.03.10The GammaTQuad shall be a 'CRB' RHIC Magnet in a 'CQ7' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,49,6(A)=0.067(T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ7(CRB) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10-30<b1<30, a1~002/09/2026In ProcessFALSE
- 6.02.03.10b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ7(CRB) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ7(CRB) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ7(KickH)
- 6.02.03.10The Horizontal Kicker shall be a 'CRB' RHIC Magnet in a 'CQ7' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,52(A)=0.596 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ7(CRB) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10-30<b1<30, a1~002/09/2026In ProcessFALSE
- 6.02.03.10b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ7(CRB) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ7(CRB) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ7(KickV)
- 6.02.03.10The Vertical Kicker shall be a 'CRC' RHIC Magnet in a 'CQ7' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,52(A)=0.596 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ7(CRC) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10b1=10000,a1=002/09/2026In ProcessFALSE
- 6.02.03.10-30<b2<30, a2~002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ7(CRC) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ7(CRC) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ7(Q7)
- 6.02.03.10The Quadrupole shall be a 'QR7' RHIC Magnet in a 'CQ7' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.95 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet gradient field (G) shall be 75.5 (T/m).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ7(QR7) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be: Ref#1: Rr=25(mm), Ir=10(A) Ref#2: Rr=25(mm), Ir=5000(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: b2=10000,a2=0 Ref#2: b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -2.22<b3<1, -3.59<a3<-0.27 Ref#2:-1.98<b3<1.56, -3.51<a3<-0.1502/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-2.46<b4<-0.56, -0.47<a4<1.43 Ref#2:-2<b4<0.78, -0.67<a4<1.1302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.35<b5<0.63, -0.42<a5<0.54 Ref#2:-1<b5<2.14, -1.66<a5<1.1402/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:1<b6<1.84, -4.05<a6<-3.47 Ref#2:5.08<b6<6.32, -4.15<a6<-3.5302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.12<b7<0.14, -0.09<a7<0.17 Ref#2:-0.08<b7<0.18, -0.08<a7<0.202/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.61<b8<-0.43, -0.1<a8<0.12 Ref#2:-0.63<b8<-0.41, -0.05<a8<0.1302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.04<b9<0.06, -0.05<a9<0.05 Ref#2:-0.08<b9<0.2, -0.07<a9<0.1302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-1.35<b10<-1.23, 0.33<a10<0.37 Ref#2:-1.52<b10<-1.36, 0.35<a10<0.4302/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ7(QR7) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ7(QR7) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ7(SkewQuad)
- 6.02.03.10The SkewQuad shall be a 'CRC' RHIC Magnet in a 'CQ7' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,49,6(A)=0.067(T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ7(CRC) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10-30<b1<30, a1~002/09/2026In ProcessFALSE
- 6.02.03.10b2=0,a2=1000002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ7(CRC) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ7(CRC) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ8(GammaTQuad)
- 6.02.03.10The GammaTQuad shall be a 'CRB' RHIC Magnet in a 'CQ8' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,49,6(A)=0.067(T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ8(CRB) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10-30<b1<30, a1~002/09/2026In ProcessFALSE
- 6.02.03.10b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ8(CRB) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ8(CRB) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ8(KickH)
- 6.02.03.10The Horizontal Kicker shall be a 'CRB' RHIC Magnet in a 'CQ8' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,52(A)=0.596 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ8(CRB) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10-30<b1<30, a1~002/09/2026In ProcessFALSE
- 6.02.03.10b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ8(CRB) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ8(CRB) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ8(KickV)
- 6.02.03.10The Vertical Kicker shall be a 'CRC' RHIC Magnet in a 'CQ8' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,52(A)=0.596 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ8(CRC) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10b1=10000,a1=002/09/2026In ProcessFALSE
- 6.02.03.10-30<b2<30, a2~002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ8(CRC) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ8(CRC) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ8(Q8)
- 6.02.03.10The Quadrupole shall be a 'QRG' RHIC Magnet in a 'CQ8' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 1.13 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet gradient field (G) shall be 75.5 (T/m).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ8(QRG) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be: Ref#1: Rr=25(mm), Ir=10(A) Ref#2: Rr=25(mm), Ir=5000(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: b2=10000,a2=0 Ref#2: b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -2.22<b3<1, -3.59<a3<-0.27 Ref#2:-1.98<b3<1.56, -3.51<a3<-0.1502/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-2.46<b4<-0.56, -0.47<a4<1.43 Ref#2:-2<b4<0.78, -0.67<a4<1.1302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.35<b5<0.63, -0.42<a5<0.54 Ref#2:-1<b5<2.14, -1.66<a5<1.1402/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:1<b6<1.84, -4.05<a6<-3.47 Ref#2:5.08<b6<6.32, -4.15<a6<-3.5302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.12<b7<0.14, -0.09<a7<0.17 Ref#2:-0.08<b7<0.18, -0.08<a7<0.202/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.61<b8<-0.43, -0.1<a8<0.12 Ref#2:-0.63<b8<-0.41, -0.05<a8<0.1302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.04<b9<0.06, -0.05<a9<0.05 Ref#2:-0.08<b9<0.2, -0.07<a9<0.1302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-1.35<b10<-1.23, 0.33<a10<0.37 Ref#2:-1.52<b10<-1.36, 0.35<a10<0.4302/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ8(QRG) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ8(QRG) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ8(SkewQuad)
- 6.02.03.10The SkewQuad shall be a 'CRC' RHIC Magnet in a 'CQ8' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,49,6(A)=0.067(T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ8(CRC) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10-30<b1<30, a1~002/09/2026In ProcessFALSE
- 6.02.03.10b2=0,a2=1000002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ8(CRC) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ8(CRC) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ9(KickH)
- 6.02.03.10The Horizontal Kicker shall be a 'CRF' RHIC Magnet in a 'CQ9' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,52(A)=0.596 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ9(CRF) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10-30<b1<30, a1~002/09/2026In ProcessFALSE
- 6.02.03.10b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ9(CRF) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ9(CRF) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ9(KickV)
- 6.02.03.10The Vertical Kicker shall be a 'CRC' RHIC Magnet in a 'CQ9' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,52(A)=0.596 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ9(CRC) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10b1=10000,a1=002/09/2026In ProcessFALSE
- 6.02.03.10-30<b2<30, a2~002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ9(CRC) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ9(CRC) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ9(Q9)
- 6.02.03.10The Quadrupole shall be a 'QRG' RHIC Magnet in a 'CQ9' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 1.13 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet gradient field (G) shall be 75.5 (T/m).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ9(QRG) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be: Ref#1: Rr=25(mm), Ir=10(A) Ref#2: Rr=25(mm), Ir=5000(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: b2=10000,a2=0 Ref#2: b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -2.22<b3<1, -3.59<a3<-0.27 Ref#2:-1.98<b3<1.56, -3.51<a3<-0.1502/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-2.46<b4<-0.56, -0.47<a4<1.43 Ref#2:-2<b4<0.78, -0.67<a4<1.1302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.35<b5<0.63, -0.42<a5<0.54 Ref#2:-1<b5<2.14, -1.66<a5<1.1402/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:1<b6<1.84, -4.05<a6<-3.47 Ref#2:5.08<b6<6.32, -4.15<a6<-3.5302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.12<b7<0.14, -0.09<a7<0.17 Ref#2:-0.08<b7<0.18, -0.08<a7<0.202/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.61<b8<-0.43, -0.1<a8<0.12 Ref#2:-0.63<b8<-0.41, -0.05<a8<0.1302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.04<b9<0.06, -0.05<a9<0.05 Ref#2:-0.08<b9<0.2, -0.07<a9<0.1302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-1.35<b10<-1.23, 0.33<a10<0.37 Ref#2:-1.52<b10<-1.36, 0.35<a10<0.4302/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ9(QRG) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ9(QRG) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQ9(SkewQuad)
- 6.02.03.10The SkewQuad shall be a 'CRC' RHIC Magnet in a 'CQ9' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,49,6(A)=0.067(T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ9(CRC) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10-30<b1<30, a1~002/09/2026In ProcessFALSE
- 6.02.03.10b2=0,a2=1000002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ9(CRC) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQ9(CRC) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQS(GammaTQuad)
- 6.02.03.10The GammaTQuad shall be a 'CRB' RHIC Magnet in a 'CQS' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,49,6(A)=0.067(T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQS(CRB) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10-30<b1<30, a1~002/09/2026In ProcessFALSE
- 6.02.03.10b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQS(CRB) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQS(CRB) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQS(KickH)
- 6.02.03.10The Horizontal Kicker shall be a 'CRF' RHIC Magnet in a 'CQS' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,52(A)=0.596 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQS(CRF) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10-30<b1<30, a1~002/09/2026In ProcessFALSE
- 6.02.03.10b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQS(CRF) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQS(CRF) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQS(KickV)
- 6.02.03.10The Vertical Kicker shall be a 'CRC' RHIC Magnet in a 'CQS' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,52(A)=0.596 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be TBD.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQS(CRC) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10b1=10000,a1=002/09/2026In ProcessFALSE
- 6.02.03.10-30<b2<30, a2~002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQS(CRC) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQS(CRC) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQS(Q9)
- 6.02.03.10The Quadrupole shall be a 'QRG' RHIC Magnet in a 'CQS' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 1.13 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet gradient field (G) shall be 75.5 (T/m).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQS(QRG) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be: Ref#1: Rr=25(mm), Ir=10(A) Ref#2: Rr=25(mm), Ir=5000(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: b2=10000,a2=0 Ref#2: b2=10000,a2=002/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -2.22<b3<1, -3.59<a3<-0.27 Ref#2:-1.98<b3<1.56, -3.51<a3<-0.1502/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-2.46<b4<-0.56, -0.47<a4<1.43 Ref#2:-2<b4<0.78, -0.67<a4<1.1302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.35<b5<0.63, -0.42<a5<0.54 Ref#2:-1<b5<2.14, -1.66<a5<1.1402/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:1<b6<1.84, -4.05<a6<-3.47 Ref#2:5.08<b6<6.32, -4.15<a6<-3.5302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.12<b7<0.14, -0.09<a7<0.17 Ref#2:-0.08<b7<0.18, -0.08<a7<0.202/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.61<b8<-0.43, -0.1<a8<0.12 Ref#2:-0.63<b8<-0.41, -0.05<a8<0.1302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-0.04<b9<0.06, -0.05<a9<0.05 Ref#2:-0.08<b9<0.2, -0.07<a9<0.1302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1:-1.35<b10<-1.23, 0.33<a10<0.37 Ref#2:-1.52<b10<-1.36, 0.35<a10<0.4302/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQS(QRG) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQS(QRG) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQS(SkewQuad)
- 6.02.03.10The SkewQuad shall be a 'CRC' RHIC Magnet in a 'CQS' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.5 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be B to 25mm,49,6(A)=0.067(T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQS(CRC) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=25(mm), Ir=~50(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10-30<b1<30, a1~002/09/2026In ProcessFALSE
- 6.02.03.10b2=0,a2=1000002/09/2026In ProcessFALSE
- 6.02.03.10-70<b3<70, a3~002/09/2026In ProcessFALSE
- 6.02.03.10-100<b4<100, -70<a4<7002/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQS(CRC) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQS(CRC) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-CQS(SXT)
- 6.02.03.10The Sextupole shall be a 'SRE' RHIC Magnet in a 'CQS' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 0.75 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet gradient field (G) shall be 1150 (T/m).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/m^2.s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQS(SRE) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=31(mm), Ir=25(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10b3=10000,a3=002/09/2026In ProcessFALSE
- 6.02.03.10-1.41<b3<0.87, -2.88<a3<2.7602/09/2026In ProcessFALSE
- 6.02.03.10-5.95<b4<-3.21, -1.31<a4<1.0302/09/2026In ProcessFALSE
- 6.02.03.100.03<b5<0.45, -0.86<a5<1.1602/09/2026In ProcessFALSE
- 6.02.03.10-3.22<b6<-2.12, -0.66<a6<0.4202/09/2026In ProcessFALSE
- 6.02.03.10-90.49<b8<-90.11, -0.43<a8<-0.1902/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQS(SRE) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a CQS(SRE) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-D8
- 6.02.03.10The Dipole shall be a 'DR8 / DRG' RHIC Magnet in a 'D8' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 9.45 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 40 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet dipole field (B) shall be 0.401 (T) 3.458 (T).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet ramp rate shall be 0.042 T/s.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Ref#1: Rr=80(mm), Ir=660(A) Ref#2: Rr=80(mm), Ir=5000(A).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository. Provided is the summary of harmonic multipole content.02/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: b1=10000,a1=0 Ref#2: b1=10000,a1=002/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.2<b2<0.36, -1.25<a2<1.81 Ref#2: -0.18<b2<0.38, -3.02<a2<002/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -2.39<b3<2.05, -1.2<a3<-0.86 Ref#2: -0.93<b3<2.59, -1.25<a3<-0.8902/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.08<b4<0.08, -0.45<a4<0.39 Ref#2: -0.07<b4<0.09, -0.77<a4<0.0502/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.9<b5<0.24, 0.15<a5<0.27 Ref#2: -0.44<b5<0.74, 0.14<a5<0.2602/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.03<b6<0.03, -0.13<a6<0.17 Ref#2: -0.07<b6<0.01, -0.22<a6<0.102/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.26<b7<0, -0.12<a7<-0.08 Ref#2: 1.05<b7<1.33, -0.12<a7<-0.0802/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: -0.02<b8<0, -0.06<a8<0.04 Ref#2: -0.02<b8<0, -0.06<a8<0.0402/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: 0.02<b9<0.26, 0.01<a9<0.03 Ref#2: 0<b9<0.24, 0.01<a9<0.0302/09/2026In ProcessFALSE
- 6.02.03.10Ref#1: 0<b10<0.04, 0.02<a10<0.06 Ref#2: 0<b10<0.04, 0.02<a10<0.0602/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at TBD bar. The sub-atmospheric side of the heat exchanger will operate at 4.6 (K) and the corresponding saturated vapor pressure.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of TBD W while maintaining nominal operating conditions under TBD bar and 4.6 (K).02/09/2026In ProcessFALSE
- 6.02.03.10The magnet current leads Magnet-cooling shall be capable of removing a maximum total heat load of TBD W at the cold end while maintaining nominal operating conditions under TBD bar and 4.6 (K), and vapor Magnet-cooling flow of TBD g/s from TBD K to TBD K02/09/2026In ProcessFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be TBD bar.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a TBD K axial gradient.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degMagnet-Radiation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and SHALL attain the nominal operating current with no more than 3 Magnet-Quenches.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils and Magnet-Quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with three redundant (3x2) Magnet-Quench detection voltage taps located on each magnet lead and at the Magnet-Electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical Magnet-Quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.02.03.10All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.6 K.02/09/2026ApprovedFALSE
- HSR-MAG-D8 EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.03.10The magnet is a Dipole(D8) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a Dipole(D8) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a Dipole(D8) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
HSR-MAG-NC
HSR-MAG-NC-D50
- 6.02.02.03.05The Magnet Group shall provide the requirements to the Infrastructure Group that defines the building and utilities along with associated heatload analyses for the HSR Correctors.01/08/2026In ProcessFALSE
- 6.02.02.03.05The HSR Physics Group will provide the arrangement location with sufficiently cooled space within the existing RHIC tunnel that satisfies the requirements of the HSR corrector magnets.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group shall provide the existing terminal block design with standard polarity labels.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group shall provide a electrical and thermal parameters to the Power Supply Group to be utilized in selecting necessary power supply needs.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group shall provide the existing terminal block design with labeling of the connection for thermal protection.01/08/2026In ProcessFALSE
- 6.02.02.03.05The magnet shall use the existing girder design and CAD model to ensure the design does not interfere with magnet or cable installation around the beampipe.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Vacuum Group shall design the beampipe integration to the magnets.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Vacuum Group will provide temporary thermal couples to the magnets and incorporate the defined thermal design limits for the magnet into its bakeout procedure for the HSR beamline which satisfies the Magnet Group design.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group will provide supports for beam pipes.01/08/2026In ProcessFALSE
- 6.02.02.03.05ASR System Installation and Final Integration shall provide funding and scheduling for installing the beampipe through the magnets and installing the magnets by the appropriate technical support groups.01/08/2026In ProcessFALSE
- 6.02.02.03.05The magnet shall use the existing the volume within the tunnel required by the magnets and girders01/08/2026In ProcessFALSE
- 6.02.02.03.05The HSR Physics Group will provide the arrangement location for the magnets and girders01/08/2026In ProcessFALSE
HSR-MAG-NC-D5I
- 6.02.02.03.05The Magnet Group shall provide the requirements to the Infrastructure Group that defines the building and utilities along with associated heatload analyses for the HSR Correctors.01/08/2026In ProcessFALSE
- 6.02.02.03.05The HSR Physics Group will provide the arrangement location with sufficiently cooled space within the existing RHIC tunnel that satisfies the requirements of the HSR corrector magnets.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group shall provide the existing terminal block design with standard polarity labels.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group shall provide a electrical and thermal parameters to the Power Supply Group to be utilized in selecting necessary power supply needs.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group shall provide the existing terminal block design with labeling of the connection for thermal protection.01/08/2026In ProcessFALSE
- 6.02.02.03.05The magnet shall use the existing girder design and CAD model to ensure the design does not interfere with magnet or cable installation around the beampipe.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Vacuum Group shall design the beampipe integration to the magnets.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Vacuum Group will provide temporary thermal couples to the magnets and incorporate the defined thermal design limits for the magnet into its bakeout procedure for the HSR beamline which satisfies the Magnet Group design.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group will provide supports for beam pipes.01/08/2026In ProcessFALSE
- 6.02.02.03.05ASR System Installation and Final Integration shall provide funding and scheduling for installing the beampipe through the magnets and installing the magnets by the appropriate technical support groups.01/08/2026In ProcessFALSE
- 6.02.02.03.05The magnet shall use the existing the volume within the tunnel required by the magnets and girders01/08/2026In ProcessFALSE
- 6.02.02.03.05The HSR Physics Group will provide the arrangement location for the magnets and girders01/08/2026In ProcessFALSE
HSR-MAG-NC-D6
- 6.02.02.03.05The Magnet Group shall provide the requirements to the Infrastructure Group that defines the building and utilities along with associated heatload analyses for the HSR Correctors.01/08/2026In ProcessFALSE
- 6.02.02.03.05The HSR Physics Group will provide the arrangement location with sufficiently cooled space within the existing RHIC tunnel that satisfies the requirements of the HSR corrector magnets.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group shall provide the existing terminal block design with standard polarity labels.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group shall provide a electrical and thermal parameters to the Power Supply Group to be utilized in selecting necessary power supply needs.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group shall provide the existing terminal block design with labeling of the connection for thermal protection.01/08/2026In ProcessFALSE
- 6.02.02.03.05The magnet shall use the existing girder design and CAD model to ensure the design does not interfere with magnet or cable installation around the beampipe.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Vacuum Group shall design the beampipe integration to the magnets.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Vacuum Group will provide temporary thermal couples to the magnets and incorporate the defined thermal design limits for the magnet into its bakeout procedure for the HSR beamline which satisfies the Magnet Group design.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group will provide supports for beam pipes.01/08/2026In ProcessFALSE
- 6.02.02.03.05ASR System Installation and Final Integration shall provide funding and scheduling for installing the beampipe through the magnets and installing the magnets by the appropriate technical support groups.01/08/2026In ProcessFALSE
- 6.02.02.03.05The magnet shall use the existing the volume within the tunnel required by the magnets and girders01/08/2026In ProcessFALSE
- 6.02.02.03.05The HSR Physics Group will provide the arrangement location for the magnets and girders01/08/2026In ProcessFALSE
HSR-MAG-NC-D9
- 6.02.02.03.05The Magnet Group shall provide the requirements to the Infrastructure Group that defines the building and utilities along with associated heatload analyses for the HSR Correctors.01/08/2026In ProcessFALSE
- 6.02.02.03.05The HSR Physics Group will provide the arrangement location with sufficiently cooled space within the existing RHIC tunnel that satisfies the requirements of the HSR corrector magnets.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group shall provide the existing terminal block design with standard polarity labels.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group shall provide a electrical and thermal parameters to the Power Supply Group to be utilized in selecting necessary power supply needs.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group shall provide the existing terminal block design with labeling of the connection for thermal protection.01/08/2026In ProcessFALSE
- 6.02.02.03.05The magnet shall use the existing girder design and CAD model to ensure the design does not interfere with magnet or cable installation around the beampipe.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Vacuum Group shall design the beampipe integration to the magnets.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Vacuum Group will provide temporary thermal couples to the magnets and incorporate the defined thermal design limits for the magnet into its bakeout procedure for the HSR beamline which satisfies the Magnet Group design.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group will provide supports for beam pipes.01/08/2026In ProcessFALSE
- 6.02.02.03.05ASR System Installation and Final Integration shall provide funding and scheduling for installing the beampipe through the magnets and installing the magnets by the appropriate technical support groups.01/08/2026In ProcessFALSE
- 6.02.02.03.05The magnet shall use the existing volume within the tunnel required by the magnets and girders01/08/2026In ProcessFALSE
- 6.02.02.03.05The HSR Physics Group will provide the arrangement location for the magnets and girders01/08/2026In ProcessFALSE
HSR-MAG-NC-DRG
- 6.02.02.03.05The Magnet Group shall provide the requirements to the Infrastructure Group that defines the building and utilities along with associated heatload analyses for the HSR Correctors.01/08/2026In ProcessFALSE
- 6.02.02.03.05The HSR Physics Group will provide the arrangement location with sufficiently cooled space within the existing RHIC tunnel that satisfies the requirements of the HSR corrector magnets.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group shall provide the existing terminal block design with standard polarity labels.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group shall provide a electrical and thermal parameters to the Power Supply Group to be utilized in selecting necessary power supply needs.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group shall provide the existing terminal block design with labeling of the connection for thermal protection.01/08/2026In ProcessFALSE
- 6.02.02.03.05The magnet shall use the existing girder design and CAD model to ensure the design does not interfere with magnet or cable installation around the beampipe.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Vacuum Group shall design the beampipe integration to the magnets.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Vacuum Group will provide temporary thermal couples to the magnets and incorporate the defined thermal design limits for the magnet into its bakeout procedure for the HSR beamline which satisfies the Magnet Group design.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group will provide supports for beam pipes.01/08/2026In ProcessFALSE
- 6.02.02.03.05ASR System Installation and Final Integration shall provide funding and scheduling for installing the beampipe through the magnets and installing the magnets by the appropriate technical support groups.01/08/2026In ProcessFALSE
- 6.02.02.03.05The magnet shall use the existing volume within the tunnel required by the magnets and girders01/08/2026In ProcessFALSE
- 6.02.02.03.05The HSR Physics Group will provide the arrangement location for the magnets and girders01/08/2026In ProcessFALSE
HSR-MAG-NC-DW0
- 6.02.02.03.05The Magnet Group shall provide the requirements to the Infrastructure Group that defines the building and utilities along with associated heatload analyses for the HSR Correctors.01/08/2026In ProcessFALSE
- 6.02.02.03.05The HSR Physics Group will provide the arrangement location with sufficiently cooled space within the existing RHIC tunnel that satisfies the requirements of the HSR corrector magnets.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Power Supply Group shall purchase the cables that go from the Power Supply to the magnets.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Power Supply Group shall make connections of the main winding magnet power cables at the magnet terminals and power supply ends.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Power Supply Group shall create schematics with the number of cables and connectors made to the magnet power circuit.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Power Supply Group shall provide a power supply to be utilized by the magnets.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group shall provide a terminal block with standard polarity labels to facilitate installation of the main winding magnet power cables.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group shall provide a electrical and thermal parameters to the Power Supply Group to be utilized in selecting necessary power supply needs.01/08/2026In ProcessFALSE
- 6.02.02.03.05ASR System Installation and Final Integration shall provide funding and scheduling for cable installation from the power supply to the magnets by the appropriate technical support group.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Power Supply Group shall purchase the cables that go from the thermal switch on the magnet to the Power Supply.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Power Supply Group shall make connections of the thermal switch cables at the magnet and Power Supply ends.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Power Supply Group shall create schematics with the number of cables and connectors made to the magnet protection circuit(s).01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group shall provide the terminal block with labeling to facilitate installation of the connection for thermal protection.01/08/2026In ProcessFALSE
- 6.02.02.03.05ASR System Installation and Final Integration shall provide funding and scheduling for installing cabling from the thermal switch lugs on the magnet to the Power Supply Group by the appropriate technical support group.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Mechanical Design Group shall provide a girder design and CAD model to be utilized by the magnet group. They will ensure the design does not interfere with magnet or cable installation around the beampipe01/08/2026In ProcessFALSE
- 6.02.02.03.05The BNL Magnet Group shall procure the girders for the Accelerator Installation WBS CAM to install.01/08/2026In ProcessFALSE
- 6.02.02.03.05ASR System Installation and Final Integration shall provide funding and scheduling for installing the magnets on the girders.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Vacuum Group shall design the beampipe integration to the magnets.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Vacuum Group will provide temporary thermal couples to the magnets and incorporate the defined thermal design limits for the magnet into its bakeout procedure for the HSR beamline which satisfies the Magnet Group design.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Magnet Group will provide supports for beam pipes.01/08/2026In ProcessFALSE
- 6.02.02.03.05ASR System Installation and Final Integration shall provide funding and scheduling for installing the beampipe through the magnets and installing the magnets by the appropriate technical support groups.01/08/2026In ProcessFALSE
- 6.02.02.03.05The Mechanical Design Group shall provide the volume within the tunnel required by the magnets and girders01/08/2026In ProcessFALSE
- 6.02.02.03.05The HSR Physics Group will provide the arrangement location for the magnets and girders01/08/2026In ProcessFALSE
HSR-MAG-SC
HSR-MAG-SC-CQS
- 6.02.03.10The magnet shall use the existing design of the CQS (C,Q,S) cold mass to operate at 4.55 K common stainless steel helium vessel which has a cold bore tube.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the CQS (C,Q,S) cold mass piping and connections including yoke cooling channels to ensure adequate free flow for all operating conditions including quenches.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall define the schematics with the piping and connectors needed to connect the CQS cyrostat to the 4.55 K distribution system.01/08/2026In ProcessFALSE
- 6.02.03.10The vacuum group shall provide the existing insulating vacuum pressure relief system design for the dual triplet cryostat.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall provide the design details for the CQS (C,Q,S) cryostat system integration and be capable of being cooled with the 4K cryogenic system.01/08/2026In ProcessFALSE
- 6.02.03.10The power supply group provide create electrical schematics for the CQS (C,Q,S) cryostat with the number of cables and connectors needed to the power all the cryostat power circuits.01/08/2026In ProcessFALSE
- 6.02.03.10The power supply group shall provide the quench protection and detection design details for the CQS (C,Q,S) cryostat to define system integration.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall provide cryogenic control design details required from the cold mass to the 300K feedthrough terminals\connectors on the vac vessel.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet design team shall provide magnet instrumentation design details required by the CQS (C,Q,S) cryostat from the cold mass to the 300K terminals\connectors on the vac vessel.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall provide schematics showing all the connections to the cryostat to the 4K cryo control system.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet design team shall define position and alignment values which will be used to set the 300 K position and alignments of the Hadron beam pipe in the CQS cryostat cold mass.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the CQS (C,Q,S) mechanical connections between CQS cryostat and the bellow as well as the beam pipe.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the CQS (C,Q,S) and provide the volume within the tunnel to be occupied by the CQS cryostat.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the CQS (C,Q,S) for fiducial marks positioning for the CQS cryostat allowing the center of the magnet and magnets beamlines to be located. It should identify the location of the CQS cryostat center and its alignment wrt the HSR beamline.01/08/2026In ProcessFALSE
- 6.02.03.10The physics group shall provide the allocated spatial location based on the lattice for the CQS cryostat.01/08/2026In ProcessFALSE
HSR-MAG-SC-Q4
- 6.02.03.10The magnet shall use the existing design of the Q4 (C,Q,T) cold mass to operate at 4.55 K common stainless steel helium vessel which has a cold bore tube.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q4 (C,Q,T) cold mass piping and connections including yoke cooling channels to ensure adequate free flow for all operating conditions including quenches.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall define the schematics with the piping and connectors needed to connect the Q4 cyrostat to the 4.55 K distribution system.01/08/2026In ProcessFALSE
- 6.02.03.10The vacuum group shall provide the existing insulating vacuum pressure relief system design for the dual triplet cryostat.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall provide the design details for the Q4 (C,Q,T) cryostat system integration and be capable of being cooled with the 4K cryogenic system.01/08/2026In ProcessFALSE
- 6.02.03.10The power supply group provide create electrical schematics for the Q4 (C,Q,T) cryostat with the number of cables and connectors needed to the power all the cryostat power circuits.01/08/2026In ProcessFALSE
- 6.02.03.10The power supply group shall provide the quench protection and detection design details for the Q4 (C,Q,T) cryostat to define system integration.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall provide cryogenic control design details required from the cold mass to the 300K feedthrough terminals\connectors on the vac vessel.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet design team shall provide magnet instrumentation design details required by the Q4 (C,Q,T) cryostat from the cold mass to the 300K terminals\connectors on the vac vessel.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall provide schematics showing all the connections to the cryostat to the 4K cryo control system.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet design team shall define position and alignment values which will be used to set the 300 K position and alignments of the Hadron beam pipe in the Q4 cryostat cold mass.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q4 (C,Q,T) mechanical connections between Q4 cryostat and the bellow as well as the beam pipe.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q4 (C,Q,T) and provide the volume within the tunnel to be occupied by the Q4 cryostat.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q4 (C,Q,T) for fiducial marks positioning for the Q4 cryostat allowing the center of the magnet and magnets beamlines to be located. It should identify the location of the Q4 cryostat center and its alignment wrt the HSR beamline.01/08/2026In ProcessFALSE
- 6.02.03.10The physics group shall provide the allocated spatial location based on the lattice for the Q4 cryostat.01/08/2026In ProcessFALSE
HSR-MAG-SC-Q5
- 6.02.03.10The magnet shall use the existing design of the Q5 (C,Q,T) cold mass to operate at 4.55 K common stainless steel helium vessel which has a cold bore tube.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q5 (C,Q,T) cold mass piping and connections including yoke cooling channels to ensure adequate free flow for all operating conditions including quenches.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall define the schematics with the piping and connectors needed to connect the Q5 cyrostat to the 4.55 K distribution system.01/08/2026In ProcessFALSE
- 6.02.03.10The vacuum group shall provide the existing insulating vacuum pressure relief system design for the dual triplet cryostat.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall provide the design details for the Q5 (C,Q,T) cryostat system integration and be capable of being cooled with the 4K cryogenic system.01/08/2026In ProcessFALSE
- 6.02.03.10The power supply group provide create electrical schematics for the Q5 (C,Q,T) cryostat with the number of cables and connectors needed to the power all the cryostat power circuits.01/08/2026In ProcessFALSE
- 6.02.03.10The power supply group shall provide the quench protection and detection design details for the Q5 (C,Q,T) cryostat to define system integration.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall provide cryogenic control design details required from the cold mass to the 300K feedthrough terminals\connectors on the vac vessel.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet design team shall provide magnet instrumentation design details required by the Q5 (C,Q,T) cryostat from the cold mass to the 300K terminals\connectors on the vac vessel.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall provide schematics showing all the connections to the cryostat to the 4K cryo control system.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet design team shall define position and alignment values which will be used to set the 300 K position and alignments of the Hadron beam pipe in the Q5 cryostat cold mass.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q5 (C,Q,T) mechanical connections between Q5 cryostat and the bellow as well as the beam pipe.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q5 (C,Q,T) and provide the volume within the tunnel to be occupied by the Q5 cryostat.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q5 (C,Q,T) for fiducial marks positioning for the Q5 cryostat allowing the center of the magnet and magnets beamlines to be located. It should identify the location of the Q5 cryostat center and its alignment wrt the HSR beamline.01/08/2026In ProcessFALSE
- 6.02.03.10The physics group shall provide the allocated spatial location based on the lattice for the Q5 cryostat.01/08/2026In ProcessFALSE
HSR-MAG-SC-Q6
- 6.02.03.10The magnet shall use the existing design of the Q6 (C,Q,T) cold mass to operate at 4.55 K common stainless steel helium vessel which has a cold bore tube.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q6 (C,Q,T) cold mass piping and connections including yoke cooling channels to ensure adequate free flow for all operating conditions including quenches.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall define the schematics with the piping and connectors needed to connect the Q6 cyrostat to the 4.55 K distribution system.01/08/2026In ProcessFALSE
- 6.02.03.10The vacuum group shall provide the existing insulating vacuum pressure relief system design for the dual triplet cryostat.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall provide the design details for the Q6 (C,Q,T) cryostat system integration and be capable of being cooled with the 4K cryogenic system.01/08/2026In ProcessFALSE
- 6.02.03.10The power supply group provide create electrical schematics for the Q6 (C,Q,T) cryostat with the number of cables and connectors needed to the power all the cryostat power circuits.01/08/2026In ProcessFALSE
- 6.02.03.10The power supply group shall provide the quench protection and detection design details for the Q6 (C,Q,T) cryostat to define system integration.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall provide cryogenic control design details required from the cold mass to the 300K feedthrough terminals\connectors on the vac vessel.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet design team shall provide magnet instrumentation design details required by the Q6 (C,Q,T) cryostat from the cold mass to the 300K terminals\connectors on the vac vessel.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall provide schematics showing all the connections to the cryostat to the 4K cryo control system.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet design team shall define position and alignment values which will be used to set the 300 K position and alignments of the Hadron beam pipe in the Q6 cryostat cold mass.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q6 (C,Q,T) mechanical connections between Q6 cryostat and the bellow as well as the beam pipe.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q6 (C,Q,T) and provide the volume within the tunnel to be occupied by the Q6 cryostat.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q6 (C,Q,T) for fiducial marks positioning for the Q6 cryostat allowing the center of the magnet and magnets beamlines to be located. It should identify the location of the Q6 cryostat center and its alignment wrt the HSR beamline.01/08/2026In ProcessFALSE
- 6.02.03.10The physics group shall provide the allocated spatial location based on the lattice for the Q6 cryostat.01/08/2026In ProcessFALSE
HSR-MAG-SC-Q7
- 6.02.03.10The magnet shall use the existing design of the Q7 (C,Q) cold mass to operate at 4.55 K common stainless steel helium vessel which has a cold bore tube.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q7 (C,Q) cold mass piping and connections including yoke cooling channels to ensure adequate free flow for all operating conditions including quenches.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall define the schematics with the piping and connectors needed to connect the Q7 cyrostat to the 4.55 K distribution system.01/08/2026In ProcessFALSE
- 6.02.03.10The vacuum group shall provide the existing insulating vacuum pressure relief system design for the dual triplet cryostat.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall provide the design details for the Q7 (C,Q) cryostat system integration and be capable of being cooled with the 4K cryogenic system.01/08/2026In ProcessFALSE
- 6.02.03.10The power supply group provide create electrical schematics for the Q7 (C,Q) cryostat with the number of cables and connectors needed to the power all the cryostat power circuits.01/08/2026In ProcessFALSE
- 6.02.03.10The power supply group shall provide the quench protection and detection design details for the Q7 (C,Q) cryostat to define system integration.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall provide cryogenic control design details required from the cold mass to the 300K feedthrough terminals\connectors on the vac vessel.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet design team shall provide magnet instrumentation design details required by the Q7 (C,Q) cryostat from the cold mass to the 300K terminals\connectors on the vac vessel.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall provide schematics showing all the connections to the cryostat to the 4K cryo control system.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet design team shall define position and alignment values which will be used to set the 300 K position and alignments of the Hadron beam pipe in the Q7 cryostat cold mass.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q7 (C,Q) mechanical connections between Q7 cryostat and the bellow as well as the beam pipe.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q7 (C,Q) and provide the volume within the tunnel to be occupied by the Q7 cryostat.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q7 (C,Q) for fiducial marks positioning for the Q7 cryostat allowing the center of the magnet and magnets beamlines to be located. It should identify the location of the Q7 cryostat center and its alignment wrt the HSR beamline.01/08/2026In ProcessFALSE
- 6.02.03.10The physics group shall provide the allocated spatial location based on the lattice for the Q7 cryostat.01/08/2026In ProcessFALSE
HSR-MAG-SC-Q8
- 6.02.03.10The magnet shall use the existing design of the Q8 (C,Q,S) cold mass to operate at 4.55 K common stainless steel helium vessel which has a cold bore tube.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q8 (C,Q,S) cold mass piping and connections including yoke cooling channels to ensure adequate free flow for all operating conditions including quenches.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall define the schematics with the piping and connectors needed to connect the Q8 cyrostat to the 4.55 K distribution system.01/08/2026In ProcessFALSE
- 6.02.03.10The vacuum group shall provide the existing insulating vacuum pressure relief system design for the dual triplet cryostat.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall provide the design details for the Q8 (C,Q,S) cryostat system integration and be capable of being cooled with the 4K cryogenic system.01/08/2026In ProcessFALSE
- 6.02.03.10The power supply group provide create electrical schematics for the Q8 (C,Q,S) cryostat with the number of cables and connectors needed to the power all the cryostat power circuits.01/08/2026In ProcessFALSE
- 6.02.03.10The power supply group shall provide the quench protection and detection design details for the Q8 (C,Q,S) cryostat to define system integration.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall provide cryogenic control design details required from the cold mass to the 300K feedthrough terminals\connectors on the vac vessel.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet design team shall provide magnet instrumentation design details required by the Q8 (C,Q,S) cryostat from the cold mass to the 300K terminals\connectors on the vac vessel.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall provide schematics showing all the connections to the cryostat to the 4K cryo control system.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet design team shall define position and alignment values which will be used to set the 300 K position and alignments of the Hadron beam pipe in the Q8 cryostat cold mass.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q8 (C,Q,S) mechanical connections between Q8 cryostat and the bellow as well as the beam pipe.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q8 (C,Q,S) and provide the volume within the tunnel to be occupied by the Q8 cryostat.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q8 (C,Q,S) for fiducial marks positioning for the Q8 cryostat allowing the center of the magnet and magnets beamlines to be located. It should identify the location of the Q8 cryostat center and its alignment wrt the HSR beamline.01/08/2026In ProcessFALSE
- 6.02.03.10The physics group shall provide the allocated spatial location based on the lattice for the Q8 cryostat.01/08/2026In ProcessFALSE
HSR-MAG-SC-Q9
- 6.02.03.10The magnet shall use the existing design of the Q9 (C,Q,-) cold mass to operate at 4.55 K common stainless steel helium vessel which has a cold bore tube.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q9 (C,Q,-) cold mass piping and connections including yoke cooling channels to ensure adequate free flow for all operating conditions including quenches.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall define the schematics with the piping and connectors needed to connect the Q9 cyrostat to the 4.55 K distribution system.01/08/2026In ProcessFALSE
- 6.02.03.10The vacuum group shall provide the existing insulating vacuum pressure relief system design for the dual triplet cryostat.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall provide the design details for the Q9 (C,Q,-) cryostat system integration and be capable of being cooled with the 4K cryogenic system.01/08/2026In ProcessFALSE
- 6.02.03.10The power supply group provide create electrical schematics for the Q9 (C,Q,-) cryostat with the number of cables and connectors needed to the power all the cryostat power circuits.01/08/2026In ProcessFALSE
- 6.02.03.10The power supply group shall provide the quench protection and detection design details for the Q9 (C,Q,-) cryostat to define system integration.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall provide cryogenic control design details required from the cold mass to the 300K feedthrough terminals\connectors on the vac vessel.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet design team shall provide magnet instrumentation design details required by the Q9 (C,Q,-) cryostat from the cold mass to the 300K terminals\connectors on the vac vessel.01/08/2026In ProcessFALSE
- 6.02.03.10The cryogenics group shall provide schematics showing all the connections to the cryostat to the 4K cryo control system.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet design team shall define position and alignment values which will be used to set the 300 K position and alignments of the Hadron beam pipe in the Q9 cryostat cold mass.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q9 (C,Q,-) mechanical connections between Q9 cryostat and the bellow as well as the beam pipe.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q9 (C,Q,-) and provide the volume within the tunnel to be occupied by the Q9 cryostat.01/08/2026In ProcessFALSE
- 6.02.03.10The magnet shall use the existing design of the Q9 (C,Q,-) for fiducial marks positioning for the Q9 cryostat allowing the center of the magnet and magnets beamlines to be located. It should identify the location of the Q9 cryostat center and its alignment wrt the HSR beamline.01/08/2026In ProcessFALSE
- 6.02.03.10The physics group shall provide the allocated spatial location based on the lattice for the Q9 cryostat.01/08/2026In ProcessFALSE
HSR-MAG-SCMR
HSR-MAG-SCMR-SNAKE
- 6.02.03.10.04The mechanical design group shall provide the HLX refurbished siberian snake magnet cryostat design with mating pipe connections from the cryostat to its neighboring cryogenic magnets.01/08/2026ReviewedFALSE
- 6.02.03.10.04ASR System Installation and Final Integration shall provide funding and scheduling to install the HLX siberian snake magnet cryogenic pipe connections by the appropriate technical support group which satisfies the cryogenics group design.01/08/2026ReviewedFALSE
- 6.02.03.10.04The cryogenics Group shall leak check the final pipe connections from the HLX siberian snake magnet to the 4K cryogenic distribution system.01/08/2026ReviewedFALSE
- 6.02.03.10.04The instrumentation group shall define the HSR beam instrumentation design details required for the mechanical design group to incorporate into the HLX siberian snake magnet.01/08/2026ReviewedFALSE
- 6.02.03.10.04The mechanical design group shall provide the beam instrumentation design to incorporate the instrumentation groups design into HLX siberian snake magnet insulating vacuum.01/08/2026ReviewedFALSE
- 6.02.03.10.04The SMD group shall incorporate the mechanical groups insulating vacuum housing design into the HLX siberian snake magnet.01/08/2026ReviewedFALSE
- 6.02.03.10.04The SMD group shall leak check the HLX siberian snake magnet insulating housing.01/08/2026ReviewedFALSE
- 6.02.03.10.04Reference related beam position monitor interface document for vacuum beamline interconnect for the beam position monitor pickup assembly and installation interface details to the vacuum assembly. (I-HSR-INST-BPM.XX)01/08/2026ReviewedFALSE
- 6.02.03.10.04Reference related beam position monitor interface document for cryostat feedthrough interconnect for the beam position monitor pickup assembly and installation interface details to the vacuum assembly. (I-HSR-INST-BPM.XX)01/08/2026ReviewedFALSE
- 6.02.03.10.04The mechanical design group shall provide the design details to incorporate the instrumentation design into the HLX siberian snake magnet01/08/2026ReviewedFALSE
- 6.02.03.10.04The SMD group shall incorporate the mechanical groups feedthrough design of the insulating housing into the HLX siberian snake magnet.01/08/2026ReviewedFALSE
- 6.02.03.10.04The Instrumentation group shall perform electrical testing at room temperature to verify the HLX siberian snake magnet instrumentation lead connections.01/08/2026ReviewedFALSE
- 6.02.03.10.04The SMD shall provide the current lead design details for the HLX siberian snake magnet to provide system integration.01/08/2026ReviewedFALSE
- 6.02.03.10.04The cryogenics group shall provide the design details for the HLX siberian snake magnet current lead integration and be capable of being cooled with the 4K cryogenic system.01/08/2026ReviewedFALSE
- 6.02.03.10.04The power supply group provide create schematics for the HLX siberian snake magnet with the number of cables and connectors needed to the power all the magnet power circuits.01/08/2026ReviewedFALSE
- 6.02.03.10.04The power supply group shall purchase the cables that go from the power supply to the current lead connections for the HLX siberian snake magnets, if required.01/08/2026ReviewedFALSE
- 6.02.03.10.04The SMD group shall perform electrical testing to verify at room temperature the HLX siberian snake magnet\current lead connections.01/08/2026ReviewedFALSE
- 6.02.03.10.04ASR System Installation and Final Integration shall provide funding and scheduling to install HLX siberian snake magnet current lead connections by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.03.10.04The cryogenics group shall leak check the final pipe connections from the HLX siberian snake cryostat to the 4 K cryogenic distribution system for the current leads.01/08/2026ReviewedFALSE
- 6.02.03.10.04The power supply group shall provide the quench protection/detection design details for the HLX siberian snake magnet to define system integration.01/08/2026ReviewedFALSE
- 6.02.03.10.04The SMD group shall perform electrical testing at room temperature to verify the HLX siberian snake magnet quench protection/detection lead connections.01/08/2026ReviewedFALSE
- 6.02.03.10.04The power supply group shall provide schematics with the number of cables and connectors needed to connect all quench protection/detection circuits.01/08/2026ReviewedFALSE
- 6.02.03.10.04The power supply group shall purchase any cabling to go from the power supply to any quench protection /detection equipment needed for the HLX siberian snake magnet.01/08/2026ReviewedFALSE
- 6.02.03.10.04The power supply group shall provide all quench protection system and ancillary components to be utilized by the HLX siberian snake magnet.01/08/2026ReviewedFALSE
- 6.02.03.10.04ASR System Installation and Final Integration shall provide funding and scheduling to install HLX siberian snake magnet quench protection system by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.03.10.04The SMD group shall provide instrumentation design details required by the HLX siberian snake magnet from the cold mass to the 300K terminals\connectors on the vac vessel.01/08/2026ReviewedFALSE
- 6.02.03.10.04The SMD shall provide the HLX siberian snake cold mass design with mechanical support and clearance necessary to route the Hadron beampipe through the magnet bore.01/08/2026ReviewedFALSE
- 6.02.03.10.04The SMD shall define position and alignment values which will be used to set the 300K position and alignments of the HLX siberian snake hadron beam pipe.01/08/2026ReviewedFALSE
- 6.02.03.10.04The Mechanical enginnering and Vacuum Group shall provide the HLX siberian snake hadron beam pipe design to be inserted into the HSR cold bore.01/08/2026ReviewedFALSE
- 6.02.03.10.04The Mechanical enginnering team shall purchase the hadron beam pipe.01/08/2026ReviewedFALSE
- 6.02.03.10.04The SMD shall install the HLX siberian snake hadron beam pipe.01/08/2026ReviewedFALSE
- 6.02.03.10.04The Vacuum group shall provide the design details of the HSR ACBS.01/08/2026ReviewedFALSE
- 6.02.03.10.04The mechanical enginnering team shall define the design of the HLX siberian snake beam pipe taper geometry to match the geometry of the HSR ACBS.01/08/2026ReviewedFALSE
- 6.02.03.10.04The Mechanical enginnering team shall purchase the taper beam pipe interconnect.01/08/2026ReviewedFALSE
- 6.02.03.10.04The SMD shall install the HLX siberian snake taper beam pipe interconnect.01/08/2026ReviewedFALSE
- 6.02.03.10.04ASR System Installation and Final Integration shall provide funding and scheduling to install the snake magnet taper beam pipe interconnect to the ARC ACBS.01/08/2026ReviewedFALSE
- 6.02.03.10.04The mechanical enginnering and Vacuum group shall provide the ACBS bypass pipe design details with mechanical support and clearance necessary to route the ACBS cryogenics bypass beampipe.01/08/2026ReviewedFALSE
- 6.02.03.10.04The mechanical enginnering group shall purchase the piping necessary to connect the ACBS bypass.01/08/2026ReviewedFALSE
- 6.02.03.10.04The mechanical enginnering team shall define the design of the HLX siberian snake ACBS bypass mounting support provisions.01/08/2026ReviewedFALSE
- 6.02.03.10.04The SMD Group shall install the ACBS Bypass piping to the mechanical supports.01/08/2026ReviewedFALSE
- 6.02.03.10.04The SMD group shall leak check the ACBS bypass piping connections in the HLX spin rotator magnet.01/08/2026ReviewedFALSE
- 6.02.03.10.04Reference related ACBS interface document for interconnect for the ACBS assembly and installation interface details to the vacuum assembly. (I-HSR-VAC-CRYOMOD.XXX)01/08/2026ReviewedFALSE
- 6.02.03.10.04The mechanical design group shall provide the design details for the HLX siberian snake cryostat to the mechanical support stand.01/08/2026ReviewedFALSE
- 6.02.03.10.04ASR System Installation and Final Integration shall provide funding and scheduling to install HLX siberian snake onto the girder assembly in the tunnel by the appropriate technical support group which satisfies the mechanical design group design.01/08/2026ReviewedFALSE
- 6.02.03.10.04The physics group shall provide the allocated spatial location based on the lattice for the HLX siberian snake magnet cryostat01/08/2026ReviewedFALSE
- 6.02.03.10.04The mechanical design group shall provide the volume within the tunnel to be occupied by the HLX siberian snake cryostat and CAD model to ensure the design does not interfere with magnet, cables, cryogenic connections to the HLX siberian snake cryostat.01/08/2026ReviewedFALSE
- 6.02.03.10.04The mechanical design group shall define the fiducial marks positioning for the HLX siberian snake cryostat allowing the center of the magnet and magnets beamlines to be located. It should identify the location of the HLX siberian snake cryostat center and its alignment with respect to the HSR beamline.01/08/2026ReviewedFALSE
- 6.02.03.10.04The SMD shall have fiducial marks added to the cryostat allowing the center of the magnet and magnets beamlines to be located.01/08/2026ReviewedFALSE
- 6.02.03.10.04ASR System Installation and Final Integration shall provide funding and scheduling to provide installation details to ensure the HLX siberian snake cryostat is aligned in the tunnel.01/08/2026ReviewedFALSE
- 6.02.03.10.04ASR System Installation and Final Integration shall provide funding and scheduling to align the HLX siberian snake cryostat such that the fiducial marks on the HLX siberian snake cryostat are located with respect to the install locations provided by the survey group to ensure the HLX siberian snake cryostat is aligned.01/08/2026ReviewedFALSE
HSR-MAG-SCMR-SPINROTATOR
- 6.02.03.10.03The mechanical design group shall provide the HLX refurbished spin rotator magnet cryostat design with mating pipe connections from the cryostat to its neighboring cryogenic magnets.01/08/2026ReviewedFALSE
- 6.02.03.10.03ASR System Installation and Final Integration shall provide funding and scheduling to install the HLX spin rotator magnet cryogenic pipe connections by the appropriate technical support group which satisfies the mechanical group design.01/08/2026ReviewedFALSE
- 6.02.03.10.03The cryogenics Group shall leak check the final pipe connections from the HLX spin rotator magnet to the 4K cryogenic distribution system.01/08/2026ReviewedFALSE
- 6.02.03.10.03The instrumentation group shall define the HSR beam instrumentation design details required for the mechanical design group to incorporate into the HLX spin rotator magnet.01/08/2026ReviewedFALSE
- 6.02.03.10.03The mechanical design group shall provide the beam instrumentation design to incorporate the instrumentation groups design into HLX spin rotator magnet insulating vacuum.01/08/2026ReviewedFALSE
- 6.02.03.10.03The SMD group shall incorporate the mechanical groups insulating vacuum housing design into the HLX spin rotator magnet.01/08/2026ReviewedFALSE
- 6.02.03.10.03The SMD group shall leak check the HLX spin rotator magnet insulating vacuum housing.01/08/2026ReviewedFALSE
- 6.02.03.10.03Reference related beam position monitor interface document for vacuum beamline interconnect for the beam position monitor pickup assembly and installation interface details to the vacuum assembly. (I-HSR-INST-BPM.XX)01/08/2026ReviewedFALSE
- 6.02.03.10.03Reference related beam position monitor interface document for cryostat feedthrough interconnect for the beam position monitor pickup assembly and installation interface details to the vacuum assembly. (I-HSR-INST-BPM.XX)01/08/2026ReviewedFALSE
- 6.02.03.10.03The mechanical design group shall provide the design details to incorporate the instrumentation design into HLX spin rotator magnet.01/08/2026ReviewedFALSE
- 6.02.03.10.03The SMD group shall incorporate the mechanical groups feedthrough design of the insulating housing into the HLX spin rotator magnet.01/08/2026ReviewedFALSE
- 6.02.03.10.03The Instrumentation group shall perform electrical testing at room temperature to verify the HLX spin rotator magnet instrumentation lead connections.01/08/2026ReviewedFALSE
- 6.02.03.10.03The SMD group shall provide the current lead design details for the HLX spin rotator magnet to provide system integration.01/08/2026ReviewedFALSE
- 6.02.03.10.03The cryogenics group shall provide the design details for the HLX spin rotator magnet current lead integration and be capable of being cooled with the 4K cryogenic system.01/08/2026ReviewedFALSE
- 6.02.03.10.03The power supply group provide schematics for the HLX spin rotator magnet with the number of cables and connectors needed to the power all the magnet power circuits.01/08/2026ReviewedFALSE
- 6.02.03.10.03The power supply group shall purchase the cables that go from the power supply to the current lead connections for the HLX spin rotator magnets, if required.01/08/2026ReviewedFALSE
- 6.02.03.10.03The SMD group shall perform electrical testing to verify at room temperature the HLX spin rotator magnet\current lead connections.01/08/2026ReviewedFALSE
- 6.02.03.10.03ASR System Installation and Final Integration shall provide funding and scheduling to install HLX spin rotator magnet current lead connections by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.03.10.03The cryogenics group shall leak check the final pipe connections from the HLX spin rotator magnet cryostat to the 4 K cryogenic distribution system for the current leads.01/08/2026ReviewedFALSE
- 6.02.03.10.03The power supply group shall provide the quench protection/detection design details for the HLX spin rotator magnet to define system integration.01/08/2026ReviewedFALSE
- 6.02.03.10.03The SMD group shall perform electrical testing at room temperature to verify the HLX spin rotator magnet quench protection/detection lead connections.01/08/2026ReviewedFALSE
- 6.02.03.10.03The power supply group shall provide schematics with the number of cables and connectors needed to connect all quench protection/detection circuits.01/08/2026ReviewedFALSE
- 6.02.03.10.03The power supply group shall purchase any cabling to go from the power supply to any quench protection/detection equipment needed for the HLX spin rotator magnet.01/08/2026ReviewedFALSE
- 6.02.03.10.03The power supply group shall provide all quench protection/detection system and ancillary components to be utilized by the HLX spin rotator magnet.01/08/2026ReviewedFALSE
- 6.02.03.10.03ASR System Installation and Final Integration shall provide funding and scheduling to install HLX spin rotator magnet quench protection /detection system by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.03.10.03The SMD group shall provide instrumentation design details required by the HLX spin rotator magnet from the cold mass to the 300K terminals\connectors on the vac vessel.01/08/2026ReviewedFALSE
- 6.02.03.10.03The SMD shall provide a HLX spin rotator cold mass design with mechanical support and clearance necessary to route the Hadron beampipe through the magnet bore.01/08/2026ReviewedFALSE
- 6.02.03.10.03The SMD shall define position and alignment values which will be used to set the 300K position and alignments of the HLX spin rotator hadron beam pipe.01/08/2026ReviewedFALSE
- 6.02.03.10.03The Mechanical enginnering and vacuum group shall provide the HLX spin rotator hadron beam pipe design to be inserted into the HSR cold bore.01/08/2026ReviewedFALSE
- 6.02.03.10.03The Mechanical enginnering team shall purchase the hadron beam pipe.01/08/2026ReviewedFALSE
- 6.02.03.10.03The SMD shall install the HLX spin rotator hadron beam pipe.01/08/2026ReviewedFALSE
- 6.02.03.10.03The Vacuum group shall provide the design details of the HSR ACBS profile.01/08/2026ReviewedFALSE
- 6.02.03.10.03The mechanical enginnering team shall define the design of the HLX spin rotator beam pipe taper geometry to match the geometry of the HSR ACBS.01/08/2026ReviewedFALSE
- 6.02.03.10.03The Mechanical enginnering team shall purchase the taper beam pipe interconnect.01/08/2026ReviewedFALSE
- 6.02.03.10.03The SMD shall install the HLX spin rotator taper beam pipe interconnect.01/08/2026ReviewedFALSE
- 6.02.03.10.03ASR System Installation and Final Integration shall provide funding and scheduling to install the HLX spin rotator magnet taper beam pipe interconnect to the ARC ACBS.01/08/2026ReviewedFALSE
- 6.02.03.10.03The mechanical enginnering and Vacuum group shall provide the ACBS bypass pipe design details with mechanical support and clearance necessary to route the ACBS cryogenics bypass beampipe.01/08/2026ReviewedFALSE
- 6.02.03.10.03The mechanical enginnering group shall purchase the piping necessary to connect the ACBS bypass.01/08/2026ReviewedFALSE
- 6.02.03.10.03The mechanical enginnering team shall define the design of the HLX spin rotator ACBS bypass mounting support provisions.01/08/2026ReviewedFALSE
- 6.02.03.10.03The SMD Group shall weld and install the ACBS Bypass piping to the mechanical supports.01/08/2026ReviewedFALSE
- 6.02.03.10.03The SMD group shall leak check the ACBS bypass piping connections in the HLX spin rotator magnet.01/08/2026ReviewedFALSE
- 6.02.03.10.03Reference related ACBS interface document for interconnect for the ACBS assembly and installation interface details to the vacuum assembly. (I-HSR-VAC-CRYOMOD.XXX)01/08/2026ReviewedFALSE
- 6.02.03.10.03The mechanical design group shall provide the design details for the HLX spin rotator cryostat to the mechanical support stand.01/08/2026ReviewedFALSE
- 6.02.03.10.03ASR System Installation and Final Integration shall provide funding and scheduling to install HLX spin rotator onto the girder assembly in the tunnel by the appropriate technical support group which satisfies the mechanical design group design.01/08/2026ReviewedFALSE
- 6.02.03.10.03The physics group shall provide the allocated spatial location based on the lattice for the HLX spin rotator magnet cryostat01/08/2026ReviewedFALSE
- 6.02.03.10.03The mechanical design group shall provide the volume within the tunnel to be occupied by the HLX spin rotator cryostat and CAD model to ensure the design does not interfere with magnet, cables, cryogenic connections to the HLX spin rotator cryostat.01/08/2026ReviewedFALSE
- 6.02.03.10.03The mechanical design group shall define the fiducial marks positioning for the HLX spin rotator cryostat allowing the center of the magnet and magnets beamlines to be located. It should identify the location of the HLX spin rotator cryostat center and its alignment with respect to the HSR beamline.01/08/2026ReviewedFALSE
- 6.02.03.10.03The SMD shall have fiducial marks added to the cryostat allowing the center of the magnet and magnets beamlines to be located.01/08/2026ReviewedFALSE
- 6.02.03.10.03ASR System Installation and Final Integration shall provide funding and scheduling to provide installation details to ensure the HLX spin rotator cryostat is aligned in the tunnel.01/08/2026ReviewedFALSE
- 6.02.03.10.03ASR System Installation and Final Integration shall provide funding and scheduling to align the HLX spin rotator cryostat such that the fiducial marks on the HLX spin rotator cryostat are located with respect to the install locations provided by the survey group to ensure the HLX spin rotator cryostat is aligned.01/08/2026ReviewedFALSE
HSR-MAG-SCMR-TRIPLET
HSR-MAG-SCMR-TRIPLET-DUAL
- 6.02.03.10.01The mechanical design group shall provide a reconfigured cryostat design to cap and seal the BLUE line magnets including the M,R,U,S,H cryogenic lines.01/08/2026ReviewedFALSE
- 6.02.03.10.01The cryogenics group shall create schematics with the piping and connectors needed to cap the Blue line in accordance to the mechanical engineering design in the tunnel at the VJR.01/08/2026ReviewedFALSE
- 6.02.03.10.01The cryogenics group shall purchase the piping and accessories necessary to cap the dual triplet cryostat Blue line.01/08/2026ReviewedFALSE
- 6.02.03.10.01ASR System Installation and Final Integration shall provide funding and scheduling to cap the dual triplet cryostat Blue line by the appropriate technical support group which satisfies the cryogenics group design.01/08/2026ReviewedFALSE
- 6.02.03.10.01The cryogenics group shall leak check the dual triplet cryostat to the 4K cryogenic distribution system.01/08/2026ReviewedFALSE
- 6.02.03.10.01The vacuum group shall provide the existing insulating vacuum pressure relief system design for the dual triplet cryostat.01/08/2026ReviewedFALSE
- 6.02.03.10.01Reference related beam position monitor interface document for vacuum interconnect for the beam position monitor pickup assembly and installation interface details to the vacuum assembly. (I-HSR-INST-BPM-PU.XX)01/08/2026ReviewedFALSE
- 6.02.03.10.01Reference related beam position monitor interface document for vacuum feedthrough interconnect for the beam position monitor pickup assembly and installation interface details to the vacuum assembly. (I-HSR-INST-BPM-CRYO_CABLE.XX)01/08/2026ReviewedFALSE
- 6.02.03.10.01The cryogenics group shall provide the reconfigured design details for the dual triplet cryostat system integration and be capable of being cooled with the 4K cryogenic system and bypass the Blue line cold masses.01/08/2026ReviewedFALSE
- 6.02.03.10.01The power supply group provide create electrical schematics for the dual triplet cryostat with the number of cables and connectors needed to the power all the cryostat power circuits and bypass the blue line cold mass.01/08/2026ReviewedFALSE
- 6.02.03.10.01The power supply group shall purchase the cables to bypass the blue line cold mass current lead connections for the dual triplet cryostats, if required.01/08/2026ReviewedFALSE
- 6.02.03.10.01ASR System Installation and Final Integration shall provide funding and scheduling to bypass the Blue line cold mass Dual Triplet current lead connections by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.03.10.01The power supply group shall perform electrical testing to verify functionality at room temperature and then cold of the dual triplet cryostat\current lead connections.01/08/2026ReviewedFALSE
- 6.02.03.10.01The cryogenics group shall leak check the final cold crossing buss connections from the dual triplet cryostat to the 4K cryogenic distribution system.01/08/2026ReviewedFALSE
- 6.02.03.10.01The power supply group shall provide the quench protection and detection design details for the dual triplet cryostat to define system integration.01/08/2026ReviewedFALSE
- 6.02.03.10.01The cryogenics group shall provide cryogenic control design details required from the cold mass to the 300K feedthrough terminals\connectors on the vac vessel.01/08/2026ReviewedFALSE
- 6.02.03.10.01The magnet design team shall provide magnet instrumentation design details required by the dual triplet cryostat from the cold mass to the 300K terminals\connectors on the vac vessel.01/08/2026ReviewedFALSE
- 6.02.03.10.01The cryogenics group shall provide schematics showing all the connections to the cryostat to the 4K cryo control system.01/08/2026ReviewedFALSE
- 6.02.03.10.01Reference related ACBS interface document for ACBS beamline vacuum interconnect and installation interface details to the vacuum assembly. (I-HSR-VAC-SCREENS.XX)01/08/2026ReviewedFALSE
- 6.02.03.10.01Reference related ACBS interface document for ACBS cryogenic interconnect, beam screen heater and control valve and installation interface details to the vacuum assembly. (I-HSR-VAC-CRYOMOD.XX)01/08/2026ReviewedFALSE
- 6.02.03.10.01The mechanical design group shall provide a design with mechanical support and clearance necessary to route the Actively Cooled Beam Screen (ACBS) through the cryostat bore and install the beam screen heater and valve assembly.01/08/2026ReviewedFALSE
- 6.02.03.10.01Reference related ACBS interface document for ACBS cryogenic interconnect, beam screen heater, thermal sensors, control valve and installation interface details to the vacuum assembly. (I-HSR-VAC-CRYOMOD.XX)01/08/2026ReviewedFALSE
- 6.02.03.10.01The mechanical design group shall provide the design details to incorporate the vacuum ACBS feedthrough design into the dual triplet cryostat.01/08/2026ReviewedFALSE
- 6.02.03.10.01The vacuum group shall provide the design details of the taper beam pipe interconnect to the Actively Cooled Beam Screen (ACBS) at each end of the Triplet.01/08/2026ReviewedFALSE
- 6.02.03.10.01The vacuum group shall provide the design details of the RF bellows in the taper beam pipe interconnect to the ACBS.01/08/2026ReviewedFALSE
- 6.02.03.10.01ASR System Installation and Final Integration shall provide funding and scheduling install dual triplet cryostat RF bellows and taper beam pipe assembly by the appropriate technical support group which satisfies the Vacuum Group design.01/08/2026ReviewedFALSE
- 6.02.03.10.01The vacuum group shall provide the design details of the gate valve interconnect.01/08/2026ReviewedFALSE
- 6.02.03.10.01The vacuum group shall purchase the gate valve interconnect, if required.01/08/2026ReviewedFALSE
- 6.02.03.10.01The mechanical design group shall provide a design to interconnect the gate valve to the cryostat.01/08/2026ReviewedFALSE
- 6.02.03.10.01ASR System Installation and Final Integration shall provide funding and scheduling install dual triplet cryostat gate valve assembly by the appropriate technical support group which satisfies the Vacuum Group design.01/08/2026ReviewedFALSE
- 6.02.03.10.01The vacuum group shall provide the design details of the vacuum pump installation provisions to the bellows at each end of the dual triplet cryostat.01/08/2026ReviewedFALSE
- 6.02.03.10.01The mechanical design group shall provide a design to interconnect the vacuum pumps to the cryostat and beamline.01/08/2026ReviewedFALSE
- 6.02.03.10.01ASR System Installation and Final Integration shall provide funding and scheduling install the vacuum pumps to the cryostat and beamline.01/08/2026ReviewedFALSE
- 6.02.03.10.01The vacuum group shall leak check the dual triplet insulating housing and beamline.01/08/2026ReviewedFALSE
- 6.02.03.10.01The mechanical design group shall provide the design details for the dual triplet cryostat to the mechanical support stand.01/08/2026ReviewedFALSE
- 6.02.03.10.01The mechanical design group shall provide design details for an adjustable cryostat support structure.01/08/2026ReviewedFALSE
- 6.02.03.10.01The TBD group shall provide an adjustable support structure for the cryostat which satisfies the design.01/08/2026ReviewedFALSE
- 6.02.03.10.01ASR System Installation and Final Integration shall provide funding and scheduling install dual triplet cryostat onto the girder assembly in the tunnel by the appropriate technical support group which satisfies the mechanical design group design.01/08/2026ReviewedFALSE
- 6.02.03.10.01The physics group shall provide the allocated spatial location based on the lattice for the dual triplet cryostat01/08/2026ReviewedFALSE
HSR-MAG-SCMR-TRIPLET-SINGLE
- 6.02.03.10.02The mechanical design group shall provide a cryostat design with mating pipe connections from the single triplet cryostat to the 4K cryogenic distribution system M,R,U,S,H cryogenic lines.01/08/2026ReviewedFALSE
- 6.02.03.10.02The cryogenics group shall create schematics with the piping and connectors needed in accordance to the mechanical engineering design in the tunnel at the VJR.01/08/2026ReviewedFALSE
- 6.02.03.10.02The cryogenics Group shall purchase the piping and accessories necessary to plumb the single triplet cryostat to the 4K distribution system in tunnel at the VJR.01/08/2026ReviewedFALSE
- 6.02.03.10.02ASR System Installation and Final Integration shall provide funding and scheduling to install single triplet 4K pipe connections by the appropriate technical support group which satisfies the cryogenics group design.01/08/2026ReviewedFALSE
- 6.02.03.10.02The cryogenics Group shall leak check the final pipe connections from the single triplet cryostat to the 4K cryogenic distribution system.01/08/2026ReviewedFALSE
- 6.02.03.10.02The vacuum group shall provide the existing insulating vacuum pressure relief system design for the single triplet cryostat.01/08/2026ReviewedFALSE
- 6.02.03.10.02The mechanical design group shall retrofit the existing insulating vacuum pressure relief system to limit the pressure in the single triple cryostat.01/08/2026ReviewedFALSE
- 6.02.03.10.02Reference related beam position monitor interface document for vacuum interconnect for the beam position monitor pickup assembly and installation interface details to the vacuum assembly. (I-HSR-INST-BPM-PU.XX)01/08/2026ReviewedFALSE
- 6.02.03.10.02Reference related beam position monitor interface document for vacuum feedthrough interconnect for the beam position monitor pickup assembly and installation interface details to the vacuum assembly. (I-HSR-INST-BPM-CRYO_CABLE.XX)01/08/2026ReviewedFALSE
- 6.02.03.10.02The cryogenics group shall provide the cold crossing buss design details for the single triplet cryostat system integration and be capable of being cooled with the 4K cryogenic system.01/08/2026ReviewedFALSE
- 6.02.03.10.02The power supply group shall provide the electrical schematic for the single triplet cryostat cold crossing buss to provide system integration.01/08/2026ReviewedFALSE
- 6.02.03.10.02The mechanical design group shall incorporate the cold crossing bus design details for the single triplet cold mass, such that the final connections can be made in the tunnel.01/08/2026ReviewedFALSE
- 6.02.03.10.02The power supply group provide create electrical schematics for the single triplet cryostat cold crossing buss with the number of cables and connectors needed to the power all the cryostat power circuits.01/08/2026ReviewedFALSE
- 6.02.03.10.02The power supply group shall purchase the cables that go from the power supply valve box to the cold crossing buss connections for the single triplet cryostats, if required.01/08/2026ReviewedFALSE
- 6.02.03.10.02ASR System Installation and Final Integration shall provide funding and scheduling to install single triplet current lead connections by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.03.10.02The power supply group shall perform electrical testing to verify functionality at room temperature and cold of the single triplet cryostat cold crossing buss connections.01/08/2026ReviewedFALSE
- 6.02.03.10.02The cryogenics group shall leak check the final cold crossing buss connections from the dual triplet cryostat to the 4K cryogenic distribution system.01/08/2026ReviewedFALSE
- 6.02.03.10.02The power supply group shall provide the quench protection and detection design details for the single triplet cryostat to define system integration.01/08/2026ReviewedFALSE
- 6.02.03.10.02The power supply group shall provide schematics with the number of cables and connectors needed to connect all quench circuits.01/08/2026ReviewedFALSE
- 6.02.03.10.02The power supply group shall purchase any cabling to go from the power supply to any quench protection equipment needed for the cryostats.01/08/2026ReviewedFALSE
- 6.02.03.10.02The power supply group shall provide all Quench protection system and ancillary components to be utilized by the magnets.01/08/2026ReviewedFALSE
- 6.02.03.10.02ASR System Installation and Final Integration shall provide funding and scheduling to install single triplet quench protection system by the appropriate technical support group which satisfies the power supply group design.01/08/2026ReviewedFALSE
- 6.02.03.10.02The power supply group shall perform electrical testing to verify at room temperature the single triplet quench protection lead connections are capable of meeting operational needs.01/08/2026ReviewedFALSE
- 6.02.03.10.02The cryogenics group shall provide cryogenic control design details required by the cryostat from the cold mass to the 300K feedthrough terminals\connectors on the vac vessel.01/08/2026ReviewedFALSE
- 6.02.03.10.02The magnet design team shall provide instrumentation design details required by the dual triplet cryostat magnets from the cold mass to the 300K terminals\connectors on the vac vessel.01/08/2026ReviewedFALSE
- 6.02.03.10.02The mechanical design group shall provide the single triplet cryostat cryogenic control design feed through details to provide system integration of the 300K terminal/connectors on the vac vessel, such that the final connections can be made in the tunnel.01/08/2026ReviewedFALSE
- 6.02.03.10.02The cryogenics group shall provide schematics showing all the connections to the cryostat to the 4K cryo control system.01/08/2026ReviewedFALSE
- 6.02.03.10.02The cryogenics group shall purchase the wire and connectors necessary to connect the cryostat to the 4K cryo control system.01/08/2026ReviewedFALSE
- 6.02.03.10.02ASR System Installation and Final Integration shall provide funding and scheduling to install single triplet cryostat controls system by the appropriate technical support group which satisfies the cryogenics group design.01/08/2026ReviewedFALSE
- 6.02.03.10.02The magnet design team shall perform electrical testing to verify at room temperature the cryogenic control lead connections are capable of meeting operational needs.01/08/2026ReviewedFALSE
- 6.02.03.10.02Reference related ACBS interface document for ACBS beamline vacuum interconnect and installation interface details to the vacuum assembly. (I-HSR-VAC-SCREENS.XX)01/08/2026ReviewedFALSE
- 6.02.03.10.02Reference related ACBS interface document for ACBS cryogenic interconnect, beam screen heater and control valve and installation interface details to the vacuum assembly. (I-HSR-VAC-CRYOMOD.XX)01/08/2026ReviewedFALSE
- 6.02.03.10.02The mechanical design group shall provide a single cryostat design with mechanical support and clearance necessary to route the Actively Cooled Beam Screen (ACBS) through the cryostat bore and install the beam screen heater and valve assembly.01/08/2026ReviewedFALSE
- 6.02.03.10.02Reference related ACBS interface document for ACBS cryogenic interconnect, beam screen heater, thermal sensors, control valve and installation interface details to the vacuum assembly. (I-HSR-VAC-CRYOMOD.XX)01/08/2026ReviewedFALSE
- 6.02.03.10.02The mechanical design group shall provide the design details to incorporate the vacuum ACBS feedthrough design into the single triplet cryostat.01/08/2026ReviewedFALSE
- 6.02.03.10.02The vacuum group shall provide the design details of the taper beam pipe interconnect to the Actively Cooled Beam Screen (ACBS) at each end of the Triplet.01/08/2026ReviewedFALSE
- 6.02.03.10.02The vacuum group shall provide the design details of the RF bellows in the taper beam pipe interconnect to the ACBS.01/08/2026ReviewedFALSE
- 6.02.03.10.02ASR System Installation and Final Integration shall provide funding and scheduling to install single triplet cryostat RF bellows and taper beam pipe assembly by the appropriate technical support group which satisfies the Vacuum Group design.01/08/2026ReviewedFALSE
- 6.02.03.10.02The single triplet cryostat shall have a gate valve at each end.01/08/2026ReviewedFALSE
- 6.02.03.10.02The vacuum group shall provide the design details of the gate valve interconnect.01/08/2026ReviewedFALSE
- 6.02.03.10.02The vacuum group shall purchase the gate valve interconnect, if required.01/08/2026ReviewedFALSE
- 6.02.03.10.02The mechanical design group shall provide a design to interconnect the gate valve to the cryostat.01/08/2026ReviewedFALSE
- 6.02.03.10.02ASR System Installation and Final Integration shall provide funding and scheduling to install single triplet cryostat gate valve assembly by the appropriate technical support group which satisfies the Vacuum Group design.01/08/2026ReviewedFALSE
- 6.02.03.10.02The vacuum group shall provide the design details of the vacuum pump installation provisions to the bellows at each end of the single triplet cryostat.01/08/2026ReviewedFALSE
- 6.02.03.10.02The mechanical design group shall provide a design to interconnect the vacuum pumps to the cryostat and beamline.01/08/2026ReviewedFALSE
- 6.02.03.10.02ASR System Installation and Final Integration shall provide funding and scheduling to install the vacuum pumps to the cryostat and beamline.01/08/2026ReviewedFALSE
- 6.02.03.10.02The vacuum group shall leak check the dual triplet insulating housing and beamline.01/08/2026ReviewedFALSE
- 6.02.03.10.02The mechanical design group shall provide the design details for the single triplet cryostat to the mechanical support stand.01/08/2026ReviewedFALSE
- 6.02.03.10.02The mechanical design group shall provide design details for an adjustable cryostat support structure.01/08/2026ReviewedFALSE
- 6.02.03.10.02The TBD group shall provide an adjustable support structure for the cryostat which satisfies the design.01/08/2026ReviewedFALSE
- 6.02.03.10.02ASR System Installation and Final Integration shall provide funding and scheduling to install single triplet cryostat onto the girder assembly in the tunnel by the appropriate technical support group which satisfies the mechanical design group design.01/08/2026ReviewedFALSE
- 6.02.03.10.02The physics group shall provide the allocated spatial location based on the lattice for the single triplet cryostat01/08/2026ReviewedFALSE
- 6.02.03.10.02The mechanical design group shall provide the volume within the tunnel to be occupied by the cryostat and CAD model to ensure the design does not interfere with cryostat, cables, cryogenic connections to the cryostat.01/08/2026ReviewedFALSE
- 6.02.03.10.02The mechanical design group shall have fiducial marks added to the cryostat allowing the center of the cryostat and cryostats beamlines to be located. It should identify the location of the cryostat center and its alignment with respect to the beamline.01/08/2026ReviewedFALSE
- 6.02.03.10.02ASR System Installation and Final Integration shall provide funding and scheduling to provide installation details to ensure the cryostat is aligned in the tunnel.01/08/2026ReviewedFALSE
- 6.02.03.10.02ASR System Installation and Final Integration shall provide funding and scheduling to align the cryostat such that the fiducial marks on the cryostat are located with respect to the install locations provided by the survey group to ensure the cryostat is aligned.01/08/2026ReviewedFALSE
HSR-MAG-SNAKE
- 6.02.03.10The Solenoid shall be a 'HLX' RHIC Magnet in a 'Snake' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 10.4 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 50 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10TBD02/09/2026Not ApplicableFALSE
- 6.02.03.10The magnet dipole field (B) shall be 4 (T).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet maximum ramp rate shall be 0.5 (A/s).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is a HLX(Snake) RHIC Magnet, the multipole homogeneity measurements and transfer function are as maintained in the BNL magnet repository. All refurbished magnets shall meet the homogenity requirements exhibited by the existing RHIC magnets.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=31(mm), Ir=329(A).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository.02/09/2026ApprovedFALSE
- 6.02.03.10< Requirement Not Applicable >02/09/2026Not ApplicableFALSE
- 6.02.03.10< Requirement Not Applicable >02/09/2026Not ApplicableFALSE
- 6.02.03.10< Requirement Not Applicable >02/09/2026Not ApplicableFALSE
- 6.02.03.10The magnet is a HLX(Snake) RHIC Magnet, the Magnet-Fringe-field calculations are as maintained in the BNL magnet repository. All refurbished magnets shall meet the Fring feild requirements exhibited by the existing RHIC magnets.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026ReviewedFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions by forced flow of supercritical helium, at a flowrate greater than 100 g/s, between 3.5bar and 4 bar, and at a temperature below 4.7K.02/09/2026ReviewedFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions using supercritical helium between 3.5 bar and 4 bar, and at a temperature of less than 4.7K.02/09/2026ReviewedFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of 3.7 W while operating at nominal conditions between 3.5 bar and 4 bar and a temperature less than 4.7 (K).02/09/2026ReviewedFALSE
- 6.02.03.10The magnet current leads cooling shall be capable of removing a maximum total heat load of 1.2W at the cold end while maintaining nominal operating conditions between 3.5 bar and 4 bar and below 4.7 (K), and lead cooling flow of 0.03 g/s for currents upto 300A, and above 300A the current shall ramp with a slope of 0.00012 (g/s)/(A).02/09/2026ReviewedFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be 18.8 bar.02/09/2026ReviewedFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.01325 bar.02/09/2026ReviewedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a 50 K axial gradient.02/09/2026ReviewedFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degradation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and the magnet quench perfromance SHALL be no worse than existing RHIC magnets.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils shall pass a Hi-Pot test at nominal operating conditions corresponding to the exsisting RHIC Helicoil magnets.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with the exsisting RHIC helicoil Magnet-Quench detection voltage taps.02/09/2026In ProcessFALSE
- 6.02.03.10All SC magnet Splice resistances shall be no worse than the existing RHIC helicoil magnets.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 30 years of EIC operation under nominal conditions.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed with components capable to withstand a lifetime radiation dose of XXX MGy.02/09/2026In ProcessFALSE
HSR-MAG-SpinRotator
- 6.02.03.10The Solenoid shall be a 'HLX' RHIC Magnet in a 'Spin Rotator' RHIC Magnet Assembly.02/09/2026ApprovedFALSE
- 6.02.03.10The physical magnet length shall be less than or equal to 10.4 (m).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet pole tip radius shall be 50 (mm).02/09/2026ApprovedFALSE
- 6.02.03.10TBD02/09/2026In ProcessFALSE
- 6.02.03.10The magnet dipole field (B) shall be 4 (T).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet ramp rate shall be TBD. ( 0.5 (A/s))02/09/2026ApprovedFALSE
- 6.02.03.10TBD02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a HLX(Spin Rotator) RHIC Magnet, the multipole homogeneity measurements and transfer function are as maintained in the BNL magnet repository. All refurbished magnets shall meet the homogenity requirements exhibited by the existing RHIC magnets.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet harmonic reference radius (Rr) and current (Ir) shall be Rr=31(mm), Ir=329(A).02/09/2026ApprovedFALSE
- 6.02.03.10The magnet bore field transfer function and field homogeneity values are maintained in the BNL magnet repository.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is a HLX(Spin Rotator) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository. All refurbished magnets shall meet the Fring feild requirements exhibited by the existing RHIC magnets.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026ReviewedFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustain operations at nominal operating conditions by forced flow of supercritical helium, at a flowrate greater than 100 g/s, between 3.5bar and 4 bar, and at a temperature below 4.7K.02/09/2026ReviewedFALSE
- 6.02.03.10The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of supercritical helium between 3.5 bar and 4 bar and 4.7 (K).02/09/2026ReviewedFALSE
- 6.02.03.10The magnet shall be capable of removing a maximum total heat load of 3.7 W while maintaining nominal operating conditions between 3.5 bar and 4 bar and 4.7 (K).02/09/2026ReviewedFALSE
- 6.02.03.10The magnet current leads cooling shall be capable of removing a maximum total heat load of 1.2 W at the cold end while maintaining nominal operating conditions between 3.5 bar and 4.0 bar and 4.7 (K), and cooling flow of 0.032 g/s upto a current of 360A, and above 360A, the flow will ramp with slope of 0.00012 (g/s)/(A).02/09/2026ReviewedFALSE
- 6.02.03.10The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be 18.8 bar.02/09/2026ReviewedFALSE
- 6.02.03.10The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.01325bar.02/09/2026ReviewedFALSE
- 6.02.03.10The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026ReviewedFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be able to survive the thermal dynamics during cooldown and following a Magnet-Quench without degradation in its performance.02/09/2026ApprovedFALSE
- 6.02.03.10After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no Magnet-Quenches and the magnet quench perfromance SHALL be no worse than existing RHIC HLX(Spin Rotator) magnets.02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet coils shall pass a Hi-Pot test at nominal operating conditions corresponding to the exsisting RHIC HLX(Spin Rotator) magnets.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be delivered with the exsisting RHIC HLX(Spin Rotator) Magnet-Quench detection voltage taps.02/09/2026In ProcessFALSE
- 6.02.03.10All SC magnet Splice resistances shall be no worse than the existing RHIC HLX(Spin Rotator) magnets.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 30 years of EIC operation under nominal conditions.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed with components capable to withstand a lifetime radiation dose of XXX MGy.02/09/2026In ProcessFALSE
HSR-PS : HSR Magnet Power Supply (WBS 6.05.02.02)
- 6.02.03The HSR magnets shall be fed by a system of power supplies matched in voltage and maximum current to the specifications and requirements of the respective magnets02/09/2026ApprovedFALSE
HSR-PS-BIP150 : HSR Magnet Power Supply (WBS 6.05.02.02)
- 6.02.03.04The magnet model being powered by the power supply is bip150.02/09/2026ReviewedFALSE
- 6.02.03.04The bip150 power supply shall meet all requirements to deliver the magnet operational parameters defined in the Collider-Accelerator Department RHIC Configuration Manual. [Document:RHIC Configuration Manual,Nov.2006]02/09/2026ReviewedFALSE
- 6.02.03.04The bip150 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 15 V.02/09/2026ReviewedFALSE
- 6.02.03.04The bip150 power supply shall provide a slow ramped current.02/09/2026ReviewedFALSE
- 6.02.03.04The bip150 power supply shall maintain a full-scale current stability of <10 ppm (RMS) over multiple hours.02/09/2026ReviewedFALSE
- 6.02.03.04The bip150 power supply shall maintain a long-term stability (1 second to 10 hours) of TBD A/s.02/09/2026In ProcessFALSE
- 6.02.03.04The bip150 power supply shall provide a minimal current setpoint resolution of 16 bits.02/09/2026ReviewedFALSE
- 6.02.03.04The bip150 power supply synchronization required between power supplies shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The bip150 power supply synchronization timing of synchronization shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The bip150 power supply shall limit current ripple (RMS) to TBD ppm of full-scale current in the 0–1 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The bip150 power supply shall limit current ripple (RMS) to TBD ppm of full scale current greater than 1kHz.02/09/2026In ProcessFALSE
- 6.02.03.04The bip150 power supply shall limit ripple to TBD ppm in the 1 kHz–8 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The bip150 power supply shall limit ripple in the 8 kHz–40 kHz range per the specified TBD chart.02/09/2026In ProcessFALSE
- 6.02.03.04The bip150 power supply shall avoid ripple at resonant frequencies of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.03.04The bip150 power supply quench detection voltage tap configuration shall meet the parameters found in [voltage tap data.url].02/09/2026ReviewedFALSE
- 6.02.03.04The bip150 power supply quench detection threshold levels shall meet the parameters found in [Thresholds.pdf].02/09/2026ReviewedFALSE
- 6.02.03.04The bip150 power supply peak di/dt without inducing a quench shall be TBD A/S.02/09/2026In ProcessFALSE
- 6.02.03.04The bip150 power supply quench heater power rating shall be TBD W.02/09/2026In ProcessFALSE
- 6.02.03.04The bip150 power supply design shall have warm up heaters.02/09/2026ReviewedFALSE
- 6.02.03.04The bip150 power supply warmup heater power rating shall be warm up heater diagrams.url W.02/09/2026ReviewedFALSE
HSR-PS-BIP300 : HSR Magnet Power Supply (WBS 6.05.02.02)
- 6.02.03.04The magnet model being powered by the power supply is bip300.02/09/2026ReviewedFALSE
- 6.02.03.04The bip300 power supply shall meet all requirements to deliver the magnet operational parameters defined in the Collider-Accelerator Department RHIC Configuration Manual. [Document:RHIC Configuration Manual,Nov.2006]02/09/2026ReviewedFALSE
- 6.02.03.04The bip300 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 15 V.02/09/2026ReviewedFALSE
- 6.02.03.04The bip300 power supply shall provide a slow ramped current.02/09/2026ReviewedFALSE
- 6.02.03.04The bip300 power supply shall maintain a full-scale current stability of <10 ppm (RMS) over multiple hours.02/09/2026ReviewedFALSE
- 6.02.03.04The bip300 power supply shall maintain a long-term stability (1 second to 10 hours) of TBD A/s.02/09/2026In ProcessFALSE
- 6.02.03.04The bip300 power supply shall provide a minimal current setpoint resolution of 16 bits.02/09/2026ReviewedFALSE
- 6.02.03.04The bip300 power supply synchronization required between power supplies shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The bip300 power supply synchronization timing of synchronization shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The bip300 power supply shall limit current ripple (RMS) to TBD ppm of full-scale current in the 0–1 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The bip300 power supply shall limit current ripple (RMS) to TBD ppm of full scale current greater than 1kHz.02/09/2026In ProcessFALSE
- 6.02.03.04The bip300 power supply shall limit ripple to TBD ppm in the 1 kHz–8 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The bip300 power supply shall limit ripple in the 8 kHz–40 kHz range per the specified TBD chart.02/09/2026In ProcessFALSE
- 6.02.03.04The bip300 power supply shall avoid ripple at resonant frequencies of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.03.04The bip300 power supply quench detection voltage tap configuration shall meet the parameters found in [voltage tap data.url].02/09/2026ReviewedFALSE
- 6.02.03.04The bip300 power supply quench detection threshold levels shall meet the parameters found in [Thresholds.pdf].02/09/2026ReviewedFALSE
- 6.02.03.04The bip300 power supply peak di/dt without inducing a quench shall be TBD A/S.02/09/2026In ProcessFALSE
- 6.02.03.04The bip300 power supply quench heater power rating shall be TBD W.02/09/2026In ProcessFALSE
- 6.02.03.04The bip300 power supply design shall have warm up heaters.02/09/2026ReviewedFALSE
- 6.02.03.04The bip300 power supply warmup heater power rating shall be warm up heater diagrams.url W.02/09/2026ReviewedFALSE
HSR-PS-DIPOLE : HSR Magnet Power Supply (WBS 6.05.02.02)
- 6.02.03.04The magnet model being powered by the power supply is dipole.02/09/2026ReviewedFALSE
- 6.02.03.04The dipole power supply shall meet all requirements to deliver the magnet operational parameters defined in the Collider-Accelerator Department RHIC Configuration Manual. [Document:RHIC Configuration Manual,Nov.2006]02/09/2026ReviewedFALSE
- 6.02.03.04The dipole power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 20 V.02/09/2026ReviewedFALSE
- 6.02.03.04The dipole power supply shall provide a slow ramped current.02/09/2026ReviewedFALSE
- 6.02.03.04The dipole power supply shall maintain a full-scale current stability of <10 ppm (RMS) over multiple hours.02/09/2026ReviewedFALSE
- 6.02.03.04The dipole power supply shall maintain a long-term stability (1 second to 10 hours) of TBD A/s.02/09/2026In ProcessFALSE
- 6.02.03.04The dipole power supply shall provide a minimal current setpoint resolution of 16 bits.02/09/2026ReviewedFALSE
- 6.02.03.04The dipole power supply synchronization required between power supplies shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The dipole power supply synchronization timing of synchronization shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The dipole power supply shall limit current ripple (RMS) to TBD ppm of full-scale current in the 0–1 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The dipole power supply shall limit current ripple (RMS) to TBD ppm of full scale current greater than 1kHz.02/09/2026In ProcessFALSE
- 6.02.03.04The dipole power supply shall limit ripple to TBD ppm in the 1 kHz–8 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The dipole power supply shall limit ripple in the 8 kHz–40 kHz range per the specified TBD chart.02/09/2026In ProcessFALSE
- 6.02.03.04The dipole power supply shall avoid ripple at resonant frequencies of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.03.04The dipole power supply quench detection voltage tap configuration shall meet the parameters found in [voltage tap data.url].02/09/2026ReviewedFALSE
- 6.02.03.04The dipole power supply quench detection threshold levels shall meet the parameters found in [Thresholds.pdf].02/09/2026ReviewedFALSE
- 6.02.03.04The dipole power supply peak di/dt without inducing a quench shall be TBD A/S.02/09/2026In ProcessFALSE
- 6.02.03.04The dipole power supply quench heater power rating shall be TBD W.02/09/2026In ProcessFALSE
- 6.02.03.04The dipole power supply design shall have warm up heaters.02/09/2026ReviewedFALSE
- 6.02.03.04The dipole power supply warmup heater power rating shall be warm up heater diagrams.url W.02/09/2026ReviewedFALSE
HSR-PS-DMAIN : HSR Magnet Power Supply (WBS 6.05.02.02)
- 6.02.03.04The magnet model being powered by the power supply is dmain.02/09/2026ReviewedFALSE
- 6.02.03.04The dmain power supply shall meet all requirements to deliver the magnet operational parameters defined in the Collider-Accelerator Department RHIC Configuration Manual. [Document:RHIC Configuration Manual,Nov.2006]02/09/2026ReviewedFALSE
- 6.02.03.04The dmain power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 400 V.02/09/2026ReviewedFALSE
- 6.02.03.04The dmain power supply shall provide a slow ramped current.02/09/2026ReviewedFALSE
- 6.02.03.04The dmain power supply shall maintain a full-scale current stability of <10 ppm (RMS) over multiple hours.02/09/2026ReviewedFALSE
- 6.02.03.04The dmain power supply shall maintain a long-term stability (1 second to 10 hours) of TBD A/s.02/09/2026In ProcessFALSE
- 6.02.03.04The dmain power supply shall provide a minimal current setpoint resolution of 16 bits.02/09/2026ReviewedFALSE
- 6.02.03.04The dmain power supply synchronization required between power supplies shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The dmain power supply synchronization timing of synchronization shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The dmain power supply shall limit current ripple (RMS) to TBD ppm of full-scale current in the 0–1 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The dmain power supply shall limit current ripple (RMS) to TBD ppm of full scale current greater than 1kHz.02/09/2026In ProcessFALSE
- 6.02.03.04The dmain power supply shall limit ripple to TBD ppm in the 1 kHz–8 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The dmain power supply shall limit ripple in the 8 kHz–40 kHz range per the specified TBD chart.02/09/2026In ProcessFALSE
- 6.02.03.04The dmain power supply shall avoid ripple at resonant frequencies of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.03.04The dmain power supply quench detection voltage tap configuration shall meet the parameters found in [voltage tap data.url].02/09/2026ReviewedFALSE
- 6.02.03.04The dmain power supply quench detection threshold levels shall meet the parameters found in [Thresholds.pdf].02/09/2026ReviewedFALSE
- 6.02.03.04The dmain power supply peak di/dt without inducing a quench shall be TBD A/S.02/09/2026In ProcessFALSE
- 6.02.03.04The dmain power supply quench heater power rating shall be TBD W.02/09/2026In ProcessFALSE
- 6.02.03.04The dmain power supply design shall have warm up heaters.02/09/2026ReviewedFALSE
- 6.02.03.04The dmain power supply warmup heater power rating shall be warm up heater diagrams.url W.02/09/2026ReviewedFALSE
HSR-PS-GAMMAT : HSR Magnet Power Supply (WBS 6.05.02.02)
- 6.02.03.04The magnet model being powered by the power supply is gammat.02/09/2026ReviewedFALSE
- 6.02.03.04The gammat power supply shall meet all requirements to deliver the magnet operational parameters defined in the Collider-Accelerator Department RHIC Configuration Manual. [Document:RHIC Configuration Manual,Nov.2006]02/09/2026ReviewedFALSE
- 6.02.03.04The gammat power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 20 V.02/09/2026ReviewedFALSE
- 6.02.03.04The gammat power supply shall provide a slow ramped current.02/09/2026ReviewedFALSE
- 6.02.03.04The gammat power supply shall maintain a full-scale current stability of <10 ppm (RMS) over multiple hours.02/09/2026ReviewedFALSE
- 6.02.03.04The gammat power supply shall maintain a long-term stability (1 second to 10 hours) of TBD A/s.02/09/2026In ProcessFALSE
- 6.02.03.04The gammat power supply shall provide a minimal current setpoint resolution of 16 bits.02/09/2026ReviewedFALSE
- 6.02.03.04The gammat power supply synchronization required between power supplies shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The gammat power supply synchronization timing of synchronization shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The gammat power supply shall limit current ripple (RMS) to TBD ppm of full-scale current in the 0–1 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The gammat power supply shall limit current ripple (RMS) to TBD ppm of full scale current greater than 1kHz.02/09/2026In ProcessFALSE
- 6.02.03.04The gammat power supply shall limit ripple to TBD ppm in the 1 kHz–8 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The gammat power supply shall limit ripple in the 8 kHz–40 kHz range per the specified TBD chart.02/09/2026In ProcessFALSE
- 6.02.03.04The gammat power supply shall avoid ripple at resonant frequencies of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.03.04The gammat power supply quench detection voltage tap configuration shall meet the parameters found in [voltage tap data.url].02/09/2026ReviewedFALSE
- 6.02.03.04The gammat power supply quench detection threshold levels shall meet the parameters found in [Thresholds.pdf].02/09/2026ReviewedFALSE
- 6.02.03.04The gammat power supply peak di/dt without inducing a quench shall be TBD A/S.02/09/2026In ProcessFALSE
- 6.02.03.04The gammat power supply quench heater power rating shall be TBD W.02/09/2026In ProcessFALSE
- 6.02.03.04The gammat power supply design shall have warm up heaters.02/09/2026ReviewedFALSE
- 6.02.03.04The gammat power supply warmup heater power rating shall be warm up heater diagrams.url W.02/09/2026ReviewedFALSE
HSR-PS-NONLINEAR : HSR Magnet Power Supply (WBS 6.05.02.02)
- 6.02.03.04The magnet model being powered by the power supply is nonlinear.02/09/2026ReviewedFALSE
- 6.02.03.04The nonlinear power supply shall meet all requirements to deliver the magnet operational parameters defined in the Collider-Accelerator Department RHIC Configuration Manual. [Document:RHIC Configuration Manual,Nov.2006]02/09/2026ReviewedFALSE
- 6.02.03.04The nonlinear power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 20 V.02/09/2026ReviewedFALSE
- 6.02.03.04The nonlinear power supply shall provide a slow ramped current.02/09/2026ReviewedFALSE
- 6.02.03.04The nonlinear power supply shall maintain a full-scale current stability of <10 ppm (RMS) over multiple hours.02/09/2026ReviewedFALSE
- 6.02.03.04The nonlinear power supply shall maintain a long-term stability (1 second to 10 hours) of TBD A/s.02/09/2026In ProcessFALSE
- 6.02.03.04The nonlinear power supply shall provide a minimal current setpoint resolution of 16 bits.02/09/2026ReviewedFALSE
- 6.02.03.04The nonlinear power supply synchronization required between power supplies shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The nonlinear power supply synchronization timing of synchronization shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The nonlinear power supply shall limit current ripple (RMS) to TBD ppm of full-scale current in the 0–1 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The nonlinear power supply shall limit current ripple (RMS) to TBD ppm of full scale current greater than 1kHz.02/09/2026In ProcessFALSE
- 6.02.03.04The nonlinear power supply shall limit ripple to TBD ppm in the 1 kHz–8 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The nonlinear power supply shall limit ripple in the 8 kHz–40 kHz range per the specified TBD chart.02/09/2026In ProcessFALSE
- 6.02.03.04The nonlinear power supply shall avoid ripple at resonant frequencies of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.03.04The nonlinear power supply quench detection voltage tap configuration shall meet the parameters found in [voltage tap data.url].02/09/2026ReviewedFALSE
- 6.02.03.04The nonlinear power supply quench detection threshold levels shall meet the parameters found in [Thresholds.pdf].02/09/2026ReviewedFALSE
- 6.02.03.04The nonlinear power supply peak di/dt without inducing a quench shall be TBD A/S.02/09/2026In ProcessFALSE
- 6.02.03.04The nonlinear power supply quench heater power rating shall be TBD W.02/09/2026In ProcessFALSE
- 6.02.03.04The nonlinear power supply design shall have warm up heaters.02/09/2026ReviewedFALSE
- 6.02.03.04The nonlinear power supply warmup heater power rating shall be warm up heater diagrams.url W.02/09/2026ReviewedFALSE
HSR-PS-OCTUPOLE : HSR Magnet Power Supply (WBS 6.05.02.02)
- 6.02.03.04The magnet model being powered by the power supply is octupole.02/09/2026ReviewedFALSE
- 6.02.03.04The octupole power supply shall meet all requirements to deliver the magnet operational parameters defined in the Collider-Accelerator Department RHIC Configuration Manual. [Document:RHIC Configuration Manual,Nov.2006]02/09/2026ReviewedFALSE
- 6.02.03.04The octupole power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 20 V.02/09/2026ReviewedFALSE
- 6.02.03.04The octupole power supply shall provide a slow ramped current.02/09/2026ReviewedFALSE
- 6.02.03.04The octupole power supply shall maintain a full-scale current stability of <10 ppm (RMS) over multiple hours.02/09/2026ReviewedFALSE
- 6.02.03.04The octupole power supply shall maintain a long-term stability (1 second to 10 hours) of TBD A/s.02/09/2026In ProcessFALSE
- 6.02.03.04The octupole power supply shall provide a minimal current setpoint resolution of 16 bits.02/09/2026ReviewedFALSE
- 6.02.03.04The octupole power supply synchronization required between power supplies shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The octupole power supply synchronization timing of synchronization shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The octupole power supply shall limit current ripple (RMS) to TBD ppm of full-scale current in the 0–1 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The octupole power supply shall limit current ripple (RMS) to TBD ppm of full scale current greater than 1kHz.02/09/2026In ProcessFALSE
- 6.02.03.04The octupole power supply shall limit ripple to TBD ppm in the 1 kHz–8 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The octupole power supply shall limit ripple in the 8 kHz–40 kHz range per the specified TBD chart.02/09/2026In ProcessFALSE
- 6.02.03.04The octupole power supply shall avoid ripple at resonant frequencies of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.03.04The octupole power supply quench detection voltage tap configuration shall meet the parameters found in [voltage tap data.url].02/09/2026ReviewedFALSE
- 6.02.03.04The octupole power supply quench detection threshold levels shall meet the parameters found in [Thresholds.pdf].02/09/2026ReviewedFALSE
- 6.02.03.04The octupole power supply peak di/dt without inducing a quench shall be TBD A/S.02/09/2026In ProcessFALSE
- 6.02.03.04The octupole power supply quench heater power rating shall be TBD W.02/09/2026In ProcessFALSE
- 6.02.03.04The octupole power supply design shall have warm up heaters.02/09/2026ReviewedFALSE
- 6.02.03.04The octupole power supply warmup heater power rating shall be warm up heater diagrams.url W.02/09/2026ReviewedFALSE
HSR-PS-QMAIN : HSR Magnet Power Supply (WBS 6.05.02.02)
- 6.02.03.04The magnet model being powered by the power supply is qmain.02/09/2026ReviewedFALSE
- 6.02.03.04The qmain power supply shall meet all requirements to deliver the magnet operational parameters defined in the Collider-Accelerator Department RHIC Configuration Manual. [Document:RHIC Configuration Manual,Nov.2006]02/09/2026ReviewedFALSE
- 6.02.03.04The qmain power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 90 V.02/09/2026ReviewedFALSE
- 6.02.03.04The qmain power supply shall provide a slow ramped current.02/09/2026ReviewedFALSE
- 6.02.03.04The qmain power supply shall maintain a full-scale current stability of <10 ppm (RMS) over multiple hours.02/09/2026ReviewedFALSE
- 6.02.03.04The qmain power supply shall maintain a long-term stability (1 second to 10 hours) of TBD A/s.02/09/2026In ProcessFALSE
- 6.02.03.04The qmain power supply shall provide a minimal current setpoint resolution of 16 bits.02/09/2026ReviewedFALSE
- 6.02.03.04The qmain power supply synchronization required between power supplies shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The qmain power supply synchronization timing of synchronization shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The qmain power supply shall limit current ripple (RMS) to TBD ppm of full-scale current in the 0–1 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The qmain power supply shall limit current ripple (RMS) to TBD ppm of full scale current greater than 1kHz.02/09/2026In ProcessFALSE
- 6.02.03.04The qmain power supply shall limit ripple to TBD ppm in the 1 kHz–8 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The qmain power supply shall limit ripple in the 8 kHz–40 kHz range per the specified TBD chart.02/09/2026In ProcessFALSE
- 6.02.03.04The qmain power supply shall avoid ripple at resonant frequencies of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.03.04The qmain power supply quench detection voltage tap configuration shall meet the parameters found in [voltage tap data.url].02/09/2026ReviewedFALSE
- 6.02.03.04The qmain power supply quench detection threshold levels shall meet the parameters found in [Thresholds.pdf].02/09/2026ReviewedFALSE
- 6.02.03.04The qmain power supply peak di/dt without inducing a quench shall be TBD A/S.02/09/2026In ProcessFALSE
- 6.02.03.04The qmain power supply quench heater power rating shall be TBD W.02/09/2026In ProcessFALSE
- 6.02.03.04The qmain power supply design shall have warm up heaters.02/09/2026ReviewedFALSE
- 6.02.03.04The qmain power supply warmup heater power rating shall be warm up heater diagrams.url W.02/09/2026ReviewedFALSE
HSR-PS-ROT : HSR Magnet Power Supply (WBS 6.05.02.02)
- 6.02.03.04The magnet model being powered by the power supply is rot.02/09/2026ReviewedFALSE
- 6.02.03.04The rot power supply shall meet all requirements to deliver the magnet operational parameters defined in the Collider-Accelerator Department RHIC Configuration Manual. [Document:RHIC Configuration Manual,Nov.2006]02/09/2026ReviewedFALSE
- 6.02.03.04The rot power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 15 V.02/09/2026ReviewedFALSE
- 6.02.03.04The rot power supply shall provide a slow ramped current.02/09/2026ReviewedFALSE
- 6.02.03.04The rot power supply shall maintain a full-scale current stability of <10 ppm (RMS) over multiple hours.02/09/2026ReviewedFALSE
- 6.02.03.04The rot power supply shall maintain a long-term stability (1 second to 10 hours) of TBD A/s.02/09/2026In ProcessFALSE
- 6.02.03.04The rot power supply shall provide a minimal current setpoint resolution of 16 bits.02/09/2026ReviewedFALSE
- 6.02.03.04The rot power supply synchronization required between power supplies shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The rot power supply synchronization timing of synchronization shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The rot power supply shall limit current ripple (RMS) to TBD ppm of full-scale current in the 0–1 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The rot power supply shall limit current ripple (RMS) to TBD ppm of full scale current greater than 1kHz.02/09/2026In ProcessFALSE
- 6.02.03.04The rot power supply shall limit ripple to TBD ppm in the 1 kHz–8 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The rot power supply shall limit ripple in the 8 kHz–40 kHz range per the specified TBD chart.02/09/2026In ProcessFALSE
- 6.02.03.04The rot power supply shall avoid ripple at resonant frequencies of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.03.04The rot power supply quench detection voltage tap configuration shall meet the parameters found in [voltage tap data.url].02/09/2026ReviewedFALSE
- 6.02.03.04The rot power supply quench detection threshold levels shall meet the parameters found in [Thresholds.pdf].02/09/2026ReviewedFALSE
- 6.02.03.04The rot power supply peak di/dt without inducing a quench shall be TBD A/S.02/09/2026In ProcessFALSE
- 6.02.03.04The rot power supply quench heater power rating shall be TBD W.02/09/2026In ProcessFALSE
- 6.02.03.04The rot power supply design shall have warm up heaters.02/09/2026ReviewedFALSE
- 6.02.03.04The rot power supply warmup heater power rating shall be warm up heater diagrams.url W.02/09/2026ReviewedFALSE
HSR-PS-SEXUPOLE : HSR Magnet Power Supply (WBS 6.05.02.02)
- 6.02.03.04The magnet model being powered by the power supply is sextupole.02/09/2026ReviewedFALSE
- 6.02.03.04The sextupole power supply shall meet all requirements to deliver the magnet operational parameters defined in the Collider-Accelerator Department RHIC Configuration Manual. [Document:RHIC Configuration Manual,Nov.2006]02/09/2026ReviewedFALSE
- 6.02.03.04The sextupole power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 100 V.02/09/2026ReviewedFALSE
- 6.02.03.04The sextupole power supply shall provide a slow ramped current.02/09/2026ReviewedFALSE
- 6.02.03.04The sextupole power supply shall maintain a full-scale current stability of <10 ppm (RMS) over multiple hours.02/09/2026ReviewedFALSE
- 6.02.03.04The sextupole power supply shall maintain a long-term stability (1 second to 10 hours) of TBD A/s.02/09/2026In ProcessFALSE
- 6.02.03.04The sextupole power supply shall provide a minimal current setpoint resolution of 16 bits.02/09/2026ReviewedFALSE
- 6.02.03.04The sextupole power supply synchronization required between power supplies shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The sextupole power supply synchronization timing of synchronization shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The sextupole power supply shall limit current ripple (RMS) to TBD ppm of full-scale current in the 0–1 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The sextupole power supply shall limit current ripple (RMS) to TBD ppm of full scale current greater than 1kHz.02/09/2026In ProcessFALSE
- 6.02.03.04The sextupole power supply shall limit ripple to TBD ppm in the 1 kHz–8 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The sextupole power supply shall limit ripple in the 8 kHz–40 kHz range per the specified TBD chart.02/09/2026In ProcessFALSE
- 6.02.03.04The sextupole power supply shall avoid ripple at resonant frequencies of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.03.04The sextupole power supply quench detection voltage tap configuration shall meet the parameters found in [voltage tap data.url].02/09/2026ReviewedFALSE
- 6.02.03.04The sextupole power supply quench detection threshold levels shall meet the parameters found in [Thresholds.pdf].02/09/2026ReviewedFALSE
- 6.02.03.04The sextupole power supply peak di/dt without inducing a quench shall be TBD A/S.02/09/2026In ProcessFALSE
- 6.02.03.04The sextupole power supply quench heater power rating shall be TBD W.02/09/2026In ProcessFALSE
- 6.02.03.04The sextupole power supply design shall have warm up heaters.02/09/2026ReviewedFALSE
- 6.02.03.04The sextupole power supply warmup heater power rating shall be warm up heater diagrams.url W.02/09/2026ReviewedFALSE
HSR-PS-SKEWQUAD : HSR Magnet Power Supply (WBS 6.05.02.02)
- 6.02.03.04The magnet model being powered by the power supply is skewquad.02/09/2026ReviewedFALSE
- 6.02.03.04The skewquad power supply shall meet all requirements to deliver the magnet operational parameters defined in the Collider-Accelerator Department RHIC Configuration Manual. [Document:RHIC Configuration Manual,Nov.2006]02/09/2026ReviewedFALSE
- 6.02.03.04The skewquad power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 20 V.02/09/2026ReviewedFALSE
- 6.02.03.04The skewquad power supply shall provide a slow ramped current.02/09/2026ReviewedFALSE
- 6.02.03.04The skewquad power supply shall maintain a full-scale current stability of <10 ppm (RMS) over multiple hours.02/09/2026ReviewedFALSE
- 6.02.03.04The skewquad power supply shall maintain a long-term stability (1 second to 10 hours) of TBD A/s.02/09/2026In ProcessFALSE
- 6.02.03.04The skewquad power supply shall provide a minimal current setpoint resolution of 16 bits.02/09/2026ReviewedFALSE
- 6.02.03.04The skewquad power supply synchronization required between power supplies shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The skewquad power supply synchronization timing of synchronization shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The skewquad power supply shall limit current ripple (RMS) to TBD ppm of full-scale current in the 0–1 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The skewquad power supply shall limit current ripple (RMS) to TBD ppm of full scale current greater than 1kHz.02/09/2026In ProcessFALSE
- 6.02.03.04The skewquad power supply shall limit ripple to TBD ppm in the 1 kHz–8 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The skewquad power supply shall limit ripple in the 8 kHz–40 kHz range per the specified TBD chart.02/09/2026In ProcessFALSE
- 6.02.03.04The skewquad power supply shall avoid ripple at resonant frequencies of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.03.04The skewquad power supply quench detection voltage tap configuration shall meet the parameters found in [voltage tap data.url].02/09/2026ReviewedFALSE
- 6.02.03.04The skewquad power supply quench detection threshold levels shall meet the parameters found in [Thresholds.pdf].02/09/2026ReviewedFALSE
- 6.02.03.04The skewquad power supply peak di/dt without inducing a quench shall be TBD A/S.02/09/2026In ProcessFALSE
- 6.02.03.04The skewquad power supply quench heater power rating shall be TBD W.02/09/2026In ProcessFALSE
- 6.02.03.04The skewquad power supply design shall have warm up heaters.02/09/2026ReviewedFALSE
- 6.02.03.04The skewquad power supply warmup heater power rating shall be warm up heater diagrams.url W.02/09/2026ReviewedFALSE
HSR-PS-SNAKE : HSR Magnet Power Supply SNAKE (WBS 6.05.02.02)
- 6.02.03.04The magnet model being powered by the power supply is snake.02/09/2026ReviewedFALSE
- 6.02.03.04The snake power supply shall meet all requirements to deliver the magnet operational parameters defined in the Collider-Accelerator Department RHIC Configuration Manual. [Document:RHIC Configuration Manual,Nov.2006]02/09/2026ReviewedFALSE
- 6.02.03.04The snake power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 15 V.02/09/2026ReviewedFALSE
- 6.02.03.04The snake power supply shall provide a slow ramped current.02/09/2026ReviewedFALSE
- 6.02.03.04The snake power supply shall maintain a full-scale current stability of <10 ppm (RMS) over multiple hours.02/09/2026ReviewedFALSE
- 6.02.03.04The snake power supply shall maintain a long-term stability (1 second to 10 hours) of TBD A/s.02/09/2026In ProcessFALSE
- 6.02.03.04The snake power supply shall provide a minimal current setpoint resolution of 12 bits.02/09/2026ReviewedFALSE
- 6.02.03.04The snake power supply synchronization required between power supplies shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The snake power supply synchronization timing of synchronization shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The snake power supply shall limit current ripple (RMS) to TBD ppm of full-scale current in the 0–1 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The snake power supply shall limit current ripple (RMS) to TBD ppm of full scale current greater than 1kHz.02/09/2026In ProcessFALSE
- 6.02.03.04The snake power supply shall limit ripple to TBD ppm in the 1 kHz–8 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The snake power supply shall limit ripple in the 8 kHz–40 kHz range per the specified TBD chart.02/09/2026In ProcessFALSE
- 6.02.03.04The snake power supply shall avoid ripple at resonant frequencies of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.03.04The snake power supply quench detection voltage tap configuration shall meet the parameters found in [voltage tap data.url].02/09/2026ReviewedFALSE
- 6.02.03.04The snake power supply quench detection threshold levels shall meet the parameters found in [Thresholds.pdf].02/09/2026ReviewedFALSE
- 6.02.03.04The snake power supply peak di/dt without inducing a quench shall be TBD A/S.02/09/2026In ProcessFALSE
- 6.02.03.04The snake power supply quench heater power rating shall be TBD W.02/09/2026In ProcessFALSE
- 6.02.03.04The snake power supply design shall have warm up heaters.02/09/2026ReviewedFALSE
- 6.02.03.04The snake power supply warmup heater power rating shall be warm up heater diagrams.url W.02/09/2026ReviewedFALSE
HSR-PS-TUNI300 : HSR Magnet Power Supply (WBS 6.05.02.02)
- 6.02.03.04The magnet model being powered by the power supply is tuni300.02/09/2026ReviewedFALSE
- 6.02.03.04The tuni300 power supply shall meet all requirements to deliver the magnet operational parameters defined in the Collider-Accelerator Department RHIC Configuration Manual. [Document:RHIC Configuration Manual,Nov.2006]02/09/2026ReviewedFALSE
- 6.02.03.04The tuni300 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 22 V.02/09/2026ReviewedFALSE
- 6.02.03.04The tuni300 power supply shall provide a slow ramped current.02/09/2026ReviewedFALSE
- 6.02.03.04The tuni300 power supply shall maintain a full-scale current stability of <10 ppm (RMS) over multiple hours.02/09/2026ReviewedFALSE
- 6.02.03.04The tuni300 power supply shall maintain a long-term stability (1 second to 10 hours) of TBD A/s.02/09/2026In ProcessFALSE
- 6.02.03.04The tuni300 power supply shall provide a minimal current setpoint resolution of 16 bits.02/09/2026ReviewedFALSE
- 6.02.03.04The tuni300 power supply synchronization required between power supplies shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The tuni300 power supply synchronization timing of synchronization shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The tuni300 power supply shall limit current ripple (RMS) to TBD ppm of full-scale current in the 0–1 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The tuni300 power supply shall limit current ripple (RMS) to TBD ppm of full scale current greater than 1kHz.02/09/2026In ProcessFALSE
- 6.02.03.04The tuni300 power supply shall limit ripple to TBD ppm in the 1 kHz–8 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The tuni300 power supply shall limit ripple in the 8 kHz–40 kHz range per the specified TBD chart.02/09/2026In ProcessFALSE
- 6.02.03.04The tuni300 power supply shall avoid ripple at resonant frequencies of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.03.04The tuni300 power supply quench detection voltage tap configuration shall meet the parameters found in [voltage tap data.url].02/09/2026ReviewedFALSE
- 6.02.03.04The tuni300 power supply quench detection threshold levels shall meet the parameters found in [Thresholds.pdf].02/09/2026ReviewedFALSE
- 6.02.03.04The tuni300 power supply peak di/dt without inducing a quench shall be TBD A/S.02/09/2026In ProcessFALSE
- 6.02.03.04The tuni300 power supply quench heater power rating shall be TBD W.02/09/2026In ProcessFALSE
- 6.02.03.04The tuni300 power supply design shall have warm up heaters.02/09/2026ReviewedFALSE
- 6.02.03.04The tuni300 power supply warmup heater power rating shall be warm up heater diagrams.url W.02/09/2026ReviewedFALSE
HSR-PS-UNI200 : HSR Magnet Power Supply (WBS 6.05.02.02)
- 6.02.03.04The magnet model being powered by the power supply is uni200.02/09/2026ReviewedFALSE
- 6.02.03.04The uni200 power supply shall meet all requirements to deliver the magnet operational parameters defined in the Collider-Accelerator Department RHIC Configuration Manual. [Document:RHIC Configuration Manual,Nov.2006]02/09/2026ReviewedFALSE
- 6.02.03.04The uni200 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 15 V.02/09/2026ReviewedFALSE
- 6.02.03.04The uni200 power supply shall provide a slow ramped current.02/09/2026ReviewedFALSE
- 6.02.03.04The uni200 power supply shall maintain a full-scale current stability of <10 ppm (RMS) over multiple hours.02/09/2026ReviewedFALSE
- 6.02.03.04The uni200 power supply shall maintain a long-term stability (1 second to 10 hours) of TBD A/s.02/09/2026In ProcessFALSE
- 6.02.03.04The uni200 power supply shall provide a minimal current setpoint resolution of 16 bits.02/09/2026ReviewedFALSE
- 6.02.03.04The uni200 power supply synchronization required between power supplies shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The uni200 power supply synchronization timing of synchronization shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The uni200 power supply shall limit current ripple (RMS) to TBD ppm of full-scale current in the 0–1 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The uni200 power supply shall limit current ripple (RMS) to TBD ppm of full scale current greater than 1kHz.02/09/2026In ProcessFALSE
- 6.02.03.04The uni200 power supply shall limit ripple to TBD ppm in the 1 kHz–8 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The uni200 power supply shall limit ripple in the 8 kHz–40 kHz range per the specified TBD chart.02/09/2026In ProcessFALSE
- 6.02.03.04The uni200 power supply shall avoid ripple at resonant frequencies of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.03.04The uni200 power supply quench detection voltage tap configuration shall meet the parameters found in [voltage tap data.url].02/09/2026ReviewedFALSE
- 6.02.03.04The uni200 power supply quench detection threshold levels shall meet the parameters found in [Thresholds.pdf].02/09/2026ReviewedFALSE
- 6.02.03.04The uni200 power supply peak di/dt without inducing a quench shall be TBD A/S.02/09/2026In ProcessFALSE
- 6.02.03.04The uni200 power supply quench heater power rating shall be TBD W.02/09/2026In ProcessFALSE
- 6.02.03.04The uni200 power supply design shall have warm up heaters.02/09/2026ReviewedFALSE
- 6.02.03.04The uni200 power supply warmup heater power rating shall be warm up heater diagrams.url W.02/09/2026ReviewedFALSE
HSR-PS-UNI2000 : HSR Magnet Power Supply (WBS 6.05.02.02)
- 6.02.03.04The magnet model being powered by the power supply is uni2000.02/09/2026ReviewedFALSE
- 6.02.03.04The uni2000 power supply shall meet all requirements to deliver the magnet operational parameters defined in the Collider-Accelerator Department RHIC Configuration Manual. [Document:RHIC Configuration Manual,Nov.2006]02/09/2026ReviewedFALSE
- 6.02.03.04The uni2000 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 20 V.02/09/2026ReviewedFALSE
- 6.02.03.04The uni2000 power supply shall provide a slow ramped current.02/09/2026ReviewedFALSE
- 6.02.03.04The uni2000 power supply shall maintain a full-scale current stability of <10 ppm (RMS) over multiple hours.02/09/2026ReviewedFALSE
- 6.02.03.04The uni2000 power supply shall maintain a long-term stability (1 second to 10 hours) of TBD A/s.02/09/2026In ProcessFALSE
- 6.02.03.04The uni2000 power supply shall provide a minimal current setpoint resolution of 16 bits.02/09/2026ReviewedFALSE
- 6.02.03.04The uni2000 power supply synchronization required between power supplies shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The uni2000 power supply synchronization timing of synchronization shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The uni2000 power supply shall limit current ripple (RMS) to TBD ppm of full-scale current in the 0–1 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The uni2000 power supply shall limit current ripple (RMS) to TBD ppm of full scale current greater than 1kHz.02/09/2026In ProcessFALSE
- 6.02.03.04The uni2000 power supply shall limit ripple to TBD ppm in the 1 kHz–8 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The uni2000 power supply shall limit ripple in the 8 kHz–40 kHz range per the specified TBD chart.02/09/2026In ProcessFALSE
- 6.02.03.04The uni2000 power supply shall avoid ripple at resonant frequencies of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.03.04The uni2000 power supply quench detection voltage tap configuration shall meet the parameters found in [voltage tap data.url].02/09/2026ReviewedFALSE
- 6.02.03.04The uni2000 power supply quench detection threshold levels shall meet the parameters found in [Thresholds.pdf].02/09/2026ReviewedFALSE
- 6.02.03.04The uni2000 power supply peak di/dt without inducing a quench shall be TBD A/S.02/09/2026In ProcessFALSE
- 6.02.03.04The uni2000 power supply quench heater power rating shall be TBD W.02/09/2026In ProcessFALSE
- 6.02.03.04The uni2000 power supply design shall have warm up heaters.02/09/2026ReviewedFALSE
- 6.02.03.04The uni2000 power supply warmup heater power rating shall be warm up heater diagrams.url W.02/09/2026ReviewedFALSE
HSR-PS-UNI300 : HSR Magnet Power Supply (WBS 6.05.02.02)
- 6.02.03.04The magnet model being powered by the power supply is uni300.02/09/2026ReviewedFALSE
- 6.02.03.04The uni300 power supply shall meet all requirements to deliver the magnet operational parameters defined in the Collider-Accelerator Department RHIC Configuration Manual. [Document:RHIC Configuration Manual,Nov.2006]02/09/2026ReviewedFALSE
- 6.02.03.04The uni300 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 15 V.02/09/2026ReviewedFALSE
- 6.02.03.04The uni300 power supply shall provide a slow ramped current.02/09/2026ReviewedFALSE
- 6.02.03.04The uni300 power supply shall maintain a full-scale current stability of <10 ppm (RMS) over multiple hours.02/09/2026ReviewedFALSE
- 6.02.03.04The uni300 power supply shall maintain a long-term stability (1 second to 10 hours) of TBD A/s.02/09/2026In ProcessFALSE
- 6.02.03.04The uni300 power supply shall provide a minimal current setpoint resolution of 16 bits.02/09/2026ReviewedFALSE
- 6.02.03.04The uni300 power supply synchronization required between power supplies shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The uni300 power supply synchronization timing of synchronization shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The uni300 power supply shall limit current ripple (RMS) to TBD ppm of full-scale current in the 0–1 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The uni300 power supply shall limit current ripple (RMS) to TBD ppm of full scale current greater than 1kHz.02/09/2026In ProcessFALSE
- 6.02.03.04The uni300 power supply shall limit ripple to TBD ppm in the 1 kHz–8 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The uni300 power supply shall limit ripple in the 8 kHz–40 kHz range per the specified TBD chart.02/09/2026In ProcessFALSE
- 6.02.03.04The uni300 power supply shall avoid ripple at resonant frequencies of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.03.04The uni300 power supply quench detection voltage tap configuration shall meet the parameters found in [voltage tap data.url].02/09/2026ReviewedFALSE
- 6.02.03.04The uni300 power supply quench detection threshold levels shall meet the parameters found in [Thresholds.pdf].02/09/2026ReviewedFALSE
- 6.02.03.04The uni300 power supply peak di/dt without inducing a quench shall be TBD A/S.02/09/2026In ProcessFALSE
- 6.02.03.04The uni300 power supply quench heater power rating shall be TBD W.02/09/2026In ProcessFALSE
- 6.02.03.04The uni300 power supply design shall have warm up heaters.02/09/2026ReviewedFALSE
- 6.02.03.04The uni300 power supply warmup heater power rating shall be warm up heater diagrams.url W.02/09/2026ReviewedFALSE
HSR-PS-UNI450 : HSR Magnet Power Supply (WBS 6.05.02.02)
- 6.02.03.04The magnet model being powered by the power supply is uni450.02/09/2026ReviewedFALSE
- 6.02.03.04The uni450 power supply shall meet all requirements to deliver the magnet operational parameters defined in the Collider-Accelerator Department RHIC Configuration Manual. [Document:RHIC Configuration Manual,Nov.2006]02/09/2026ReviewedFALSE
- 6.02.03.04The uni450 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 15 V.02/09/2026ReviewedFALSE
- 6.02.03.04The uni450 power supply shall provide a slow ramped current.02/09/2026ReviewedFALSE
- 6.02.03.04The uni450 power supply shall maintain a full-scale current stability of <10 ppm (RMS) over multiple hours.02/09/2026ReviewedFALSE
- 6.02.03.04The uni450 power supply shall maintain a long-term stability (1 second to 10 hours) of TBD A/s.02/09/2026In ProcessFALSE
- 6.02.03.04The uni450 power supply shall provide a minimal current setpoint resolution of 16 bits.02/09/2026ReviewedFALSE
- 6.02.03.04The uni450 power supply synchronization required between power supplies shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The uni450 power supply synchronization timing of synchronization shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The uni450 power supply shall limit current ripple (RMS) to TBD ppm of full-scale current in the 0–1 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The uni450 power supply shall limit current ripple (RMS) to TBD ppm of full scale current greater than 1kHz.02/09/2026In ProcessFALSE
- 6.02.03.04The uni450 power supply shall limit ripple to TBD ppm in the 1 kHz–8 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The uni450 power supply shall limit ripple in the 8 kHz–40 kHz range per the specified TBD chart.02/09/2026In ProcessFALSE
- 6.02.03.04The uni450 power supply shall avoid ripple at resonant frequencies of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.03.04The uni450 power supply quench detection voltage tap configuration shall meet the parameters found in [voltage tap data.url].02/09/2026ReviewedFALSE
- 6.02.03.04The uni450 power supply quench detection threshold levels shall meet the parameters found in [Thresholds.pdf].02/09/2026ReviewedFALSE
- 6.02.03.04The uni450 power supply peak di/dt without inducing a quench shall be TBD A/S.02/09/2026In ProcessFALSE
- 6.02.03.04The uni450 power supply quench heater power rating shall be TBD W.02/09/2026In ProcessFALSE
- 6.02.03.04The uni450 power supply design shall have warm up heaters.02/09/2026ReviewedFALSE
- 6.02.03.04The uni450 power supply warmup heater power rating shall be warm up heater diagrams.url W.02/09/2026ReviewedFALSE
HSR-PS-UNI600 : HSR Magnet Power Supply (WBS 6.05.02.02)
- 6.02.03.04The magnet model being powered by the power supply is uni600.02/09/2026ReviewedFALSE
- 6.02.03.04The uni600 power supply shall meet all requirements to deliver the magnet operational parameters defined in the Collider-Accelerator Department RHIC Configuration Manual. [Document:RHIC Configuration Manual,Nov.2006]02/09/2026ReviewedFALSE
- 6.02.03.04The uni600 power supply during operation shall include a ground fault protection system to limit the maximum voltage of the magnet-to-ground to less than 20 V.02/09/2026ReviewedFALSE
- 6.02.03.04The uni600 power supply shall provide a slow ramped current.02/09/2026ReviewedFALSE
- 6.02.03.04The uni600 power supply shall maintain a full-scale current stability of <10 ppm (RMS) over multiple hours.02/09/2026ReviewedFALSE
- 6.02.03.04The uni600 power supply shall maintain a long-term stability (1 second to 10 hours) of TBD A/s.02/09/2026In ProcessFALSE
- 6.02.03.04The uni600 power supply shall provide a minimal current setpoint resolution of 16 bits.02/09/2026ReviewedFALSE
- 6.02.03.04The uni600 power supply synchronization required between power supplies shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The uni600 power supply synchronization timing of synchronization shall be TBD s.02/09/2026In ProcessFALSE
- 6.02.03.04The uni600 power supply shall limit current ripple (RMS) to TBD ppm of full-scale current in the 0–1 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The uni600 power supply shall limit current ripple (RMS) to TBD ppm of full scale current greater than 1kHz.02/09/2026In ProcessFALSE
- 6.02.03.04The uni600 power supply shall limit ripple to TBD ppm in the 1 kHz–8 kHz range.02/09/2026In ProcessFALSE
- 6.02.03.04The uni600 power supply shall limit ripple in the 8 kHz–40 kHz range per the specified TBD chart.02/09/2026In ProcessFALSE
- 6.02.03.04The uni600 power supply shall avoid ripple at resonant frequencies of TBD Hz.02/09/2026In ProcessFALSE
- 6.02.03.04The uni600 power supply quench detection voltage tap configuration shall meet the parameters found in [voltage tap data.url].02/09/2026ReviewedFALSE
- 6.02.03.04The uni600 power supply quench detection threshold levels shall meet the parameters found in [Thresholds.pdf].02/09/2026ReviewedFALSE
- 6.02.03.04The uni600 power supply peak di/dt without inducing a quench shall be TBD A/S.02/09/2026In ProcessFALSE
- 6.02.03.04The uni600 power supply quench heater power rating shall be TBD W.02/09/2026In ProcessFALSE
- 6.02.03.04The uni600 power supply design shall have warm up heaters.02/09/2026ReviewedFALSE
- 6.02.03.04The uni600 power supply warmup heater power rating shall be warm up heater diagrams.url W.02/09/2026ReviewedFALSE
HSR-VAC : HSR Vacuum System (WBS 6.05.02.03)
- 6.02.03The HSR vacuum system shall be modified to accommodate the worst case dynamic heat load given in the MPT [Document#:EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03The HSR vacuum pipes shall be reconfigured to accommodate the new warm dipoles.02/09/2026ApprovedFALSE
- 6.02.03The HSR shall have the existing beam pipes upgraded to incorporate beam screens to meet the HSR operating parameters defined in the MPT [Document#:EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03The warm beam pipe sections of the HSR shall meet the HSR operating parameters, refer to the MPT [Document#:EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03.06The vacuum system global impedance shall be less than the impedance budget as provided by accelerator physics.02/09/2026ApprovedFALSE
- 6.02.03.06The magnetic permeability for all vacuum components shall be approved by accelerator physics.02/09/2026ApprovedFALSE
- 6.02.03.06On 15 (m) on each side (or one vacuum section) of the SRF cavities shall be processed to class ISO 5.02/09/2026In ProcessFALSE
HSR-VAC-ARC : HSR Vacuum Arc Section (WBS 6.05.02.03)
- 6.02.03.06.03The average vacuum level in the cold HSR Arc sections after conditioning (for 1000Ahrs) shall be less than 2.3x10^13 molecules of H2/m^3.02/09/2026ApprovedFALSE
- 6.02.03.06.03The Siberian snakes shall be equipped with new beam tubes.02/09/2026ApprovedFALSE
- 6.02.03.06.03The new Siberian Snake beam tubes shall be Cu / aC coated.02/09/2026ApprovedFALSE
- 6.02.03.06.03The Helium cooling capacity shall be sufficient to keep the beam screen and interconnect module below their operating temperature of 10 (K) with 320W per sextant total heat input.02/09/2026ReviewedFALSE
HSR-VAC-STRAIGHT : HSR Vacuum Straight Section (WBS 6.05.02.03)
- 6.02.03.06.05The average vacuum level in the warm HSR Arc sections after conditioning (for 1000Ahrs) shall be less than 2.3x10^13 (molecules of H2/m^3).02/09/2026ApprovedFALSE
- 6.02.03.06.05All chamber wall coatings and thicknesses shall be specified by or approved by accelerator physics.02/09/2026ApprovedFALSE
- 6.02.03.06.05The vacuum beam pipes shall be designed to have the capability of adding solenoids in future if required.02/09/2026ApprovedFALSE
- 6.02.03.06.05The vacuum beam pipes shall be designed to accommodate the required physical aperture defined by accelerator physics.02/09/2026ApprovedFALSE
- 6.02.03.06.05Special aperture requirements and/or aperture file shall be provided and approved by physics.02/09/2026In ProcessFALSE
- 6.02.03.06.05Vacuum components shall be designed to accommodate a maximum bake-out temperature of 250 (C) except where the high temperature will damage sensitive components.02/09/2026In ProcessFALSE
- 6.02.03.06.05The maximum allowable SEY for the nominal RHIC beam tube shall be 1.1.02/09/2026In ProcessFALSE
HSR-VAC-SCREENS : HSR Vacuum Beam Screen (WBS 6.05.04.01)
- 6.02.03.06.01The inner layer of copper shall have a RRR greater than 50 after installation.02/09/2026ApprovedFALSE
- 6.02.03.06.01The innermost surface of the beam screen shall have a secondary electron yield (SEY) below 1.02 at the arc CQS after conditioning.02/09/2026ApprovedFALSE
- 6.02.03.06.01The innermost surface of the beam screen shall have a secondary electron yield (SEY) below 1.08 at the arc Dipoles after conditioning.02/09/2026ApprovedFALSE
- 6.02.03.06.01The overall beam screen impedance shall be less than the impedance budget as provided by accelerator physics.02/09/2026ApprovedFALSE
- 6.02.03.06.01The beam screen shall be designed to have a maximum operating temperature less than 10 (K).02/09/2026ApprovedFALSE
- 6.02.03.06.01The arc and insertion region beam screens will be designed to fit through a 68 (mm) aperture.02/09/2026ApprovedFALSE
- 6.02.03.06.01The vertical beam aperture for the arc section beam screens shall be greater than 47.5 (mm).02/09/2026ReviewedFALSE
- 6.02.03.06.01The horizontal beam aperture for the arc section beam screens shall be greater than 62.5 (mm).02/09/2026ReviewedFALSE
- 6.02.03.06.01The center shift of the horizontal beam screen aperture shall not exceed 2.5 (mm) when installed in to the dipole due to the magnet sagitta.02/09/2026ApprovedFALSE
- 6.02.03.06.01No more than 2 (mm) of stainless steel shall be exposed to the beam in order to accommodate the longitudinal weld seam.02/09/2026ApprovedFALSE
- 6.02.03.06.01The beam screen profile will be closed using a full penetration laser weld. The maximum weld protrusion on the inside of the profile shall be less than 0.2 (mm).02/09/2026ApprovedFALSE
- 6.02.03.06.01The beam screen shall be capable of conforming to the arc dipole sagitta without damage. (ref. RHIC drawing number 12010005).02/09/2026ApprovedFALSE
- 6.02.03.06.01The triplet beam screens shall be designed to fit through a TBD aperture.02/09/2026In ProcessFALSE
- 6.02.03.06.01The minimum vertical aperture for the triplet beam screens shall be greater than 90 (mm).02/09/2026ReviewedFALSE
- 6.02.03.06.01The minimum horizontal aperture for the triplet beam screens shall be greater than 105 (mm).02/09/2026ReviewedFALSE
- 6.02.03.06.01The magnetic permeability of the beam screen at 300 (K) @ 500 (Oe) magnetization shall be less than 1.005.02/09/2026ApprovedFALSE
- 6.02.03.06.01The magnetic permeability of the beam screen at 4 K @ 500 Oe magnetization shall be less than 1.02.02/09/2026ApprovedFALSE
- 6.02.03.06.01The eddy current induced effects of the beam screens inside of the gamma-transition jump quadrupoles on the same power supply shall be matched within TBD percent.02/09/2026In ProcessFALSE
- 6.02.03.06.01The beam screens and connected vacuum components shall be designed to allow degassing up to a temperature of 80 K.02/09/2026ApprovedFALSE
- 6.02.03.06.01After installation the ends of adjacent beam screens shall be aligned within 1 degree of the orbit plane.02/09/2026ApprovedFALSE
- 6.02.03.06.01All beam screen cooling tube welds shall be external to the beam vacuum space (UHV).02/09/2026ApprovedFALSE
- 6.02.03.06.01The Vacuum Group shall coordinate and procure the ACBS material and fabrication of the ACBS profile for the utilization in the HSR Vacuum Envelope.01/08/2026In ProcessFALSE
- 6.02.03.06.01The Vacuum Group shall cut the ACBS profiles to the appropriate length for each superconducting magnet location.01/08/2026In ProcessFALSE
- 6.02.03.06.01The Vacuum Group shall fund and schedule the laser welding of the cooling tube, gold plated end contacts and additional brackets to make the final ACBS assembly.01/08/2026In ProcessFALSE
- 6.02.03.06.01The Vacuum Group shall design the ACBS to allow desorbed gas to migrate away from the inner beam chamber when installed in the existing RHIC Yellow HSR Beamline.01/08/2026In ProcessFALSE
- 6.02.03.06.01ASR System Installation and Final Integration shall provide funding and scheduling for the Vacuum Group to install the final ACBS assembly sections into the existing HSR Beampipe.01/08/2026In ProcessFALSE
- 6.02.03.06.01The Vacuum Group shall provide a design which will allow for the mechanical connection between different ACBS sections.01/08/2026In ProcessFALSE
- 6.02.03.06.01The Vacuum Group shall provide a design which will allow for the mechanical connection between the ACBS sections and the warm to cold transitions.01/08/2026In ProcessFALSE
HSR-VAC-INTC : HSR Vacuum RF Finger Bellows (WBS 6.05.04.02)
- 6.02.03.06.01The interconnect module shall be designed to accommodate a range of motion from -10 (mm) to 40 (mm) about the nominal install length.02/09/2026In ProcessFALSE
- 6.02.03.06.01The RF bridge shall be designed to allow a 3 (mm) maximum radial offset from the nominal installed position while maintaining electrical contact.02/09/2026In ProcessFALSE
- 6.02.03.06.01The contact force between the RF fingers and the sleeve shall be greater than 1 (N/mm) in order to maintain good electrical contact and minimize beam induced heating and impedance.02/09/2026In ProcessFALSE
- 6.02.03.06.01The maximum allowable installed radial offset of the installed interconnect module shall be less than 1 (mm) end to end.02/09/2026In ProcessFALSE
- 6.02.03.06.01The maximum allowable twist of the installed RF bellows shall be 1 degree end-to-end.02/09/2026In ProcessFALSE
- 6.02.03.06.01The moveable extraction flange bellows shall be designed to allow for 5.5 (mm) extension and 0.5 (mm) additional compression from the installed connection to accommodate the differential thermal growth between the magnet cold bore and the beam screen.02/09/2026In ProcessFALSE
- 6.02.03.06.01The moveable extraction flange assembly shall be designed to withstand a maximum torque of 70,000 (N-mm) due to magnet quench.02/09/2026In ProcessFALSE
- 6.02.03.06.01All copper surfaces with direct exposure to the beam in the interconnect module shall have a minimum RRR value of 10.02/09/2026In ProcessFALSE
- 6.02.03.06.01The interconnect module shall be designed to have a maximum operating temperature less than 40 (K).02/09/2026In ProcessFALSE
- 6.02.03.06.01The innermost surface of the interconnect module shall have a secondary electron yield (SEY) below 1.1 after conditioning.02/09/2026In ProcessFALSE
- 6.02.03.06.01The relative magnetic permeability of the interconnect module at 4 (K) @ 500 (Oe) magnetization shall be less than 1.802/09/2026In ProcessFALSE
- 6.02.03.06.01The horizontal and vertical aperture of the interconnect module shall match the adjoining beam screens.02/09/2026In ProcessFALSE
- 6.02.03.06.01The BPM mounting side of the interconnect module shall have machined survey fiducials to survey and record the BPM position after installation.02/09/2026In ProcessFALSE
- 6.02.03.06.01The interconnect module shall not interfere with pre existing RHIC components.02/09/2026In ProcessFALSE
- 6.02.03.06.01The interconnect module design shall include an RF connection to the beam screen.02/09/2026In ProcessFALSE
- 6.02.03.06.01The interconnect module design shall have provisions for mounting BPMs or replace existing RHIC stripline BPMs.02/09/2026In ProcessFALSE
- 6.02.03.06.01The interconnect module design shall ensure the required vacuum level is achieved for all beam parameters defined in the Master Parameter Table. [Document#:EIS-SEG-RSI-005]02/09/2026In ProcessFALSE
- 6.02.03.06.01The interconnect module design and installation shall minimize or eliminate adding particulates to the hadron ring.02/09/2026In ProcessFALSE
- 6.02.03.06.01The cooling system shall be capable of removing the thermal load generated by resistive beam heating and electron cloud.02/09/2026In ProcessFALSE
- 6.02.03.06.01The interconnect module design shall ensure adequate electrical, mechanical, and thermal contact to applicable adjacent components.02/09/2026In ProcessFALSE
- 6.02.03.06.01The internal profile of the interconnect module shall be chosen to minimize the beam impedance as much as possible.02/09/2026In ProcessFALSE
HSR-VAC-INTC-RF : HSR Vacuum Bellows RF Fingers (WBS 6.05.04.02)
HSR-VAC-BELL : Beam Screens
- 6.02.03The interconnect module design and beam screen shall provide a continuous RF connection through out each arc.02/09/2026ApprovedFALSE
- 6.02.03The interconnect module design shall have provisions for mounting 4 BPMs buttons .02/09/2026ApprovedFALSE
- 6.02.03Stainless steel surfaces exposed to the beam shall be coated with a copper layer to minimize resistive wall heating02/09/2026ApprovedFALSE
- 6.02.03The interconnect module design shall ensure adequate vacuum level & stability for all beam parameters defined in the MPT [Document#:EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03The interconnect module fabrication and installation shall be conducted such that the installation process minimizes or eliminates adding particulates to the hadron ring.02/09/2026ApprovedFALSE
HSR-VAC-BS : Vacuum Beam Screen
- 6.02.03The beam screen design shall ensure adequate vacuum level & stability for all beam parameters in the MPT [Document#:EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03The screens shall reduce the average combined heat load on cryogenic system from resistive beam heating and electron cloud to 0.5 W/m or less, including the worst case of radially shifted orbit.02/09/2026ApprovedFALSE
- 6.02.03The cooling system shall be capable of removing the thermal load generated by resistive beam heating and electron cloud.02/09/2026ApprovedFALSE
- 6.02.03All beam screens shall be actively cooled to operate below 10K02/09/2026ApprovedFALSE
- 6.02.03The RF finger bellows shall operate at a temperature required to minimize beam heating effects.02/09/2026ApprovedFALSE
- 6.02.03Beam screens shall be designed to fit into the HSR round cold beam pipes in all seven HSR arcs.02/09/2026ApprovedFALSE
- 6.02.03Beam screens shall be designed to fit into the cold mass interconnect.02/09/2026ApprovedFALSE
- 6.02.03The impedance of the screen design, including the screen with RF finger bellows at the cold mass interconnects shall not exceed the global impedance budget which has been defined by approved by beam physics.02/09/2026ApprovedFALSE
- 6.02.03The beam screens shall be designed to be mechanically resistant to eddy-current forces resulting from a magnet quench.02/09/2026ApprovedFALSE
- 6.02.03The beam screen design shall be compatible with the transition-crossing jump function.02/09/2026ApprovedFALSE
- 6.02.03The beam screen fabrication and installation shall be conducted such that the installation process minimizes or eliminates adding particulates to the hadron ring.02/09/2026ApprovedFALSE
- 6.02.03All beam screens shall be designed to be removable without negative impact to any HSR components.02/09/2026ApprovedFALSE
- 6.02.03The innermost surface of the RF finger bellows shall suppress electron secondary emission yield (SEY).02/09/2026ApprovedFALSE
- 6.02.03The RF finger bellows shall not interfere with the existing process and magnet bus lines (anti-squirm can)02/09/2026ApprovedFALSE
HSR-VAC-CRYOMOD
- 6.02.03.06.03The heat load from the ACBS components to the cold bore during the 80 (K) degassing shall be less than 60 (W) per cooling zone.02/09/2026ReviewedFALSE
- 6.02.03.06.03The ACBS and extraction piping shall meet the B31.3 cryogenic process piping requirements given the following criteria for pressure, temperature and stress as identified in requirements P-HSR-VAC-CRYOMOD.02.0X.02/09/2026ReviewedFALSE
- 6.02.03.06.03The Max Allowable External Working Pressure (MAEWP) shall be 1 (atm) external at 322 (K).02/09/2026ReviewedFALSE
- 6.02.03.06.03The Minimum Design Metal Temperature (MDMT) shall be 4 (K) at 18.8 (bar).02/09/2026ReviewedFALSE
- 6.02.03.06.03The Max Allowable Working Pressure (MAWP) shall be 18.8 (bar) at 322 (K).02/09/2026ReviewedFALSE
- 6.02.03.06.03The ACBS Heater Piping Pressure and Flexibility (HPPF) shall be 18.8 (bar).02/09/2026ReviewedFALSE
- 6.02.03.06.03All ACBS piping shall be pressure tested to 110% design pressure of 20.7 (bar) at 300 (K).02/09/2026ReviewedFALSE
- 6.02.03.06.03The ACBS heater shall be capable of providing sufficient power to achieve the required 80 (K) degassing temperature.02/09/2026ReviewedFALSE
- 6.02.03.06.03The ACBS cooling circuit control valve shall be able to regulate the coolant flow between 0 and 2.5 (grams/sec).02/09/2026ReviewedFALSE
- 6.02.03.06.03The ACBS cooling and heater circuit must be compatible with the existing RHIC cryogenic system.02/09/2026ReviewedFALSE
- 6.02.03.06.03The ACBS and extraction piping shall meet the B31.3 cryogenic process piping requirements given the following criteria for fatigue as identified in requirement P-HSR-VAC-CRYOMOD.07.0X..02/09/2026ReviewedFALSE
- 6.02.03.06.03The thermal fatigue load shall be 120 cycles consisting of 4 cycles per year over 30 years.02/09/2026ReviewedFALSE
- 6.02.03.06.03The pressure fatigue load shall be 3,000 cycles at normal operating pressure of 4 (atm) consisting of 100 cycles per year over 30 years.02/09/2026ReviewedFALSE
- 6.02.03.06.03The design fatigue load (pressure test and quenches) shall be 240 cycles at 18.6 (atm) consisting of 8 cycles per year over 30 years.02/09/2026ReviewedFALSE
- 6.02.03.06.03The tubing supports shall be properly placed to keep resonance modes greater than 15 (Hz).02/09/2026ReviewedFALSE
- 6.02.03.06.03The ACBS cryogenic piping and component welds shall be helium leaked checked to less than 2 x 10-10 std cc (He/sec)02/09/2026ReviewedFALSE
- 6.02.03.06.03The Vacuum Group shall design and provide modification to the existing MLI support in the ACBS cooling circuit.01/08/2026In ProcessFALSE
- 6.02.03.06.03The Cryogenic Group shall support the thermal and hydraulic design of the heater to accommodate ACBS heat losses to cold bore provided by the Vacuum Group.01/08/2026In ProcessFALSE
- 6.02.03.06.03ASR System Installation and Final Integration shall provide funding and scheduling for the installation using the Vacuum Group for the heater interconnect to the ACBS cooling circuit.01/08/2026In ProcessFALSE
- 6.02.03.06.03The Vacuum Group will design all installation and leak checking fixtures required for the heater and supply piping, between the supply header and the connection to the beam screen cooling tube.01/08/2026In ProcessFALSE
- 6.02.03.06.03ASR System Installation and Final Integration shall provide funding and scheduling for the leak test using the Vacuum Group for the heater connection inside the Cryostat.01/08/2026In ProcessFALSE
- 6.02.03.06.03The Vacuum Group shall provide a thermal link design at every interconnect from the ACBS cooling line to either the BPM housing, gauge conduit or sorption pump.01/08/2026In ProcessFALSE
- 6.02.03.06.03ASR System Installation and Final Integration shall provide funding and scheduling for the installation using the Vacuum Group for each thermal link at every interconnect from the ACBS cooling line to either the BPM housing, gauge conduit or sorption pump.01/08/2026In ProcessFALSE
- 6.02.03.06.03The Vacuum Group shall provide the ACBS connection design at every interconnect that is not a heater supply or return.01/08/2026In ProcessFALSE
- 6.02.03.06.03ASR System Installation and Final Integration shall provide funding and scheduling for the installation using the Vacuum Group for each ACBS connection at every interconnect that is not a heater supply or return.01/08/2026In ProcessFALSE
- 6.02.03.06.03The Vacuum Group shall provide the turret/feed-through design for the supply/return temperature sensor connections inside the cryostat.01/08/2026In ProcessFALSE
- 6.02.03.06.03The Vacuum Group shall provide the vacuum feed-through and connections to all equipment inside the cryostat.01/08/2026In ProcessFALSE
- 6.02.03.06.03The Cryogenics Group shall provide design support for the selection and mounting of the temperature sensors.01/08/2026In ProcessFALSE
- 6.02.03.06.03ASR System Installation and Final Integration shall provide funding and scheduling for the installation using the Vacuum Group for the turret/feed-through design of the supply/return temperature sensor connections inside the cryostat.01/08/2026In ProcessFALSE
- 6.02.03.06.03The Vacuum Group shall provide the supply/return temperature sensor signal at the turret/feed-through.01/08/2026In ProcessFALSE
- 6.02.03.06.03The Cryogenics Control Group shall distribute the provided supply/return temperature sensor signal from the turret/feed-through to the control system.01/08/2026In ProcessFALSE
- 6.02.03.06.03The Vacuum Group shall provide the turret/feed-through design for the heater electrical connections inside the cryostat.01/08/2026In ProcessFALSE
- 6.02.03.06.03The Cryogenics group shall fund and install the heater power supply, PLC controller and related cabling.01/08/2026In ProcessFALSE
- 6.02.03.06.03The Vacuum Group shall provide the design and hardware for the vacuum feed-through and connections to all equipment inside the cryostat.01/08/2026In ProcessFALSE
- 6.02.03.06.03ASR System Installation and Final Integration shall provide funding and scheduling for the installation using the Vacuum Group for the turret/feed-through design of the heater electrical connections inside the cryostat.01/08/2026In ProcessFALSE
- 6.02.03.06.03The Cryogenics Group shall provide design support for the sizing and selection of the cryogenics valve.01/08/2026In ProcessFALSE
- 6.02.03.06.03The Vacuum Group shall provide the design for mounting, feed-through, mechanical connection and the cryogenics valve.01/08/2026In ProcessFALSE
- 6.02.03.06.03The Vacuum Group shall provide the mounting, feed-through, mechanical connection and the cryogenics valve.01/08/2026In ProcessFALSE
- 6.02.03.06.03ASR System Installation and Final Integration shall provide funding and scheduling for the installation of the mounting, feed-through and mechanical connection to the cryogenics valve.01/08/2026In ProcessFALSE
- 6.02.03.06.03The Vacuum group shall design and supply the leak and pressure test fixtures for each ACBS cooling loop up to the supply/return cryo connection point.01/08/2026In ProcessFALSE
- 6.02.03.06.03ASR System Installation and Final Integration shall provide funding and scheduling for the leak test using the Vacuum Group for the valve actuators and valve connections inside the cryostat.01/08/2026In ProcessFALSE
- 6.02.03.06.03The Vacuum Group shall design the T-connection points for the interconnect module and ACBS to the cryogenic supply and return lines for all cooling loops.01/08/2026In ProcessFALSE
- 6.02.03.06.03The Cryogenic Group shall support the design the T-connection points for the interconnect module and ACBS to the cryogenic supply and return lines for all cooling loops.01/08/2026In ProcessFALSE
- 6.02.03.06.03The Vacuum Group shall provide the hardware for connection points for the interconnect module and ACBS to the cryogenic supply and return lines for all cooling loops.01/08/2026In ProcessFALSE
- 6.02.03.06.03ASR System Installation and Final Integration shall provide funding and scheduling for the installation of connection points for the interconnect module and ACBS to the cryogenic supply and return lines for all cooling loops.01/08/2026In ProcessFALSE
HSR-VAC-CYROMOD : HSR Vacuum RF Cyrostat Modifications
HSR-VAC-HELICAL
- 6.02.03.06.03The inner layer of copper shall have a RRR greater than TBD after installation.02/09/2026In ProcessFALSE
- 6.02.03.06.03The innermost surface of the beam pipe shall have a secondary electron yield (SEY) below TBD.02/09/2026In ProcessFALSE
- 6.02.03.06.03The beam pipe shall be designed to have a maximum operating temperature less than 10 (K).02/09/2026ReviewedFALSE
- 6.02.03.06.03The beam aperture for the snake magnet shall be greater than 82 (mm).02/09/2026ReviewedFALSE
- 6.02.03.06.03The beam aperture for the ends of the snake magnet shall taper to match the arc section beam screen aperture.02/09/2026ReviewedFALSE
- 6.02.03.06.03No more than TBD (mm) of stainless steel shall be exposed to the beam in order to accommodate the transverse removals on the weld seam.02/09/2026In ProcessFALSE
- 6.02.03.06.03The magnetic permeability of the beam pipe at 300 (K) @ 500 (Oe) magnetization shall be less than TBD.02/09/2026In ProcessFALSE
- 6.02.03.06.03The magnetic permeability of the beam pipe at 4 K @ 500 Oe magnetization shall be less than TBD.02/09/2026In ProcessFALSE
- 6.02.03.06.03The ends of snake beam pipe shall be aligned within 1 degree of the orbit plane.02/09/2026ReviewedFALSE
- 6.02.03.06.03The Beam pipe Outer Diameter (OD) shall be be equal to or less than the RHIC (HLX) snake magnet beam pipe OD. (ref. RHIC drawing number 12011226).02/09/2026ReviewedFALSE
HSR-VAC-SNAKE : HSR Vacuum Snake Beam Pipe
HSR-INJ : HSR Hadron Ring Injection System (WBS 6.05.03)
- 6.02.03The HSR injection line magnets excluding the induction septum shall provide a half physical aperture greater than 6σ for the injected beam.02/09/2026ApprovedFALSE
- 6.02.03The HSR induction septum shall provide a half physical aperture greater than 5σ for the injected beam.02/09/2026ApprovedFALSE
- 6.02.03The HSR induction septum shall provide a half physical aperture greater than 6σ for the circulating beam.02/09/2026ApprovedFALSE
- HSR-INJ EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.03The HSR injection system shall utilize the existing RHIC injector chain upstream of the RHIC-ATR D26 Dipole magnet with no modifications.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection system, consisting of the transport beamline, septum magnet and injection kickers, shall be capable of transporting a maximum beam rigidity of 81.12Tm from the transport line to IR4 central area and injecting it into the HSR.02/09/2026ApprovedFALSE
- 6.02.03The HSR Injection System design shall use a warm transport line in arc 6-4 as continuation of the Injection line to transport the hadron beam to the injection system located in IR4.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection transport beamline shall be able to transport polarized beam with less than 5% polarization loss.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection system shall be able to inject all beam species with less than 5% beam emittance increase.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection system shall be able to fill the HSR with 290 consecutive bunches without interruption.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection system shall be able to fill the HSR with one(1) bunch per AGS cycle for polarized proton, two(2) bunches per AGS cycle for ion beams.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection system transfer line shall provide the following physical aperture:02/09/2026ApprovedFALSE
- 6.02.03The operational availability design target for the HSR Injection System shall be consistent with the operational availability target for the overall EIC as set forth in Electron-Ion Collider Global Requirements. Refer to [EIC-ORG-PLN-010].02/09/2026ApprovedFALSE
- 6.02.03The HSR Injection system transport line shall be modified to add septum magnets in the Q3-Q4 warm straight section of the HSR on 4 o’clock side of the IR4 for hadron beam transfer into the HSR beam pipe.02/09/2026ApprovedFALSE
HSR-INJ-MAG : HSR Hadron Ring Injection Magnets (WBS 6.05.03.01)
- 6.02.03The HSR injection system shall have two septa, one DC septum and one induction septum.02/09/2026ApprovedFALSE
- 6.02.03The septa of HSR injection system shall provide a total bending angle of 69 (mrad).02/09/2026ApprovedFALSE
- HSR-INJ-MAG EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.03Any reused existing RHIC-ATR transfer line magnets shall meet the requirements of the new approved HSR Injection line lattice.02/09/2026ApprovedFALSE
- 6.02.03New magnets shall only be used where any available existing magnets do not meet the requirements of the new approved HSR Injection line lattice.02/09/2026ApprovedFALSE
HSR-INJ-MAG-CH : HSR Injector Magnet DVERT_1 (WBS 6.05.03.01)
HSR-INJ-MAG-CV : HSR Injector Magnet Ver Corr (WBS 6.05.03.01)
HSR-INJ-MAG-D1 : HSR Injector Magnet D1 (WBS 6.05.03.01)
HSR-INJ-MAG-D2 : HSR Injector Magnet D2 (WBS 6.05.03.01)
HSR-INJ-MAG-D3 : HSR Injector Magnet D3 (WBS 6.05.03.01)
HSR-INJ-MAG-D4 : HSR Injector Magnet D4 (WBS 6.05.03.01)
HSR-INJ-MAG-DCSEPT : HSR Injector Magnet DC Septum (WBS 6.05.03.01)
- 6.02.03.11.03The magnet shall have a a single function horizontal bending dipole field centered on the injected beam axis which directs the injected beam to merge with the circulating beam .02/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.03The physical length of the magnet shall be less than or equal to <3.98(m)02/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.03The magnet shall have a TBD(mm)02/09/2026In ProcessFALSE
- 6.02.03.11.03The magnet shall be able to fit within the following volume constraints:02/09/2026In ProcessFALSE
- 6.02.03.11.03The magnet volume occupied shall be Within a rectangular volume of; dz=TBD(mm) dx=TBD(mm) dy=TBD(mm) Note all ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026In ProcessFALSE
- 6.02.03.11.03The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits:02/09/2026In ProcessFALSE
- 6.02.03.11.03The magnetic field axis displacement tolerances: The field position tolerances with respect to the magnet center shall be within the following tolerance ranges dx=TBD dy=TBD dz= TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03The magnetic field rotational alignment tolerances: The field rotational tolerances wrt the primary magnet axes shall be within the following tolerance ranges About X=TBD About Y=na About Z=TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03The Integrated Dipole Field B Shall be = 4.12(Tm)02/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.03The magnet install center displacement shall be aligned with respect to the specified lattice field center position dx=+/-340(um) dy=+/-170(um) dz= na02/09/2026In ProcessFALSE
- 6.02.03.11.03The magnet rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/-0.021 (mRad) About Y=+/-0.043 (mRad) About Z=na02/09/2026In ProcessFALSE
- 6.02.03.11.03The magnet field homogeneity shall be measured within the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.11.03The magnet field homogeneity shall be measured at a reference radius of TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03The magnet field homogeneity shall be measured at a reference field of 1.04(T)02/09/2026In ProcessFALSE
- 6.02.03.11.03The magnet bore field SHALL have the following multipole content . Notes: The units are specified in parts of 10-4 of the main components.02/09/2026In ProcessFALSE
- 6.02.03.11.03b1= 10000 , a1+/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03b2 +/- TBD , a2+/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03b3 < +/- TBD , a3 < +/-TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03b4 < +/- TBD , a4 < +/-TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03b5 < +/- TBD , a5 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03b6 < +/- TBD , a6 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03b7 < +/- TBD , a7 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03b8 < +/- TBD , a8 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03b9 < +/- TBD , a9 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03b10 < +/- TBD , a10 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03b11 < +/- TBD , a11 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03b12 < +/- TBD , a12 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03b13 < +/- TBD , a13 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03b14 < +/- TBD , a14 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03b15 < +/- TBD , a15 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03b16 < +/- TBD , a16 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.03The harmonic reference radius and\or location at which the crosstalk shall be measured is at the same position as occupied by the circulating beam center after installation wrt the septum axis02/09/2026In ProcessFALSE
- 6.02.03.11.03The field (Bref) or design energy for which the crosstalk shall be measured is 1. The minimum injection energy 2. The maximum injection energy of the septum02/09/2026In ProcessFALSE
- 6.02.03.11.03The magnet shall have the following crosstalk Multipole content or dB/B within at the specified measurement volume. The septum fringe field on the HSR circulating beam location shall not exceed 1% of the HSR main bending field at that energy02/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.03The magnet shall be designed to be cooled and sustained at an operational temperature range of +25 (C) to +35 (C).02/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.03The magnet coils shall pass a Hi-Pot test to confirm the magnet can meet the maximum Voltage seen in operation +500 Volts, i.e. Vmax+500(V)02/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.0302/09/2026In ProcessFALSE
- 6.02.03.11.03The magnet shall be able to sustain 30 years of EIC operation under nominal conditions. During this time the magnet is expected to survive 30000 power cycles.02/09/2026In ProcessFALSE
- 6.02.03.11.03Over its planned life of 30(yrs), the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit should be taken as a guide for the design process. The actual upper limit the magnet will see in operation will need further analysis and will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
HSR-INJ-MAG-INDSEPT : HSR Injector Magnet Induction Septum (WBS 6.05.03.01)
- 6.02.03.11.02.01.01The magnet shall have a a single function horizontal bending dipole field centered on the injected beam axis which directs the injected beam to merge with the circulating beam .02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01The physical length of the magnet shall be less than or equal to <1.5(m)02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01The magnet shall have a TBD(mm)02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01The magnet shall be able to fit within the following volume constraints:02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01The magnet volume occupied shall be Within a rectangular volume of; dz=TBD(mm) dx=TBD(mm) dy=TBD(mm) Note all ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits:02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01The magnetic field axis displacement tolerances: The field position tolerances with respect to the magnet center shall be within the following tolerance ranges dx=TBD dy=TBD dz= TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01The magnetic field rotational alignment tolerances: The field rotational tolerances wrt the primary magnet axes shall be within the following tolerance ranges About X=TBD About Y=na About Z=TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01The Integrated Dipole Field B Shall be = 1.51(Tm)02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01The magnet install center displacement shall be aligned with respect to the specified lattice field center position dx=+/-340(um) dy=+/-170(um) dz= na02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01The magnet rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/-0.057 (mRad) About Y=+/-0.113 (mRad) About Z=na02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01The magnet field homogeneity shall be measured at a reference radius of TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01The magnet field homogeneity shall be measured at a reference field of 1.01(T)02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01The magnet bore field SHALL have the following multipole content . Notes: The units are specified in parts of 10-4 of the main components.02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01b1= 10000 , a1+/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01b2 +/- TBD , a2+/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01b3 < +/- TBD , a3 < +/-TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01b4 < +/- TBD , a4 < +/-TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01b5 < +/- TBD , a5 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01b6 < +/- TBD , a6 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01b7 < +/- TBD , a7 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01b8 < +/- TBD , a8 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01b9 < +/- TBD , a9 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01b10 < +/- TBD , a10 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01b11 < +/- TBD , a11 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01b12 < +/- TBD , a12 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01b13 < +/- TBD , a13 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01b14 < +/- TBD , a14 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01b15 < +/- TBD , a15 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01b16 < +/- TBD , a16 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01The harmonic reference radius and\or location at which the crosstalk shall be measured is at the same position as occupied by the circulating beam center after installation wrt the septum axis02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01The field (Bref) or design energy for which the crosstalk shall be measured is 1. The minimum injection energy 2. The maximum injection energy of the septum02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01The magnet shall have the following crosstalk Multipole content or dB/B within at the specified measurement volume. The septum fringe field on the HSR circulating beam location shall not exceed 1% of the HSR main bending field at that energy02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01The magnet shall be designed to be cooled and sustained at an operational temperature range of +25 (C) to +35 (C).02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01The magnet coils shall pass a Hi-Pot test to confirm the magnet can meet the maximum Voltage seen in operation +500 Volts, i.e. Vmax+500(V)02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.0102/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01The magnet shall be able to sustain 30 years of EIC operation under nominal conditions. During this time the magnet is expected to survive 30000 power cycles.02/09/2026In ProcessFALSE
- 6.02.03.11.02.01.01Over its planned life of 30(yrs), the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit should be taken as a guide for the design process. The actual upper limit the magnet will see in operation will need further analysis and will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
HSR-INJ-MAG-Q1 : HSR Injector Magnet Q2 (WBS 6.05.03.01)
HSR-INJ-MAG-Q2 : HSR Injector Magnet Q2 (WBS 6.05.03.01)
HSR-INJ-MAG-Q3 : HSR Injector Magnet Q3 (WBS 6.05.03.01)
HSR-INJ-MAG-QD1 : HSR Injector Magnet QD1 (WBS 6.05.03.01)
- 6.02.03.03.03The magnet shall reuse the existing ATR Type C combined function magnets to provide a combined function horizontal bending dipole field and a normal quadrupole field centered on the injected beam axis.02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.03The physical length of the magnet shall be less than or equal to <3.66(m)02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.03The magnet shall have a a tapered pole gap , with a nominal gap distance of 39(mm)02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet shall be able to fit within the following volume constraints:02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet volume occupied shall be approved by the EIC engineering team to ensure the design does not impede any other EIC components or block egress.02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet field axis and center shall be identified using the existing field fiducial on the magnet.02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.03The Integrated Dipole field of the magnet shall be = 3.96(Tm)02/09/2026In ProcessFALSE
- 6.02.03.03.03The Integrated Gradient Field of the magnet shall be = 41.89(T)02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.03The magnet position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet install center displacement shall be aligned with respect to the specified lattice field center position dx=+/-340(um) dy=+/-170(um) dz= na02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/-0.023 (mRad) About Y=+/-0.046 (mRad) About Z=na02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet field homogeneity should be equavilent to its historical capability.02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.03The magnet shall be cooled and sustained at an operational temperature range of +25 (C) to +35 (C).02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.03The magnet coils shall pass a Hi-Pot test to confirm the magnet can meet the maximum Voltage seen in operation +500 Volts, i.e. Vmax+500(V)02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.03The magnet shall be able to sustain 30 years of EIC operation under nominal conditions. During this time the magnet is expected to survive 30000 power cycles.02/09/2026In ProcessFALSE
- 6.02.03.03.03Over its planned life of 30(yrs), the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit should be taken as a guide . The actual upper limit the magnet will see in operation will need further analysis and confirmation by the EIC radiation physics team02/09/2026In ProcessFALSE
HSR-INJ-MAG-CHV1
- 6.02.03.03.02The magnet shall have a a dual function horizontal bending dipole field corrector and a vertically bendipole corrector field both centered on the injected beam axis.02/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.02The physical length of the magnet shall be less than or equal to <TBD(m)02/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet shall have a a pole Gap of >TBD(mm)02/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet shall be able to fit within the following volume constraints:02/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet volume occupied shall be approved by the EIC engineering team to ensure the design does not impede any other EIC components or block egress.02/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits:02/09/2026In ProcessFALSE
- 6.02.03.03.02The magnetic field axis displacement tolerances: This is an existing magnet its not possible to change the field position relative to the existing magnet structure. As such the requirment is not applicale.The field position tolerances values for the existing magnet are listed here dx=TBD dy=TBD dz= TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02The magnetic field rotational alignment tolerances: This is an existing magnet its not possible to change the field rotation relative to the existing magnet structure. as such this requirment is not applicale.The field rotational tolerances range for the existing magnet are listed here About X=TBD About Y=TBD About Z=TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02The Integrated Dipole Field B Shall be = TBD02/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet install center displacement shall be aligned with respect to the specified lattice field center position dx=+/-340(um) dy=+/-170(um) dz= na02/09/2026In ProcessFALSE
- 6.02.03.03.02-214682627302/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet field homogeneity shall be measured within the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet field homogeneity shall be measured at a reference radius of TBD(mm)02/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet field homogeneity shall be measured at a reference field of TBD(T)02/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet bore field SHOULD have the following multipole content as per the existing XTH corrector series magnets. Notes: The units are specified in parts of 10-4 of the main components. All undefined harmonics are assumed to be less than +/-0.5 units.02/09/2026In ProcessFALSE
- 6.02.03.03.02TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02TBD02/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +TBD (C) to +TBD (C).02/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet coils shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = TBD(V)02/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet shall be able to sustain 20 years of EIC operation under nominal conditions. During this time the magnet is expected to survive TBD power cycles.02/09/2026In ProcessFALSE
- 6.02.03.03.02All components must withstand a radiation dose of TBD MGy, or shall be approved by EIC for use in a specific location as shown in the “BNL Materials” List TBD TBD02/09/2026In ProcessFALSE
HSR-INJ-MAG-CHV2
- 6.02.03.03.02The magnet shall have a a dual plane corrector with a horizontal bending dipole field corrector and a vertically bending dipole field both centered on the injected beam axis.02/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.02The physical length of the magnet shall be less than or equal to TBD(m)02/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet shall have a TBD(mm)02/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet shall be able to fit within the following volume constraints:02/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet volume occupied shall be approved by the EIC engineering team to ensure the design does not impede any other EIC components or block egress.02/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits:02/09/2026In ProcessFALSE
- 6.02.03.03.02The magnetic field axis displacement tolerances: The field position tolerances with respect to the magnet center shall be within the following tolerance ranges dx=TBD dy=TBD dz= TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02The magnetic field rotational alignment tolerances: The field rotational tolerances wrt the primary magnet axes shall be within the following tolerance ranges About X=TBD About Y=na About Z=TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02The Integrated Dipole Field B Shall be = TBD (T.m)02/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet install center displacement shall be aligned with respect to the specified lattice field center position dx=+/-340(um) dy=+/-170(um) dz= na02/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/-TBD (mRad) About Y=+/-TBD (mRad) About Z=na02/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet field homogeneity shall be measured within the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet field homogeneity shall be measured at a reference radius of 23(mm)02/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet field homogeneity shall be measured at a reference field of TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet bore field SHALL have the following multipole content as the existing ATR Dual plane corrector magnet design. Notes: The units are specified in parts of 10-4 of the main components.02/09/2026In ProcessFALSE
- 6.02.03.03.02b1=10000 , a1+/- 1000002/09/2026In ProcessFALSE
- 6.02.03.03.02b2 +/- TBD , a2=TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02b3 < +/- TBD , a3 < +/-TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02b4 < +/- TBD , a4 < +/-TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02b5 < +/- TBD , a5 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02b6 < +/- TBD , a6 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02b7 < +/- TBD , a7 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02b8 < +/- TBD , a8 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02b9 < +/- TBD , a9 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02b10 < +/- TBD , a10 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02b11 < +/- TBD , a11 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02b12 < +/- TBD , a12 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02b13 < +/- TBD , a13 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02b14 < +/- TBD , a14 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02b15 < +/- TBD , a15 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.02b16 < +/- TBD , a16 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet shall be designed to be cooled and sustained at an operational temperature range of +25 (C) to +35 (C).02/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet coils shall pass a Hi-Pot test to confirm the magnet can meet the maximum Voltage seen in operation +500 Volts, i.e. Vmax+500(V)02/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.0202/09/2026In ProcessFALSE
- 6.02.03.03.02The magnet shall be able to sustain 30 years of EIC operation under nominal conditions. During this time the magnet is expected to survive 30000 power cycles.02/09/2026In ProcessFALSE
- 6.02.03.03.02Over its planned life of 30(yrs), the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit should be taken as a guide for the design process. The actual upper limit the magnet will see in operation will need further analysis and will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
HSR-INJ-MAG-DV1
- 6.02.03.03.01The magnet shall have a a single function vertical bending dipole field centered on the injected beam axis.02/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.01The physical length of the magnet shall be less than or equal to <1(m)02/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.01The magnet shall have a TBD(mm)02/09/2026In ProcessFALSE
- 6.02.03.03.01The magnet shall be able to fit within the following volume constraints:02/09/2026In ProcessFALSE
- 6.02.03.03.01The magnet volume occupied shall be approved by the EIC engineering team to ensure the design does not impede any other EIC components or block egress.02/09/2026In ProcessFALSE
- 6.02.03.03.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits:02/09/2026In ProcessFALSE
- 6.02.03.03.01The magnetic field axis displacement tolerances: This is an existing magnet its not possible to change the field position relative to the existing magnet structure. as such this requirment is not applicale.02/09/2026In ProcessFALSE
- 6.02.03.03.01The magnetic field rotational alignment tolerances: This is an existing magnet its not possible to change the field rotation relative to the existing magnet structure. as such this requirment is not applicale.02/09/2026In ProcessFALSE
- 6.02.03.03.01The Integrated Dipole Field B Shall be = 0.14(Tm)02/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.01The magnet install center displacement shall be aligned with respect to the specified lattice field center position dx=+/-340(um) dy=+/-170(um) dz= na02/09/2026In ProcessFALSE
- 6.02.03.03.01The magnet rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/-0.085 (mRad) About Y=+/-0.17 (mRad) About Z=na02/09/2026In ProcessFALSE
- 6.02.03.03.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.03.01The magnet field homogeneity shall be measured at a reference radius of 23(mm)02/09/2026In ProcessFALSE
- 6.02.03.03.01The magnet field homogeneity shall be measured at a reference field of 0.14(T)02/09/2026In ProcessFALSE
- 6.02.03.03.01This is an existing magnet the magnet bore field is assumed to have the same multipole content as per the existing ATR Vertical corrector magnets. Notes: The units are specified in parts of 10-4 of the main components.02/09/2026In ProcessFALSE
- 6.02.03.03.01b1+/- TBD , a1=1000002/09/2026In ProcessFALSE
- 6.02.03.03.01b2 +/- TBD , a2+/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.01b3 < +/- TBD , a3 < +/-TBD02/09/2026In ProcessFALSE
- 6.02.03.03.01b4 < +/- TBD , a4 < +/-TBD02/09/2026In ProcessFALSE
- 6.02.03.03.01b5 < +/- TBD , a5 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.01b6 < +/- TBD , a6 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.01b7 < +/- TBD , a7 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.01b8 < +/- TBD , a8 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.01b9 < +/- TBD , a9 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.01b10 < +/- TBD , a10 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.01b11 < +/- TBD , a11 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.01b12 < +/- TBD , a12 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.01b13 < +/- TBD , a13 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.01b14 < +/- TBD , a14 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.01b15 < +/- TBD , a15 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.01b16 < +/- TBD , a16 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.01The magnet shall be designed to be cooled and sustained at an operational temperature range of +25 (C) to +35 (C).02/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.01The magnet coils shall pass a Hi-Pot test to confirm the magnet can meet the maximum Voltage seen in operation +500 Volts, i.e. Vmax+500(V)02/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.0102/09/2026In ProcessFALSE
- 6.02.03.03.01The magnet shall be able to sustain 30 years of EIC operation under nominal conditions. During this time the magnet is expected to survive 30000 power cycles.02/09/2026In ProcessFALSE
- 6.02.03.03.01Over its planned life of 30(yrs), the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit should be taken as a guide for the design process. The actual upper limit the magnet will see in operation will need further analysis and will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
HSR-INJ-MAG-DW0
- 6.02.03.03.01The magnet shall utilize an HSR DW0 magnet to porvide a single function horizontal bending dipole field centered on the injected beam axis capable of directing the injected beam to merge with the circulating beam .02/09/2026In ProcessFALSE
HSR-INJ-MAG-Q50
- 6.02.03.03.03The magnet shall utilize an ESR APS Q50 to provide a single function normal quadrupole field centered on the injected beam axis.02/09/2026In ProcessFALSE
HSR-INJ-MAG-Q60
- The magnet shall utilize an ESR APS Q60 to provide a single function normal quadrupole field centered on the injected beam axis.02/09/2026In ProcessFALSE
HSR-INJ-MAG-Q80
- 6.02.03.03.03The magnet shall utilize an ESR APS Q80 to provide a single function normal quadrupole field centered on the injected beam axis.02/09/2026In ProcessFALSE
HSR-INJ-MAG-QD2
- 6.02.03.03.03The magnet shall reuse the existing ATR Type A combined function magnets to provide a combined function horizontal bending dipole field and a normal quadrupole field centered on the injected beam axis.02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.03The physical length of the magnet shall be less than or equal to <2.95(m)02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.03The magnet shall have a a tapered pole gap , with a nominal gap distance of 32(mm)02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet shall be able to fit within the following volume constraints:02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet volume occupied shall be approved by the EIC engineering team to ensure the design does not impede any other EIC components or block egress.02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet field axis and center shall be identified using the existing field fiducial on the magnet.02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.03The Integrated Dipole Field of the magnet shall be = 3.19(Tm)02/09/2026In ProcessFALSE
- 6.02.03.03.03The Integrated Gradient Field of the magnet shall be = 33.74(T)02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.03The magnet position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet install center displacement shall be aligned with respect to the specified lattice field center position dx=+/-340(um) dy=+/-170(um) dz= na02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/-0.029 (mRad) About Y=+/-0.058 (mRad) About Z=na02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet field homogeneity should be equavilent to its historical capability.02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.03The magnet shall be cooled and sustained at an operational temperature range of +25 (C) to +35 (C).02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.03The magnet coils shall pass a Hi-Pot test to confirm the magnet can meet the maximum Voltage seen in operation +500 Volts, i.e. Vmax+500(V)02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.0302/09/2026Not ApplicableFALSE
- 6.02.03.03.03The magnet shall be able to sustain 30 years of EIC operation under nominal conditions. During this time the magnet is expected to survive 30000 power cycles.02/09/2026In ProcessFALSE
- 6.02.03.03.03Over its planned life of 30(yrs), the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit should be taken as a guide . The actual upper limit the magnet will see in operation will need further analysis and confirmation by the EIC radiation physics team02/09/2026In ProcessFALSE
HSR-INJ-MAG-QF1
- 6.02.03.03.03The magnet shall have a a single function normal quadrupole field centered on the injected beam axis.02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.03The physical length of the magnet shall be less than or equal to <1(m)02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet pole tip radius shall be greater than or equal 39(mm)02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet shall be able to fit within the following volume constraints:02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet volume occupied shall be approved by the EIC engineering team to ensure the design does not impede any other EIC components or block egress.02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits:02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnetic field axis displacement tolerances: This is an new magnet design based on the APS quadrupoles. The field position relative to the new magnet structure. Will be within the the tolerances exhiited in the existing APS magnets as listed here dx=+/-50(um) dy=+/-50(um) dz=+/-50(um)02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnetic field rotational alignment tolerances: This is an new magnet design based on the APS quadrupoles. The field rotation relative to the new magnet structure shall be within the rotational tolerances exhiited in the existing APS magnets as listed here About X=+/-0.5(mrad) About Y=+/-0.5(mrad) About Z=+/-0.5(mrad)02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.03The Integrated Gradient Field G Shall be = 74.87(T)02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet install center displacement shall be aligned with respect to the specified lattice field center position dx=+/-340(um) dy=+/-170(um) dz= na02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/-0.085 (mRad) About Y=+/-0.17 (mRad) About Z=na02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet field homogeneity shall be measured within the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet field homogeneity shall be measured at a reference radius of 23(mm)02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet field homogeneity shall be measured at a reference field of 20.47(T)02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet bore field Shall have the following multipole content Notes: The units are specified in parts of 10-4 of the main components.02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.03b2 = 10000 , a2 = +/-1002/09/2026In ProcessFALSE
- 6.02.03.03.03b3 < +/- 10 , a3 < +/- 1002/09/2026In ProcessFALSE
- 6.02.03.03.03b4 < +/- 10 , a4 < +/-1002/09/2026In ProcessFALSE
- 6.02.03.03.03b5 < +/- 10 , a5 < +/- 1002/09/2026In ProcessFALSE
- 6.02.03.03.03b6 < +/- 10 , a6 < +/- 1002/09/2026In ProcessFALSE
- 6.02.03.03.03b7 < +/- 10 , a7 < +/- 1002/09/2026In ProcessFALSE
- 6.02.03.03.03b8 < +/- 10 , a8 < +/- 1002/09/2026In ProcessFALSE
- 6.02.03.03.03b9 < +/- 10 , a9 < +/- 1002/09/2026In ProcessFALSE
- 6.02.03.03.03b10 < +/- 10 , a10 < +/- 1002/09/2026In ProcessFALSE
- 6.02.03.03.03b11 < +/- 10 , a11 < +/- 1002/09/2026In ProcessFALSE
- 6.02.03.03.03b12 < +/- 10 , a12 < +/- 1002/09/2026In ProcessFALSE
- 6.02.03.03.03b13 < +/- 10 , a13 < +/- 1002/09/2026In ProcessFALSE
- 6.02.03.03.03b14 < +/- 10 , a14 < +/- 1002/09/2026In ProcessFALSE
- 6.02.03.03.03b15 < +/- 10 , a15 < +/- 1002/09/2026In ProcessFALSE
- 6.02.03.03.03b16 < +/- 10 , a16 < +/- 1002/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet shall be designed to be cooled and sustained at an operational temperature range of +25 (C) to +35 (C).02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet coils shall pass a Hi-Pot test to confirm the magnet can meet the maximum Voltage seen in operation +500 Volts, i.e. Vmax+500(V)02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet shall be able to sustain 30 years of EIC operation under nominal conditions. During this time the magnet is expected to survive 30000 power cycles.02/09/2026In ProcessFALSE
- 6.02.03.03.03Over its planned life of 30(yrs), the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit should be taken as a guide for the design process. The actual upper limit the magnet will see in operation will need further analysis and will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
HSR-INJ-MAG-QF2
- The magnet shall have a a single function normal quadrupole field centered on the injected beam axis.11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- The physical length of the magnet shall be less than or equal to <1(m)11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- The magnet pole tip radius shall be greater than or equal 57(mm)11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- The magnet shall be able to fit within the following volume constraints:11/17/2025In ProcessFALSE
- The magnet volume occupied shall be approved by the EIC engineering team to ensure the design does not impede any other EIC components or block egress.11/17/2025In ProcessFALSE
- The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits:11/17/2025In ProcessFALSE
- The magnetic field axis displacement tolerances: This is an new magnet design based on the APS quadrupoles. The field position relative to the new magnet structure. Will be within the the tolerances exhiited in the existing APS magnets as listed here dx=+/-50(um) dy=+/-50(um) dz=+/-50(um)11/17/2025In ProcessFALSE
- The magnetic field rotational alignment tolerances: This is an new magnet design based on the APS quadrupoles. The field rotation relative to the new magnet structure shall be within the rotational tolerances exhiited in the existing APS magnets as listed here About X=+/-0.5(mrad) About Y=+/-0.5(mrad) About Z=+/-0.5(mrad)11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- The Integrated Gradient Field G Shall be = 49.31(T)11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)11/17/2025In ProcessFALSE
- The magnet install center displacement shall be aligned with respect to the specified lattice field center position dx=+/-340(um) dy=+/-170(um) dz= na11/17/2025In ProcessFALSE
- The magnet rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/-0.085 (mRad) About Y=+/-0.17 (mRad) About Z=na11/17/2025In ProcessFALSE
- The magnet field homogeneity shall be measured within the following constraints:11/17/2025In ProcessFALSE
- The magnet field homogeneity shall be measured at a reference radius of 28(mm)11/17/2025In ProcessFALSE
- The magnet field homogeneity shall be measured at a reference field of 13.48(T)11/17/2025In ProcessFALSE
- The magnet bore field Shall have the following multipole content Notes: The units are specified in parts of 10-4 of the main components.11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- b2 = 10000 , a2 = +/-1011/17/2025In ProcessFALSE
- b3 < +/- 10 , a3 < +/- 1011/17/2025In ProcessFALSE
- b4 < +/- 10 , a4 < +/-1011/17/2025In ProcessFALSE
- b5 < +/- 10 , a5 < +/- 1011/17/2025In ProcessFALSE
- b6 < +/- 10 , a6 < +/- 1011/17/2025In ProcessFALSE
- b7 < +/- 10 , a7 < +/- 1011/17/2025In ProcessFALSE
- b8 < +/- 10 , a8 < +/- 1011/17/2025In ProcessFALSE
- b9 < +/- 10 , a9 < +/- 1011/17/2025In ProcessFALSE
- b10 < +/- 10 , a10 < +/- 1011/17/2025In ProcessFALSE
- b11 < +/- 10 , a11 < +/- 1011/17/2025In ProcessFALSE
- b12 < +/- 10 , a12 < +/- 1011/17/2025In ProcessFALSE
- b13 < +/- 10 , a13 < +/- 1011/17/2025In ProcessFALSE
- b14 < +/- 10 , a14 < +/- 1011/17/2025In ProcessFALSE
- b15 < +/- 10 , a15 < +/- 1011/17/2025In ProcessFALSE
- b16 < +/- 10 , a16 < +/- 1011/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- The magnet shall be designed to be cooled and sustained at an operational temperature range of +25 (C) to +35 (C).11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- The magnet coils shall pass a Hi-Pot test to confirm the magnet can meet the maximum Voltage seen in operation +500 Volts, i.e. Vmax+500(V)11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- 11/17/2025In ProcessFALSE
- The magnet shall be able to sustain 30 years of EIC operation under nominal conditions. During this time the magnet is expected to survive 30000 power cycles.11/17/2025In ProcessFALSE
- Over its planned life of 30(yrs), the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit should be taken as a guide for the design process. The actual upper limit the magnet will see in operation will need further analysis and will need to be confirmed by the EIC radiation physics team11/17/2025In ProcessFALSE
HSR-INJ-MAG-YQ1
- 6.02.03.03.03The magnet shall have a a single function horizontal bending dipole field centered on the injected beam axis.02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.03The physical length of the magnet shall be less than or equal to <0.73(m)02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet pole tip radius shall be greater than or equal ~37.88(mm)02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet shall be able to fit within the following volume constraints:02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet volume occupied shall be approved by the EIC engineering team to ensure the design does not impede any other EIC components or block egress.02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits:02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnetic field axis displacement tolerances: This is an existing magnet its not possible to change the field position relative to the existing magnet structure. as such this requirment is not applicale.02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnetic field rotational alignment tolerances: This is an existing magnet its not possible to change the field rotation relative to the existing magnet structure. as such this requirment is not applicale.02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.03The Integrated Gradient Field G Shall be = 12.11(T)02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet install center displacement shall be aligned with respect to the specified lattice field center position dx=+/-340(um) dy=+/-170(um) dz= na02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/-0.116 (mRad) About Y=+/-0.233 (mRad) About Z=na02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet field homogeneity shall be measured within the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet field homogeneity shall be measured at a reference radius of 23(mm)02/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet field homogeneity shall be measured at a reference field of 3.31(T)02/09/2026In ProcessFALSE
- 6.02.03.03.03This is an existing magnet the magnet bore field is assumed to have the same multipole content as per the existing YP1,XP1 magnets. Notes: The units are specified in parts of 10-4 of the main components.02/09/2026In ProcessFALSE
- 6.02.03.03.03b1+/- TBD, a1+/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.03b2=10000 , a2+/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.03b3 < +/- TBD , a3 < +/-TBD02/09/2026In ProcessFALSE
- 6.02.03.03.03b4 < +/- TBD , a4 < +/-TBD02/09/2026In ProcessFALSE
- 6.02.03.03.03b5 < +/- TBD , a5 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.03b6 < +/- TBD , a6 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.03b7 < +/- TBD , a7 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.03b8 < +/- TBD , a8 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.03b9 < +/- TBD , a9 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.03b10 < +/- TBD , a10 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.03b11 < +/- TBD , a11 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.03b12 < +/- TBD , a12 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.03b13 < +/- TBD , a13 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.03b14 < +/- TBD , a14 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.03b15 < +/- TBD , a15 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.03b16 < +/- TBD , a16 < +/- TBD02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet shall be designed to be cooled and sustained at an operational temperature range of +25 (C) to +35 (C).02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet coils shall pass a Hi-Pot test to confirm the magnet can meet the maximum Voltage seen in operation +500 Volts, i.e. Vmax+500(V)02/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.0302/09/2026In ProcessFALSE
- 6.02.03.03.03The magnet shall be able to sustain 30 years of EIC operation under nominal conditions. During this time the magnet is expected to survive 30000 power cycles.02/09/2026In ProcessFALSE
- 6.02.03.03.03Over its planned life of 30(yrs), the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit should be taken as a guide for the design process. The actual upper limit the magnet will see in operation will need further analysis and will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
HSR-INJ-PS : HSR Hadron Ring Injection Power Supplys (WBS 6.05.03.02)
- HSR-INJ-PS EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.03The HSR Injection System magnets shall be fed by a system of power supplies matched in voltage and maximum current to the specifications and requirements of the respective magnets02/09/2026ApprovedFALSE
HSR-INJ-PS-CH : HSR Injector Power supply Hor Corr (WBS 6.05.03.02)
HSR-INJ-PS-CV : HSR Injector Power supply Vert Corr (WBS 6.05.03.02)
HSR-INJ-PS-D1 : HSR Injector Power supply D1 (WBS 6.05.03.02)
HSR-INJ-PS-D2 : HSR Injector Power supply D2 (WBS 6.05.03.02)
HSR-INJ-PS-D3 : HSR Injector Power supply D3 (WBS 6.05.03.02)
HSR-INJ-PS-D4 : HSR Injector Power supply D4 (WBS 6.05.03.02)
HSR-INJ-PS-DCSEPT : HSR Injector Power supply DC Septum (WBS 6.05.03.02)
- 6.02.03.11.03.02The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The maximum magnet string resistance to be powered shall be TBD ohm02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The maximum magnet string inductance to be powered shall be TBD H02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The magnets being powered shall be saturated TBD Y/N02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The voltage to ground of the magnet being powered shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The nominal current of the magnets being powered shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The minmum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The maximum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The PS current type DC or AC shall be TBD DC\AC02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The PS AC waveshape required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The peak waveshape di/dt during ramping shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The full power bandwidth required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The ppm of full scale current (peak to peak) shall be TBD %02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The time period for specified stability shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The short term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The long term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The current setpoint resolution (min size in bits) shall be TBD bits02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The synchronization required between PS's shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The synchronization timing of synchronization shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The max allowable current ripple (peak to peak) TBD A02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The max current ripple frequency range (Hz) TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.11.03.02WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The max voltage ripple (peak to peak) shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.11.03.02An NMR shall be required to measure the field TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The voltage tap configuration shall be TBD -02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The threshold levels shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The current required to be shunted through the magnet shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The magnet turns ratio shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The terminal voltage shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.11.03.02The design shall have thermal switches TBD02/09/2026In ProcessFALSE
HSR-INJ-PS-INDSEPT : HSR Injector Power supply IND Septum (WBS 6.05.03.02)
- 6.02.03.11.02.02The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The maximum magnet string resistance to be powered shall be TBD ohm02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The maximum magnet string inductance to be powered shall be TBD H02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The magnets being powered shall be saturated TBD Y/N02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The voltage to ground of the magnet being powered shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The nominal current of the magnets being powered shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The minmum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The maximum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The PS current type DC or AC shall be TBD DC\AC02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The PS AC waveshape required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The peak waveshape di/dt during ramping shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The full power bandwidth required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The ppm of full scale current (peak to peak) shall be TBD %02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The time period for specified stability shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The short term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The long term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The current setpoint resolution (min size in bits) shall be TBD bits02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The synchronization required between PS's shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The synchronization timing of synchronization shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The max allowable current ripple (peak to peak) TBD A02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The max current ripple frequency range (Hz) TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.11.02.02WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The max voltage ripple (peak to peak) shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.11.02.02An NMR shall be required to measure the field TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The voltage tap configuration shall be TBD -02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The threshold levels shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The current required to be shunted through the magnet shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The magnet turns ratio shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The terminal voltage shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.11.02.02The design shall have thermal switches TBD02/09/2026In ProcessFALSE
HSR-INJ-PS-Q1 : HSR Injector Power supply Q1 (WBS 6.05.03.02)
HSR-INJ-PS-Q2 : HSR Injector Power supply Q2 (WBS 6.05.03.02)
HSR-INJ-PS-Q3 : HSR Injector Power supply Q3 (WBS 6.05.03.02)
HSR-INJ-PS-QD1 : HSR Injector Power supply QD1 (WBS 6.05.03.02)
- 6.02.03.04.02The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum magnet string resistance to be powered shall be TBD ohm02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum magnet string inductance to be powered shall be TBD H02/09/2026In ProcessFALSE
- 6.02.03.04.02The magnets being powered shall be saturated TBD Y/N02/09/2026In ProcessFALSE
- 6.02.03.04.02The voltage to ground of the magnet being powered shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The nominal current of the magnets being powered shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The minmum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The PS current type DC or AC shall be TBD DC\AC02/09/2026In ProcessFALSE
- 6.02.03.04.02The PS AC waveshape required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The peak waveshape di/dt during ramping shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The full power bandwidth required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The ppm of full scale current (peak to peak) shall be TBD %02/09/2026In ProcessFALSE
- 6.02.03.04.02The time period for specified stability shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The short term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The long term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The current setpoint resolution (min size in bits) shall be TBD bits02/09/2026In ProcessFALSE
- 6.02.03.04.02The synchronization required between PS's shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The synchronization timing of synchronization shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The max allowable current ripple (peak to peak) TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The max current ripple frequency range (Hz) TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.02WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.02The max voltage ripple (peak to peak) shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02An NMR shall be required to measure the field TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The voltage tap configuration shall be TBD -02/09/2026In ProcessFALSE
- 6.02.03.04.02The threshold levels shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The current required to be shunted through the magnet shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The magnet turns ratio shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The terminal voltage shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The design shall have thermal switches TBD02/09/2026In ProcessFALSE
HSR-INJ-PS-CHV1
- 6.02.03.04.01The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.01The maximum magnet string resistance to be powered shall be TBD ohm02/09/2026In ProcessFALSE
- 6.02.03.04.01The maximum magnet string inductance to be powered shall be TBD H02/09/2026In ProcessFALSE
- 6.02.03.04.01The magnets being powered shall be saturated TBD Y/N02/09/2026In ProcessFALSE
- 6.02.03.04.01The voltage to ground of the magnet being powered shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.01The nominal current of the magnets being powered shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.01The minmum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.01The maximum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.01The PS current type DC or AC shall be TBD DC\AC02/09/2026In ProcessFALSE
- 6.02.03.04.01The PS AC waveshape required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.01The peak waveshape di/dt during ramping shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.01The full power bandwidth required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.01The ppm of full scale current (peak to peak) shall be TBD %02/09/2026In ProcessFALSE
- 6.02.03.04.01The time period for specified stability shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.01The short term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.01The long term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.01The current setpoint resolution (min size in bits) shall be TBD bits02/09/2026In ProcessFALSE
- 6.02.03.04.01The synchronization required between PS's shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.01The synchronization timing of synchronization shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.01The max allowable current ripple (peak to peak) TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.01The max current ripple frequency range (Hz) TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.01WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.01The max voltage ripple (peak to peak) shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.01An NMR shall be required to measure the field TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.01The voltage tap configuration shall be TBD -02/09/2026In ProcessFALSE
- 6.02.03.04.01The threshold levels shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.01The current required to be shunted through the magnet shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.01The magnet turns ratio shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.01The terminal voltage shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.01The design shall have thermal switches TBD02/09/2026In ProcessFALSE
HSR-INJ-PS-CHV2
- 6.02.03.04.01The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.01The maximum magnet string resistance to be powered shall be TBD ohm02/09/2026In ProcessFALSE
- 6.02.03.04.01The maximum magnet string inductance to be powered shall be TBD H02/09/2026In ProcessFALSE
- 6.02.03.04.01The magnets being powered shall be saturated TBD Y/N02/09/2026In ProcessFALSE
- 6.02.03.04.01The voltage to ground of the magnet being powered shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.01The nominal current of the magnets being powered shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.01The minmum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.01The maximum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.01The PS current type DC or AC shall be TBD DC\AC02/09/2026In ProcessFALSE
- 6.02.03.04.01The PS AC waveshape required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.01The peak waveshape di/dt during ramping shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.01The full power bandwidth required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.01The ppm of full scale current (peak to peak) shall be TBD %02/09/2026In ProcessFALSE
- 6.02.03.04.01The time period for specified stability shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.01The short term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.01The long term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.01The current setpoint resolution (min size in bits) shall be TBD bits02/09/2026In ProcessFALSE
- 6.02.03.04.01The synchronization required between PS's shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.01The synchronization timing of synchronization shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.01The max allowable current ripple (peak to peak) TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.01The max current ripple frequency range (Hz) TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.01WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.01The max voltage ripple (peak to peak) shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.01An NMR shall be required to measure the field TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.01The voltage tap configuration shall be TBD -02/09/2026In ProcessFALSE
- 6.02.03.04.01The threshold levels shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.01The current required to be shunted through the magnet shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.01The magnet turns ratio shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.01The terminal voltage shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.01The design shall have thermal switches TBD02/09/2026In ProcessFALSE
HSR-INJ-PS-DV1
- 6.02.03.04.02The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum magnet string resistance to be powered shall be TBD ohm02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum magnet string inductance to be powered shall be TBD H02/09/2026In ProcessFALSE
- 6.02.03.04.02The magnets being powered shall be saturated TBD Y/N02/09/2026In ProcessFALSE
- 6.02.03.04.02The voltage to ground of the magnet being powered shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The nominal current of the magnets being powered shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The minmum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The PS current type DC or AC shall be TBD DC\AC02/09/2026In ProcessFALSE
- 6.02.03.04.02The PS AC waveshape required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The peak waveshape di/dt during ramping shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The full power bandwidth required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The ppm of full scale current (peak to peak) shall be TBD %02/09/2026In ProcessFALSE
- 6.02.03.04.02The time period for specified stability shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The short term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The long term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The current setpoint resolution (min size in bits) shall be TBD bits02/09/2026In ProcessFALSE
- 6.02.03.04.02The synchronization required between PS's shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The synchronization timing of synchronization shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The max allowable current ripple (peak to peak) TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The max current ripple frequency range (Hz) TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.02WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.02The max voltage ripple (peak to peak) shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02An NMR shall be required to measure the field TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The voltage tap configuration shall be TBD -02/09/2026In ProcessFALSE
- 6.02.03.04.02The threshold levels shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The current required to be shunted through the magnet shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The magnet turns ratio shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The terminal voltage shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The design shall have thermal switches TBD02/09/2026In ProcessFALSE
HSR-INJ-PS-DW0
- 6.02.03.04.02The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum magnet string resistance to be powered shall be TBD ohm02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum magnet string inductance to be powered shall be TBD H02/09/2026In ProcessFALSE
- 6.02.03.04.02The magnets being powered shall be saturated TBD Y/N02/09/2026In ProcessFALSE
- 6.02.03.04.02The voltage to ground of the magnet being powered shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The nominal current of the magnets being powered shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The minmum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The PS current type DC or AC shall be TBD DC\AC02/09/2026In ProcessFALSE
- 6.02.03.04.02The PS AC waveshape required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The peak waveshape di/dt during ramping shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The full power bandwidth required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The ppm of full scale current (peak to peak) shall be TBD %02/09/2026In ProcessFALSE
- 6.02.03.04.02The time period for specified stability shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The short term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The long term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The current setpoint resolution (min size in bits) shall be TBD bits02/09/2026In ProcessFALSE
- 6.02.03.04.02The synchronization required between PS's shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The synchronization timing of synchronization shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The max allowable current ripple (peak to peak) TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The max current ripple frequency range (Hz) TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.02WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.02The max voltage ripple (peak to peak) shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02An NMR shall be required to measure the field TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The voltage tap configuration shall be TBD -02/09/2026In ProcessFALSE
- 6.02.03.04.02The threshold levels shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The current required to be shunted through the magnet shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The magnet turns ratio shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The terminal voltage shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The design shall have thermal switches TBD02/09/2026In ProcessFALSE
HSR-INJ-PS-Q50
- 6.02.03.04.02The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum magnet string resistance to be powered shall be TBD ohm02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum magnet string inductance to be powered shall be TBD H02/09/2026In ProcessFALSE
- 6.02.03.04.02The magnets being powered shall be saturated TBD Y/N02/09/2026In ProcessFALSE
- 6.02.03.04.02The voltage to ground of the magnet being powered shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The nominal current of the magnets being powered shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The minmum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The PS current type DC or AC shall be TBD DC\AC02/09/2026In ProcessFALSE
- 6.02.03.04.02The PS AC waveshape required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The peak waveshape di/dt during ramping shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The full power bandwidth required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The ppm of full scale current (peak to peak) shall be TBD %02/09/2026In ProcessFALSE
- 6.02.03.04.02The time period for specified stability shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The short term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The long term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The current setpoint resolution (min size in bits) shall be TBD bits02/09/2026In ProcessFALSE
- 6.02.03.04.02The synchronization required between PS's shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The synchronization timing of synchronization shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The max allowable current ripple (peak to peak) TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The max current ripple frequency range (Hz) TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.02WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.02The max voltage ripple (peak to peak) shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02An NMR shall be required to measure the field TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The voltage tap configuration shall be TBD -02/09/2026In ProcessFALSE
- 6.02.03.04.02The threshold levels shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The current required to be shunted through the magnet shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The magnet turns ratio shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The terminal voltage shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The design shall have thermal switches TBD02/09/2026In ProcessFALSE
HSR-INJ-PS-Q60
- 6.02.03.04.02The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum magnet string resistance to be powered shall be TBD ohm02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum magnet string inductance to be powered shall be TBD H02/09/2026In ProcessFALSE
- 6.02.03.04.02The magnets being powered shall be saturated TBD Y/N02/09/2026In ProcessFALSE
- 6.02.03.04.02The voltage to ground of the magnet being powered shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The nominal current of the magnets being powered shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The minmum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The PS current type DC or AC shall be TBD DC\AC02/09/2026In ProcessFALSE
- 6.02.03.04.02The PS AC waveshape required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The peak waveshape di/dt during ramping shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The full power bandwidth required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The ppm of full scale current (peak to peak) shall be TBD %02/09/2026In ProcessFALSE
- 6.02.03.04.02The time period for specified stability shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The short term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The long term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The current setpoint resolution (min size in bits) shall be TBD bits02/09/2026In ProcessFALSE
- 6.02.03.04.02The synchronization required between PS's shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The synchronization timing of synchronization shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The max allowable current ripple (peak to peak) TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The max current ripple frequency range (Hz) TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.02WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.02The max voltage ripple (peak to peak) shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02An NMR shall be required to measure the field TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The voltage tap configuration shall be TBD -02/09/2026In ProcessFALSE
- 6.02.03.04.02The threshold levels shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The current required to be shunted through the magnet shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The magnet turns ratio shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The terminal voltage shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The design shall have thermal switches TBD02/09/2026In ProcessFALSE
HSR-INJ-PS-Q80
- 6.02.03.04.02The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum magnet string resistance to be powered shall be TBD ohm02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum magnet string inductance to be powered shall be TBD H02/09/2026In ProcessFALSE
- 6.02.03.04.02The magnets being powered shall be saturated TBD Y/N02/09/2026In ProcessFALSE
- 6.02.03.04.02The voltage to ground of the magnet being powered shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The nominal current of the magnets being powered shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The minmum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The PS current type DC or AC shall be TBD DC\AC02/09/2026In ProcessFALSE
- 6.02.03.04.02The PS AC waveshape required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The peak waveshape di/dt during ramping shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The full power bandwidth required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The ppm of full scale current (peak to peak) shall be TBD %02/09/2026In ProcessFALSE
- 6.02.03.04.02The time period for specified stability shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The short term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The long term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The current setpoint resolution (min size in bits) shall be TBD bits02/09/2026In ProcessFALSE
- 6.02.03.04.02The synchronization required between PS's shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The synchronization timing of synchronization shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The max allowable current ripple (peak to peak) TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The max current ripple frequency range (Hz) TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.02WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.02The max voltage ripple (peak to peak) shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02An NMR shall be required to measure the field TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The voltage tap configuration shall be TBD -02/09/2026In ProcessFALSE
- 6.02.03.04.02The threshold levels shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The current required to be shunted through the magnet shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The magnet turns ratio shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The terminal voltage shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The design shall have thermal switches TBD02/09/2026In ProcessFALSE
HSR-INJ-PS-QD2
- 6.02.03.04.02The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum magnet string resistance to be powered shall be TBD ohm02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum magnet string inductance to be powered shall be TBD H02/09/2026In ProcessFALSE
- 6.02.03.04.02The magnets being powered shall be saturated TBD Y/N02/09/2026In ProcessFALSE
- 6.02.03.04.02The voltage to ground of the magnet being powered shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The nominal current of the magnets being powered shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The minmum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The PS current type DC or AC shall be TBD DC\AC02/09/2026In ProcessFALSE
- 6.02.03.04.02The PS AC waveshape required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The peak waveshape di/dt during ramping shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The full power bandwidth required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The ppm of full scale current (peak to peak) shall be TBD %02/09/2026In ProcessFALSE
- 6.02.03.04.02The time period for specified stability shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The short term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The long term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The current setpoint resolution (min size in bits) shall be TBD bits02/09/2026In ProcessFALSE
- 6.02.03.04.02The synchronization required between PS's shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The synchronization timing of synchronization shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The max allowable current ripple (peak to peak) TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The max current ripple frequency range (Hz) TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.02WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.02The max voltage ripple (peak to peak) shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02An NMR shall be required to measure the field TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The voltage tap configuration shall be TBD -02/09/2026In ProcessFALSE
- 6.02.03.04.02The threshold levels shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The current required to be shunted through the magnet shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The magnet turns ratio shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The terminal voltage shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The design shall have thermal switches TBD02/09/2026In ProcessFALSE
HSR-INJ-PS-QF1
- 6.02.03.04.02The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum magnet string resistance to be powered shall be TBD ohm02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum magnet string inductance to be powered shall be TBD H02/09/2026In ProcessFALSE
- 6.02.03.04.02The magnets being powered shall be saturated TBD Y/N02/09/2026In ProcessFALSE
- 6.02.03.04.02The voltage to ground of the magnet being powered shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The nominal current of the magnets being powered shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The minmum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The PS current type DC or AC shall be TBD DC\AC02/09/2026In ProcessFALSE
- 6.02.03.04.02The PS AC waveshape required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The peak waveshape di/dt during ramping shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The full power bandwidth required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The ppm of full scale current (peak to peak) shall be TBD %02/09/2026In ProcessFALSE
- 6.02.03.04.02The time period for specified stability shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The short term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The long term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The current setpoint resolution (min size in bits) shall be TBD bits02/09/2026In ProcessFALSE
- 6.02.03.04.02The synchronization required between PS's shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The synchronization timing of synchronization shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The max allowable current ripple (peak to peak) TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The max current ripple frequency range (Hz) TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.02WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.02The max voltage ripple (peak to peak) shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02An NMR shall be required to measure the field TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The voltage tap configuration shall be TBD -02/09/2026In ProcessFALSE
- 6.02.03.04.02The threshold levels shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The current required to be shunted through the magnet shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The magnet turns ratio shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The terminal voltage shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The design shall have thermal switches TBD02/09/2026In ProcessFALSE
HSR-INJ-PS-QF2
- 6.02.03.04.02The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum magnet string resistance to be powered shall be TBD ohm02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum magnet string inductance to be powered shall be TBD H02/09/2026In ProcessFALSE
- 6.02.03.04.02The magnets being powered shall be saturated TBD Y/N02/09/2026In ProcessFALSE
- 6.02.03.04.02The voltage to ground of the magnet being powered shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The nominal current of the magnets being powered shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The minmum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The PS current type DC or AC shall be TBD DC\AC02/09/2026In ProcessFALSE
- 6.02.03.04.02The PS AC waveshape required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The peak waveshape di/dt during ramping shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The full power bandwidth required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The ppm of full scale current (peak to peak) shall be TBD %02/09/2026In ProcessFALSE
- 6.02.03.04.02The time period for specified stability shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The short term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The long term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The current setpoint resolution (min size in bits) shall be TBD bits02/09/2026In ProcessFALSE
- 6.02.03.04.02The synchronization required between PS's shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The synchronization timing of synchronization shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The max allowable current ripple (peak to peak) TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The max current ripple frequency range (Hz) TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.02WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.02The max voltage ripple (peak to peak) shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02An NMR shall be required to measure the field TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The voltage tap configuration shall be TBD -02/09/2026In ProcessFALSE
- 6.02.03.04.02The threshold levels shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The current required to be shunted through the magnet shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The magnet turns ratio shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The terminal voltage shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The design shall have thermal switches TBD02/09/2026In ProcessFALSE
HSR-INJ-PS-YQ1
- 6.02.03.04.02The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum magnet string resistance to be powered shall be TBD ohm02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum magnet string inductance to be powered shall be TBD H02/09/2026In ProcessFALSE
- 6.02.03.04.02The magnets being powered shall be saturated TBD Y/N02/09/2026In ProcessFALSE
- 6.02.03.04.02The voltage to ground of the magnet being powered shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The nominal current of the magnets being powered shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The minmum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The maximum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The PS current type DC or AC shall be TBD DC\AC02/09/2026In ProcessFALSE
- 6.02.03.04.02The PS AC waveshape required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The peak waveshape di/dt during ramping shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The full power bandwidth required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The ppm of full scale current (peak to peak) shall be TBD %02/09/2026In ProcessFALSE
- 6.02.03.04.02The time period for specified stability shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The short term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The long term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The current setpoint resolution (min size in bits) shall be TBD bits02/09/2026In ProcessFALSE
- 6.02.03.04.02The synchronization required between PS's shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The synchronization timing of synchronization shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.04.02The max allowable current ripple (peak to peak) TBD A02/09/2026In ProcessFALSE
- 6.02.03.04.02The max current ripple frequency range (Hz) TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.02WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.04.02The max voltage ripple (peak to peak) shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02An NMR shall be required to measure the field TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.04.02The voltage tap configuration shall be TBD -02/09/2026In ProcessFALSE
- 6.02.03.04.02The threshold levels shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The current required to be shunted through the magnet shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The magnet turns ratio shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.04.02The terminal voltage shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.04.02The design shall have thermal switches TBD02/09/2026In ProcessFALSE
HSR-INJ-PPD : HSR Hadron Ring Injection Pulsed Power Devices System (WBS 6.05.03.04)
HSR-INJ-PPD-MAG_SL_KICK : HSR Injector Pulsed power Stripline kicker (WBS 6.05.03.02)
- 6.02.03.11.01The kicker location shall be in the HSR IR4 straight section.02/09/2026In ProcessFALSE
- 6.02.03.11.01The kickers shall fit within the given slot width of TBD (m)02/09/2026In ProcessFALSE
- 6.02.03.11.01The kickers shall fit within the given slot length of 20 (m). (this includes the bellows length)02/09/2026In ProcessFALSE
- 6.02.03.11.01The kickers shall fit within the given slot heignt of TBD (m)02/09/2026In ProcessFALSE
- 6.02.03.11.01The number of kickers shall be 1602/09/2026In ProcessFALSE
- 6.02.03.11.01The kicker striplines shall maintain a minimum horizontal half aperture of TBD (cm)02/09/2026In ProcessFALSE
- 6.02.03.11.01The rise time shall be <9 (nS)02/09/2026In ProcessFALSE
- 6.02.03.11.01The fall time shall be less than <1 us02/09/2026In ProcessFALSE
- 6.02.03.11.01The flat top time shall be longer than 2x the transit time(~6nS) in addition to the pulse width(~25nS) through the kicker, so a flat top of longer than ~35nS is required.02/09/2026In ProcessFALSE
- 6.02.03.11.01The flat top repeatability shall be (+/-) 1 %02/09/2026In ProcessFALSE
- 6.02.03.11.01The uniformity of the flattop shall be (+/-) 1 %02/09/2026In ProcessFALSE
- 6.02.03.11.01The total deflecting angle for all kickers shall be 0.61 (mRad)02/09/2026In ProcessFALSE
- 6.02.03.11.01The burst mode rep rate spec shall be 2 pulses sepearted by 200mS every 5(S)02/09/2026In ProcessFALSE
- 6.02.03.11.01The maximum kicker voltage shall be +/-22000 (Volts), 44000V across both kickers.02/09/2026In ProcessFALSE
- 6.02.03.11.01The Kicker characteristic impedance shall 50(ohms)02/09/2026In ProcessFALSE
- 6.02.03.11.01The kicker shall be air cooled02/09/2026In ProcessFALSE
- 6.02.03.11.01The jitter of the rise time between the positive and negative voltage shall be less than 2(nS)02/09/2026In ProcessFALSE
HSR-INJ-PPD-PS_SL_KICK : HSR Injector Pulsed power Power Supply Stripline kicke (WBS 6.05.03.02)
HSR-INJ-PPD-PS_SLINE_KICK
- 6.02.03.11.01The number of Independent functions on the stripline kickers being powered shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.11.01The maximum strip line kicker string resistance to be powered shall be TBD ohm02/09/2026In ProcessFALSE
- 6.02.03.11.01The maximum strip line kicker string Inductance\Capitance to be powered shall be TBD (H\F)02/09/2026In ProcessFALSE
- 6.02.03.11.01The magnets being powered shall be saturated TBD Y/N02/09/2026In ProcessFALSE
- 6.02.03.11.01The voltage to ground of the strip line kicker being powered shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.11.01The nominal current of the magnets being powered shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.11.01The minmum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.11.01The maximum current the PS must operate at shall be TBD A02/09/2026In ProcessFALSE
- 6.02.03.11.01The PS current type DC or AC shall be TBD DC\AC02/09/2026In ProcessFALSE
- 6.02.03.11.01The PS AC waveshape required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.11.01The peak waveshape di/dt during ramping shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.11.01The full power bandwidth required shall be TBD02/09/2026In ProcessFALSE
- 6.02.03.11.01The ppm of full scale current (peak to peak) shall be TBD %02/09/2026In ProcessFALSE
- 6.02.03.11.01The time period for specified stability shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.11.01The short term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.11.01The long term stability shall be TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.11.01The current setpoint resolution (min size in bits) shall be TBD bits02/09/2026In ProcessFALSE
- 6.02.03.11.01The synchronization required between PS's shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.11.01The synchronization timing of synchronization shall be TBD s02/09/2026In ProcessFALSE
- 6.02.03.11.01The max allowable current ripple (peak to peak) TBD A02/09/2026In ProcessFALSE
- 6.02.03.11.01The max current ripple frequency range (Hz) TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.11.01WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz02/09/2026In ProcessFALSE
- 6.02.03.11.01The max voltage ripple (peak to peak) shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.11.01An NMR shall be required to measure the field TBD A/s02/09/2026In ProcessFALSE
- 6.02.03.11.01The voltage tap configuration shall be TBD -02/09/2026In ProcessFALSE
- 6.02.03.11.01The threshold levels shall be TBD V02/09/2026In ProcessFALSE
- 6.02.03.11.01The terminal voltage shall be TBD V02/09/2026In ProcessFALSE
HSR-INJ-VAC : HSR Hadron Ring Injection Vacuum System (WBS 6.05.03.04)
- 6.02.03.06.06The average vacuum level in the transfer line from the AGS to the HSR after conditioning (for 6mts) shall be <1x10-8 Torr02/09/2026ApprovedFALSE
- 6.02.03.06.06The vacuum stability (upper pressure limit excursions) shall be less than TBD.02/09/2026In ProcessFALSE
- HSR-INJ-VAC EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.03The vacuum level in the HSR transport line shall be kept at the same level as in the current RHIC-ATR line.02/09/2026ApprovedFALSE
- 6.02.03A ~20m section of the warm injection beamline near the HSR including the injection septum shall have a vacuum pressure of ~1E-10 torr or better, after baking .02/09/2026ApprovedFALSE
HSR-INJ-INST : HSR Hadron Ring Injection Instrumentation System (WBS 6.05.05.02)
- 6.02.03The HSR injection line shall have Beam instrumentation to monitor the following beam parameters: beam orbit, beam current, beam transverse sizes, beam loss rate.02/09/2026ApprovedFALSE
- 6.02.03Beam instrumentation shall be capable of providing operational data in the injection configuration for all the species and energies given in MPT. [Document: EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.02.03The new warm transfer line from the RHIC-ATR to the HSR shall re-use existing BPMs with the same requirements as the existing RHIC-ATR BPMs.02/09/2026ApprovedFALSE
- 6.02.03The new warm transfer line from the RHIC-ATR to the HSR shall use HSR BPM electronics for the Injection line BPMs.02/09/2026ApprovedFALSE
- 6.02.03The new warm transfer line from the RHIC-ATR to the HSR shall re-use the existing Phosphor screen beam profile monitors with the same requirements as existing in the RHIC-ATR Phosphor screen beam profile monitors.02/09/2026ApprovedFALSE
- 6.02.03The new warm transfer line from the RHIC-ATR to the HSR shall re-use the existing Current transformers with the same requirements as existing in the RHIC-ATR Current transformers.02/09/2026ApprovedFALSE
- 6.02.03The new warm transfer line from the RHIC-ATR to the HSR shall re-use the existing Beam loss monitors with the same requirements as existing in the RHIC-ATR Beam loss monitors.02/09/2026ApprovedFALSE
- 6.02.04.02The new warm transfer line from the RHIC-ATR to the HSR shall have strategically placed chipmunks for radiation control.02/09/2026ApprovedFALSE
HSR-INJ-INST-BC : HSR ATR Instrumentation Beam Charge Monitor (WBS 6.05.05.02)
- 6.02.03.05.07The HSR Injection beamline bunch charge monitors shall measure single bunches over the measurement range up to 44 (nC).02/09/2026ApprovedFALSE
- 6.02.03.05.07The HSR Injection beamline bunch charge monitors shall have a measurement resolution of at least 100 (pC).02/09/2026ApprovedFALSE
- 6.02.03.05.07The HSR Injection beamline bunch charge monitor shall be capable of charge measurements for bunch lengths between 40 to 150 (cm) (rms).02/09/2026ApprovedFALSE
- 6.02.03.05.07The HSR Injection beamline bunch charge monitor measurement shall vary less than +/- 0.1 (%) per mm of beam offset within half of the beamline aperture for charges greater than 5 (nC).02/09/2026ApprovedFALSE
- 6.02.03.05.07The HSR Injection beamline bunch charge monitor system measurement accuracy shall vary less than +/- 5 (%) shot to shot for bunches greater than 5 (nC).02/09/2026ApprovedFALSE
- 6.02.03.05.07The HSR Injection beamline bunch charge monitor sensor shall operate in ultra-high vacuum.02/09/2026ApprovedFALSE
- 6.02.03.05.07The HSR Injection beamline bunch charge monitor system shall have a remote controlled self calibration system.02/09/2026ApprovedFALSE
- 6.02.03.05.07The HSR Injection beamline bunch charge monitor calibration system shall be capable of providing pulses with a defined charge value that has greater than +/- 2 (%) accuracy.02/09/2026ApprovedFALSE
- 6.02.03.05.07The HSR Injection beamline bunch charge monitor shall provide bunch charge measurements at a rate less than 5 (Hz).02/09/2026ApprovedFALSE
- 6.02.03.05.07The HSR Injection beamline bunch charge monitor shall be a radiation hardened device.02/09/2026ApprovedFALSE
HSR-INJ-INST-BC-CM
- 6.05.05.02Instrumentation Group shall provide design details that defines the location limitations and the mechanical connection for the bunch charge monitor assembly and its associated subsystems.01/08/2026ReviewedFALSE
- 6.05.05.03The physics group shall indicate the location of the bunch charge monitor in the lattice designated by a marker that satisfies the instrumentation groups design limits01/08/2026ReviewedFALSE
- 6.05.05.02Vacuum group shall define the installation details for the mechanical connection for bunch charge monitor assembly and its associated subsystems.01/08/2026ReviewedFALSE
- 6.05.05.02ASR System Installation and Final Integration shall provide funding and scheduling to install bunch charge monitor by the appropriate technical support group and its subsystems which satisfies the vacuum group design.01/08/2026ReviewedFALSE
- 6.05.05.02Instrumentation Group shall provide radiation design limits for the bunch charge monitor assembly and its associated subsystems.01/08/2026ReviewedFALSE
- 6.05.05.02Physics Group shall provide the expected radiation dose in its installation location and if required the design of the radiation shielding for the bunch charge monitor and its associated subsystems to mitigate exposure.01/08/2026ReviewedFALSE
- 6.05.05.02Mechanical engineering group shall define the installation details of the required radiation shielding design for the bunch charge monitor assembly and its associated subsystems to mitigate exposure which satisfies the Physics Group design.01/08/2026ReviewedFALSE
- 6.05.05.02ASR System Installation and Final Integration shall provide funding and scheduling to install bunch charge monitor required radiation shielding design by the appropriate technical support group which satisfies the Vacuum Group design.01/08/2026ReviewedFALSE
- 6.05.05.02Instrumentation Group shall provide thermal design limits and required thermal regulation design for the bunch charge monitor and its associated subsystems exposure01/08/2026ReviewedFALSE
- 6.05.05.02Mechanical engineering group shall define the installation details for bunch charge monitor thermal regulation design.01/08/2026ReviewedFALSE
- 6.05.05.02ASR System Installation and Final Integration shall provide funding and scheduling to install bunch charge monitor thermal regulation design by the appropriate technical support group which satisfies the vacuum group design.01/08/2026ReviewedFALSE
- 6.05.05.02Instrumentation group shall provide design details that defines the signal cable connection for bunch charge monitor assembly and its associated subsystems.01/08/2026ReviewedFALSE
- 6.05.05.03ASR System Installation and Final Integration shall provide funding and scheduling to connect the bunch charge monitor required signal cable by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026ReviewedFALSE
- 6.05.05.02Reference related beam charge monitor electronics interface document for signal cable routing interface details inside of tunnel. (I-HSR-INJ-INST-BC-ELEC.XX)01/08/2026ReviewedFALSE
- 6.05.05.03Instrumentation Group shall provide thermal design parameters for the bunch charge monitor assembly and its associated subsystems exposure.01/08/2026ReviewedFALSE
- 6.05.05.03Vacuum group shall incorporate the defined thermal design limits for the bunch charge monitor assembly into its bakeout procedure for the HSR beamline which satisfies the Instrumentation Group design.01/08/2026ReviewedFALSE
- 6.05.05.02Vacuum group shall define the cleanliness and installation details for the mechanical connection of the bunch charge monitor to the beamline.01/08/2026ReviewedFALSE
- 6.05.05.02ASR System Installation and Final Integration shall provide funding and scheduling to insure cleanliness installation of the bunch charge monitor design by the appropriate technical support group which satisfies the vacuum group design.01/08/2026ReviewedFALSE
HSR-INJ-INST-BC-ELEC
- 6.05.05.02Instrumentation group shall provide design details that defines the building, rack layouts and power utilities for bunch charge monitor electronics and its associated subsystems.09/24/2025In ProcessFALSE
- 6.05.05.02Infrastructure group shall provide buildings, detailed drawings including rack layouts for the bunch charge monitor electronics and its subcomponents which satisfies the instrumentation group design.09/24/2025In ProcessFALSE
- 6.05.05.02Infrastructure group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the bunch charge monitor electronics and its subcomponents which satisfies the instrumentation group design.09/24/2025In ProcessFALSE
- 6.05.05.02Infrastructure group shall provide reliable air conditioning and humidity control in the bunch charge monitor electronic buildings which satisfies the instrumentation group design.09/24/2025In ProcessFALSE
- 6.05.05.02Instrumentation group shall provide the bunch charge monitor electronic rack and its subsystems design, including the spacial location, thermal and weight details.09/24/2025In ProcessFALSE
- 6.05.05.02Instrumentation group shall provide the plan and funding for the procurement of the racks to house bunch charge monitor electronics and its sub components which satisfies the design.09/24/2025In ProcessFALSE
- 6.05.05.02Accelerator installation group shall provide funding and scheduling to move and install bunch charge monitor electronic racks by the appropriate technical support group and its subsystems which satisfies the instrumentation group design.09/24/2025In ProcessFALSE
- 6.05.05.02Accelerator installation group shall provide funding and scheduling for the installation of bunch charge monitor electronics into the racks by the appropriate technical support group which satisfies the instrumentation group design.09/24/2025In ProcessFALSE
- 6.05.05.02Instrumentation group shall provide the design and funding for the procurement of the ac cable distribution from the wall mount distribution to each bunch charge monitor electronic rack.09/24/2025In ProcessFALSE
- 6.05.05.02Infustructure group shall provide design and funding for ac cable tray to contain the ac cable distribution from the wall mount distribution to each bunch charge monitor electronic rack.09/24/2025In ProcessFALSE
- 6.05.05.02Accelerator support group shall provide funding and scheduling for the installation of ac cable and ac cable tray from the wall mount distribution to each bunch charge monitor electronic rack by the appropriate technical support group which satisfies the instrumentation group design.09/24/2025In ProcessFALSE
- 6.05.05.02Instrumentation group shall provide the design details defining the signal cable routing from the bunch charge monitor electronic and its associated subsystems into the tunnels.09/24/2025In ProcessFALSE
- 6.05.05.02Infrastructure group shall provide tunnel penetrations for signal cables which satisfies the instrumentation group design.09/24/2025In ProcessFALSE
- 6.05.05.02Reference related bunch charge monitor interface document for signal cable termination iterface details inside of tunnel. (i-hsr-inst-bpm-pu.xx)09/24/2025In ProcessFALSE
- 6.05.05.02Machine protection system (mps) group shall define the design details including input connections and data required to monitor bunch charge monitor electronic status.09/24/2025In ProcessFALSE
- 6.05.05.02Instrumentation group shall provide output from the mps interface the data which satisfies mps design.09/24/2025In ProcessFALSE
- 6.05.05.02Reference related controls interface document for controls interface signal details. (i-hsr-cntrl-xxx.xx)09/24/2025In ProcessFALSE
HSR-INJ-INST-BLM : HSR ATR Instrumentation Beam Loss Monitors (WBS 6.05.05.02)
- 6.02.03.05.07The ATR BLM's shall be the same as the RHIC type BLM's or an equavilent model having at least the same functionality tbd02/09/2026On HoldFALSE
- 6.02.03.05.07The ATR shall have BLM's at the following locations tbd02/09/2026On HoldFALSE
HSR-INJ-INST-BPM : HSR ATR Instrumentation Beam Position Monitor (WBS 6.05.05.02)
- 6.02.03.05.07The ATR BPM's shal have a (single pass) position measurement resolution of 100 µm02/09/2026On HoldFALSE
- 6.02.03.05.07The existing RHIC stripline BPMs in the blue arc cryostat between sector 6 to 4 shall be re-used, but new modern electronics shall be added.02/09/2026On HoldFALSE
- 6.02.03.05.07The following locations on the ATR transfer line shall have BPM tbd02/09/2026On HoldFALSE
- 6.02.03.05.07The beam pipe aperture for the warm HT BPMs shall be 5 cm02/09/2026On HoldFALSE
HSR-INJ-INST-PM : HSR ATR Instrumentation Profile Monitor (WBS 6.05.05.02)
- 6.02.03.05.07The ATR PM's posphour screens shall have a Transverse optical resolution of 100 µm02/09/2026On HoldFALSE
- 6.02.03.05.07The ATR shall have Transverse PM Posphour screens in the following locations tbd02/09/2026On HoldFALSE
- 6.02.03.05.07The beam pipe aperture for the warm HT transverse profile monitors shall be 5 cm02/09/2026On HoldFALSE
HSR-INJ-CONT : HSR Hadron Ring Injection Controls System (WBS 6.07.02)
- 6.02.04.02The ATR Bunch Timing, synchronization tolerance between AGS & HSR shall be 5 ns02/09/2026In ProcessFALSE
- 6.02.04.02The Capability of producing arbitrary spin pattern for each bunch in HSR shall be maintained.02/09/2026In ProcessFALSE
- 6.02.04.02The injection application can request the source to provide any spin pattern as required up to 290 bunches.02/09/2026In ProcessFALSE
HSR-INJ-CNTRL
- 6.02.04.02The HSR Injection system shall utilize the global EIC control system.02/09/2026ApprovedFALSE
HSR-INJ-DUMP
HSR-INJ-MPS
HSR-INJ-MPS-ABORT
- 6.02.03The HSR Injection line shall have a temporary beam dump for commissioning with the same requirements as the existing W-line beam dump.02/09/2026ApprovedFALSE
- 6.02.03The HSR Injection line shall have strategically placed beam dump for machine protection, commissioning and diagnostics as required.02/09/2026ApprovedFALSE
HSR-INJ-PP : Pulsed Power
- HSR-INJ-PP EXTERNALSRequirements who's parents are in other sub-systems.
- 6.02.03The HSR injection kickers shall provide a half aperture greater than 10σ for the stored beam at Collison energies.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection kickers shall provide a half aperture greater than 7σ for the stored beam at injection energies.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection kickers shall provide a half aperture greater than 6σ for the injected beam.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection kicker system shall be able to deflect the injected beam to be on axis02/09/2026ApprovedFALSE
- 6.02.03The HSR injection kicker system shall be installed in the straight section of the IR4 area.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection kicker system shall be capable of single-bunch on-axis injection to fill the ring with 290 bunches.02/09/2026ApprovedFALSE
- 6.02.03The HSR injection kicker system rise time shall be short enough so that it does not step on the previous bunch.02/09/2026ApprovedFALSE
- 6.02.03The present RHIC injection kicker system including the Lambertson magnet and current injection kicker magnets at the 5 o’clock area shall be removed.02/09/2026ApprovedFALSE
HSR-INST : HSR Instrumentation System (WBS 6.05.05)
- 6.02.03Beam instrumentation shall be capable of providing operational data at the highest average current configuration defined in the MPT. Refer to [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03Beam instrumentation shall be capable of providing operational data at the highest peak current configuration defined in the MPT. Refer to [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03Beam instrumentation shall be capable of providing operational data required in the beam acceleration and ramp configuration for all bunches specified in the MPT. Refer to [EIC- SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03The 41 GeV operation mode, which utilizes a different arc in the 12-2 sextant, shall have the same capability of beam diagnostics as the high energy operation modes defined in the MPT. Refer to [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
HSR-INST-BPM : HSR Instrumentation Beam Position Monitor System (WBS 6.05.05.01)
- 6.02.03BPMS shall be strategically placed in the HSR to monitor the horizontal and vertical beam position with sufficient precision.02/09/2026ApprovedFALSE
HSR-INST-BPM-CRYO_CABLES : HSR Instrumentation Cryogenic Cables (WBS 6.05.05.01)
- 6.02.03.05.01.03The new cryogenic BPM cables shall connect new button BPMs (at 4.2K) with cryostat cryo-to-air feedthroughs (at ambient temperature).02/09/2026ApprovedFALSE
- 6.02.03.05.01.03The cryogenic BPM cables shall be capable of working in the environment defined by cryostat insulating vacuum.02/09/2026ApprovedFALSE
- 6.02.03.05.01.03The cryogenic BPM cables shall be capable to withstand cryostat thermocycles without affecting integrity of connections.02/09/2026ApprovedFALSE
- 6.02.03.05.01.03The cryogenic BPM cables shall be flexible enough to be bent in the required form and pass through cryostat heat shield openings.02/09/2026ApprovedFALSE
- 6.02.03.05.01.03The cryogenic BPM cables for the same BPM assembly shall have a matched length, to provide equivalent transport of electric signals from BPM buttons +/- 5 mm.02/09/2026ApprovedFALSE
HSR-INST-BPM-ELEC : HSR Instrumentation Beam Position Monitoring Electronics (WBS 6.05.05.01)
- 6.02.03.05.01.01The HSR BPM Electronics shall have the following capabilitys defined for the low intensity pilot injection energies, the ramp intensity energies and high intensity collision energies as defined in the Master Paramater :02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The HSR BPM Electronics shall provide a measurement of a single bunch when there is a single bunch in the machine, else bunch-by-bunch measurements are not required.02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The HSR BPM Electronics shall provide one position measurement per turn which includes all bunches combined will be the narrowest (turn-by-turn) mode of sampling.02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The HSR BPM Electronics associated with the hadron BPM pickup installed between B0pF and B0ApF shall have the necessary bandwidth and characteristics to provide measurements for the hadron crabbing angle of 12.5 (mrad).02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The HSR BPM Electronics in the HSR arcs (defined in this case as from Q5 to Q5) need to be able to provide measurements during the store with an considerably shifted beam radial orbit. The BPMs here shall be able to measure a maximum radial orbit shift range of +\- 21 mm02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The HSR BPM Electronics shall have the following time resolutions for data refresh defined for the beam energies:02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The HSR BPM Electronics shall be capable of delivering an array of status 16 Bits, defining for each measurment. (Review SD file)02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The HSR BPM Electronics shall be capable of delivering an array of at least 1024 consecutive single-turn position measurements at a continuous rate of 1 Hz at the first injected bunch.02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The HSR BPM Electronics shall be capable of delivering an array of at least 1 million consecutive single-turn position measurements at the first injected bunch.02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The HSR BPM Electronics shall be capable of delivering average beam orbit measurements at a continuous rate of 1 Hz.02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The HSR BPM Electronics shall be capable of delivering bunch-by-bunch beam orbit measurements of a single turn at a continuous rate of TBD Hz.02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The HSR BPM Electronics shall be capable of delivering the sum signal at rate of 1 Hz.02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The HSR BPM Electronics shall be capable of retrieving an array of at least 2048 single-turn position measurements prior to an ABORT.02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The HSR BPM Electronics shall be capable of delivering an ADC sample measurements of a minimal of 4 turns at a rate of least 1 Hz.02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The HSR BPM Electronics shall be capable of delivering fast orbit feedback measurements at a continuous rate of 10 kHz.02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The HSR BPM Electronics shall have the following measurement resolutions defined for the Injection beam energies:02/09/2026ReviewedFALSE
- 6.02.03.05.01.01For 5 nC bunches at injection parameters, the BPM Electronics resolution when measuring one turn orbit shall not be larger than 2 mm RMS.02/09/2026ReviewedFALSE
- 6.02.03.05.01.01For a 44 nC bunch at injection parameters, the BPM Electronics resolution when measuring one turn orbit shall not be larger than 0.2 mm RMS.02/09/2026ReviewedFALSE
- 6.02.03.05.01.01For 5 nC bunches at injection parameters, the BPM Electronics resolution when measuring the averaged orbit over a 1 second period shall not be larger than 200 µm RMS.02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The maximum allowable BPM Electronics measurement drift due to thermal variations (0.5hrs) shall be < 100 µm02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The HSR BPM Electronics shall have the following measurement resolutions defined for the Ramping beam energies:02/09/2026ReviewedFALSE
- 6.02.03.05.01.01For 44 nC bunch at acceleration ramp parameters, the BPM Electronics resolution when measuring the averaged orbit over a 1 second period shall not be larger than 20 µm RMS.02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The maximum allowable BPM Electronics measurement drift due to thermal variations (0.5hrs) shall be < 100 µm02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The HSR BPM Electronics shall have the following measurement resolutions defined for the collision beam energies:02/09/2026ReviewedFALSE
- 6.02.03.05.01.01For bunch charge of 5 nC and above, during spliting and bunch compression at collision energies, the BPM Electronics resolution when measuring the average orbit over a 1 second period shall not be larger than 100 µm RMS02/09/2026ReviewedFALSE
- 6.02.03.05.01.01For bunch charge of 5 nC and above, post spliting and bunch compression at collision energies, the BPM Electronics resolution when measuring the average orbit over a 1 second period shall not be larger than 20µm RMS02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The maximum allowable BPM Electronics measurement drift due to thermal variations (0.5hrs) shall be < 100 µm02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The HSR BPM Electronics shall have the following measurement resolutions defined for the fast feedback energies:02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The maximum allowable BPM Electronics measurement drift due to thermal variations (0.5hrs) shall be < 100 µm02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The HSR BPM Electronics shall have the following measurement resolutions defined for the slow feedback energies:02/09/2026ReviewedFALSE
- 6.02.03.05.01.01The maximum allowable BPM Electronics measurement drift due to thermal variations (0.5hrs) shall be < 100 µm02/09/2026ReviewedFALSE
- 6.04.06.01Instrumentation Group shall provide design details that defines the building, rack layouts and power and LCW utilities for beam position monitor electronics and its associated subsystems.01/08/2026In ProcessFALSE
- 6.04.06.01Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the beam position monitor electronics and its subcomponents which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.01Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the beam position monitor electronics and its subcomponents which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.01Infrastructure Group shall provide funding and scheduling for the installation of the LCW utilities for distribution to the beam position monitor electronics and its subcomponents which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.01Infrastructure Group shall provide indoor environmental control for the beam position monitor electronic buildings which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.01Instrumentation Group shall provide the beam position monitor electronic rack and its subsystems design, including the Spacial location, thermal and weight details.01/08/2026In ProcessFALSE
- 6.04.06.01Instrumentation Group shall provide the plan and funding for the procurement of the racks to house beam position monitor electronics and its sub components which satisfies the design.01/08/2026In ProcessFALSE
- 6.04.06.01ASR System Installation and Final Integration shall provide funding and scheduling to move and install beam position monitor electronic racks by the appropriate technical support group and its subsystems which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.01ASR System Installation and Final Integration shall provide funding and scheduling for the installation of beam position monitor electronics into the racks by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.01Instrumentation Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each beam position monitor electronic rack.01/08/2026In ProcessFALSE
- 6.04.06.01ASR System Installation and Final Integration shall provide funding and scheduling for the design and AC cable tray to contain the AC cable distribution from the wall mount distribution to each beam position monitor electronic rack.01/08/2026In ProcessFALSE
- 6.04.06.01ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each beam position monitor electronic rack by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.01Instrumentation Group shall provide the design for water flow, pressure, supply temperature, water resistivity and heat load into water.01/08/2026In ProcessFALSE
- 6.04.06.01Infrastructure Group shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.01ASR System Installation and Final Integration shall provide funding and scheduling for the LCW piping design and procurement of materials from the wall distribution to connections to the beam position monitor electronic cooling loops which satisfies the Instrumentation Group design, including waterflow switches and one contact per switch.01/08/2026In ProcessFALSE
- 6.04.06.01ASR System Installation and Final Integration shall provide funding and scheduling for the installation of LCW piping from the wall mount distribution to each beam position monitor electronic DC Buss by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.01Instrumentation Group shall provide the design and funding for procurement for each beam position monitor electronic UPS, including AC cable distribution from the wall mount distribution to each beam position monitor electronic rack.01/08/2026In ProcessFALSE
- 6.04.06.01ASR System Installation and Final Integration shall provide funding and scheduling for the installation of UPS and AC cable distribution cabling by the appropriate technical support group which satisfies the Instrumentation Group design into each beam position monitor electronic rack.01/08/2026In ProcessFALSE
- 6.04.06.01Instrumentation Group shall provide the design details defining the signal cable routing from the beam position monitor electronic and its associated subsystems into the tunnels.01/08/2026In ProcessFALSE
- 6.04.06.01Infrastructure group shall provide tunnel penetrations for signal cables which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.01Reference related beam position monitor interface document for signal cable termination interface details inside of tunnel. (I-HSR-INST-BPM-PU.XX)01/08/2026In ProcessFALSE
- 6.04.06.01Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor beam position monitor electronic status.01/08/2026In ProcessFALSE
- 6.04.06.01Instrumentation Group shall provide output from the MPS interface the data which satisfies MPS design.01/08/2026In ProcessFALSE
- 6.04.06.01Reference related controls interface document for Controls interface signal details. (I-HSR-CNTRL-XXX.XX)01/08/2026In ProcessFALSE
HSR-INST-BPM-PU : Instrumentation Pickups
- 6.02.03.05.01.02The HSR Beam Position Monitor Pick-Up shall provide dual plane (horizontal and vertical) beam postional measurements.02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR Beam Position Monitor (BPM) Pick-Up (PU) shall be positioned in the following locations:02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR cryogenic Beam Position Monitor (BPM) pick-ups shall be placed in locations as close as possible to the existing RHIC stripline BPM in the straight sections approved by physics.02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR Warm Beam Position Monitor (BPM) Pick-up (PU) shall be placed in the following locations approved by physics:02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR Warm BPM PU shall be added on both sides of the triplets to replace the RHIC Q1 and Q3 BPM.02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR Warm BPM PU shall be added in IR4 injection area for adequate measurement of both injected and circulating beam.02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR Warm BPM PU shall be added in IR2 cooling section for reliable alignment of hadron and electron beam.02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR snake & spinrotator beam position monitor pick-up shall be placed in the helical magnets cyrostat with locations approved by physics.02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR Interaction Region (IR) BPM PU shall be placed in the following locations approved by physics:02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR IR BPM PU shall in available locations as close as possible to the existing RHIC stripline BPM inside RHIC cryostats which are being reused02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR IR BPM PU shall sighted on either side of IP6 where there is a different (nontraditional) beam pipe aperture.02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR IR BPM PU shall be installed between B0pF and B0ApF with the dedicated purpose of measuring the hadron crabbing angle of 12.5 (mrad).02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR Beam Position Monitor (BPM) Pick-Up (PU) mechanical center in the locations identified shall be:02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR cryogenic Beam Position Monitor (BPM) Pick-up (PU) mechanical center in the locations identified shall be:02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR cryogenic BPM PU mechanical center horizontal position alignment with respect to the quadrupole magnetic center shall be known to a certainty within +/- 0.6 (mm).02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR cryogenic BPM PU mechanical center horizontal position alignment with respect to the quadrupole magnetic center shall have an absolute misalignment within +/- 0.6 (mm).02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR cryogenic BPM PU mechanical center vertical position alignment with respect to the quadrupole magnetic center shall be known to a certainty within +/- 0.3 (mm).02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR cryogenic BPM PU mechanical center vertical position alignment with respect to the quadrupole magnetic center shall have an absolute misalignment within +/- 0.3 (mm).02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR warm Beam Position Monitor (BPM) Pick-up (PU) mechanical center in the locations identified shall be:02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR warm BPM PU mechanical center horizontal and vertical position alignment with respect to the quadrupole magnetic center shall be known to a certainty within +/- 0.1 (mm).02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR warm BPM PU mechanical center horizontal and vertical position alignment with respect to the quadrupole magnetic center shall have an absolute misalignment within +/- 2.0 (mm).02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR snake & spinrotator beam position monitor pick-up mechanical center shall be aligned relative to the magnetic centers of nearby helical magnets within at least 0.5 (mm).02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR Interaction Region (IR) Beam Position Monitor (BPM) Pick-up (PU) mechanical center in the locations identified shall be:02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR IR BPM PU mechanical center horizontal position alignment with respect to the quadrupole magnetic center shall be known to a certainty within +/- TBD (mm).02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR IR BPM PU mechanical center horizontal position alignment with respect to the quadrupole magnetic center shall have an absolute misalignment within +/- TBD (mm).02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR IR BPM PU mechanical center vertical position alignment with respect to the quadrupole magnetic center shall be known to a certainty within +/- TBD (mm).02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR IR BPM PU mechanical center vertical position alignment with respect to the quadrupole magnetic center shall have an absolute misalignment within +/- TBD (mm).02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR Beam Position Monitor Pick-Up housings shall have a +/- 1 degree roll tolerance with regards to BPM measurements.02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR Beam Position Monitor Pick-Up design shall be less than or equal to the allocated impedance and is within the accepted overall HSR impedance budget approved by physics.02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR Beam Position Monitor Pick-Up shall have the geometrical aperture defined by vacuum group and approved by physics.02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR Beam Position Monitor (BPM) Pick-Up (PU) shall have the following dynamic resolution offsets defined for the beam energies as defined in the Master Parameter Table: [EIC Document: EIC-SEG-RSI-005]02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR warm beam position monitor pick-up shall have the dynamic resolution offsets over the horizontal and vertical beam position range with respect to magnetic element center of +/- 5 (mm).02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR snake & spin rotator Beam Position Monitor (BPM) Pick-Up (PU) shall have the following dynamic resolution offsets defined for the beam energies:02/09/2026ReviewedFALSE
- 6.02.03.05.01.02At injection energies, the snake & spin rotator BPM PU shall fulfill resolution requirements over the vertical beam position range with respect to magnetic element center of +/- 30 (mm).02/09/2026ReviewedFALSE
- 6.02.03.05.01.02At collision energies, the snake & spin rotator BPM PU shall fulfill resolution requirements over the horizontal beam position range of +/- 15 (mm) and vertical beam position range of +/- 10 (mm) with respect to magnetic element center.02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR interaction region beam position monitor pick-up shall have the dynamic resolution offsets over horizontal beam position range of +/- 21 (mm) and vertical beam of +/- 10 (mm) position range with respect to magnetic element center.02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR Beam Position Monitor Pick-Up shall compatibly interface with the new coated sleeves that are being added to the HSR vacuum pipe.02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR cryogenic beam position monitor pick-up shall be able to operate at cold temperatures [~4.2 (K)] with a heat load less than the budgeted heat load defined by cryogenic group and approved by physics.02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR beam position monitor pick-up shall be designed to be processed by the vacuum bakeout procedure for UHV processing. (EIC Doc#: EIC-VSG-SPC-023)02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR Beam Position Monitor Pick-Ups shall be designed to ensure the maximum temperatures of the components (due to heating by the beam) are acceptable for reliability and operations of the EIC over the planned operational life of 20 (yrs).02/09/2026In ProcessFALSE
- 6.02.03.05.01.02The HSR Beam Position Monitor Pick-Up shall be designed to operate reliability with capability to withstand a lifetime radiation dose of TBD (Mgy).02/09/2026ReviewedFALSE
- 6.02.03.05.01.02The HSR Beam Position Monitor (BPM) Pick-Up (PU) shall have the following button configuration symmetry.02/09/2026In ProcessFALSE
- 6.02.03.05.01.02The HSR cyrogenic Beam Position Monitor (BPM) pick-up configuration will be mirror symmetric with respect to the mid-and center planes. Deviation from symmetry shall be such that corresponding BPM reading errors are less then 200 microns.02/09/2026In ProcessFALSE
- 6.02.03.05.01.02The HSR warm Beam Position Monitor (BPM) pick-up button configuration will be mirror symmetric with respect to the mid-and center planes. Deviation from symmetry shall be such that corresponding BPM reading errors are less then 100 microns.02/09/2026In ProcessFALSE
- 6.02.03.05.01.02The HSR snake and spinrotator Beam Position Monitor (BPM) pick-up configuration will be mirror symmetric with respect to the mid-and center planes. Deviation from symmetry shall be such that corresponding BPM reading errors are less then 200 microns.02/09/2026In ProcessFALSE
- 6.02.03.05.01.02The HSR interaction region Beam Position Monitor (BPM) pick-up configuration will be mirror symmetric with respect to the mid-and center planes. Deviation from symmetry shall be such that corresponding BPM reading errors are less then 200 microns.02/09/2026In ProcessFALSE
- 6.04.06.01Instrumentation Group shall provide design details that defines the mechanical connection for beam position monitor button to the beam position monitor pick-up assembly.01/08/2026ReviewedFALSE
- 6.04.06.01Instrumentation Group shall provide thermal design limits for the beam position monitor pick-up assembly deformation due to thermal exposure.01/08/2026ReviewedFALSE
- 6.04.06.01Mechanical engineering group shall define the design details for beam position monitor pickup assembly to satisfy the instrumentation thermal regulation design.01/08/2026ReviewedFALSE
- 6.04.06.01Vacuum group shall provide provisions to incorporate the beam position monitor pick-up assembly which satisfies the instrumentation and mechanical Group design into the beamline.01/08/2026ReviewedFALSE
- 6.04.06.01Instrumentation Group shall provide the BPM buttons to be installed onto the beam position monitor pick-up assembly01/08/2026ReviewedFALSE
- 6.04.06.01The physics group shall indicate the location of the beam position monitor pick-up assembly in the lattice designated by a marker.01/08/2026ReviewedFALSE
- 6.04.06.01Vacuum group shall define the installation details for the mechanical connection of beam position monitor pick-up assembly to the beamline.01/08/2026ReviewedFALSE
- 6.04.06.01Vacuum group shall install the beam position monitor pick-up assembly into the vacuum chamber assembly.01/08/2026ReviewedFALSE
- 6.04.06.01Physics Group shall provide the expected radiation dose in its installation location and if required the physics design of the radiation shielding for the beam position monitor pick-up assembly and its associated subsystems to mitigate exposure.01/08/2026ReviewedFALSE
- 6.04.06.01Instrumentation Group shall provide radiation design limits for the beam position monitor and cable radiation hardness and/or shielding required to mitigate damage from the expected radiation dose.01/08/2026ReviewedFALSE
- 6.04.06.01Instrumentation Group shall provide design details that defines the signal cable connection for beam position monitor pick-up assembly and its associated subsystems.01/08/2026ReviewedFALSE
- 6.04.06.01ASR System Installation and Final Integration shall provide funding and scheduling to connect the beam position monitor required signal cable by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026ReviewedFALSE
- 6.04.06.01Reference related beam position monitor electronics interface document for signal cable routing and installation interface details inside of tunnel. (I-HSR-INST-BPM-ELEC.XX)01/08/2026ReviewedFALSE
- 6.04.06.01Instrumentation Group shall provide thermal design details for beam position monitor buttons installed into the beam position monitor pick-up assembly.01/08/2026ReviewedFALSE
- 6.04.06.01Vacuum group shall incorporate the defined thermal design limits for the beam position monitor pick-up assembly into its bakeout procedure for the HSR beamline which satisfies the Instrumentation Group design.01/08/2026ReviewedFALSE
- 6.04.06.01Vacuum group shall define the cleanliness and installation details for the mechanical connection of the beam position monitor pick-up assembly to the beamline.01/08/2026ReviewedFALSE
- 6.04.06.01Instrumentation Group shall provide funding to insure cleanliness installation of the beam position monitor pick-up design by the appropriate technical support group which satisfies the Vacuum Group design.01/08/2026ReviewedFALSE
HSR-INST-BBLM : HSR Instrumentation Bunch-by-Bunch Loss Monitors (WBS 6.05.05.03)
- 6.02.03.05.02The BBLM monitors shall have a response time better than 10 ns02/09/2026In ProcessFALSE
- 6.02.03.05.02The BBLM shall be present at the primary collimators and at the injection region.02/09/2026In ProcessFALSE
HSR-INST-BBTM : HSR Instrumentation Base-band Tune Meter System (WBS 6.05.05.03)
- 6.02.03.05.04Tune measurement resolution of the BBTM shall be tbd02/09/2026In ProcessFALSE
- 6.02.03.05.04Location of BBTM shall be in sector 202/09/2026In ProcessFALSE
- 6.02.03.05.04Impedance requirements of BBTM shall be approved by Beam Physics tbd02/09/2026In ProcessFALSE
- 6.02.03.05.02The BBTM shall be mounted on an X-Y translation stage, having the same capability as the RHIC unit or better02/09/2026In ProcessFALSE
HSR-INST-BLM : HSR Instrumentation Beam Loss Monitors (WBS 6.05.05.03)
- 6.02.03Requirements for BLM monitors The BLM electronics will be upgraded Refer to [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03.05.02HSR BLMs shall be placed in the following locations tbd02/09/2026In ProcessFALSE
- 6.02.03.05.02The BLM for the MPS shall have the same capabilities as the existing RHIC BLM's02/09/2026In ProcessFALSE
- 6.02.03.05.02The BLMS shall be compatible with Beam loss detection to abort time of tbd02/09/2026In ProcessFALSE
- 6.02.03.05.02The BLM shall be capable of detecting slow quench detection limit shall be 8 mW/g02/09/2026In ProcessFALSE
- 6.02.03.05.02The BLM shall be capable of detecting fast quench detection limit shall be 2 mJ/g02/09/2026In ProcessFALSE
- 6.02.03.05.02The BLM shall be capable of detecting the slow energy losses present during injection energy of 0.25 rad/s02/09/2026In ProcessFALSE
- 6.02.03.05.02The BLM shall be capable of detecting the uniform energy loss per turn, at injection of 78.3 krad/s02/09/2026In ProcessFALSE
HSR-INST-DCCT : HSR Instrumentation Current and Charge Monitor (WBS 6.05.05.03)
- 6.02.03The DCCT shall be capable of operating in four main EIC parameter configurations (highest average current, highest peak current, ramp configuration and injection configuration) in the HSR. Refer to the MPT [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03.05.02The HSR DC Current Transformer shall measure the average beam current over the range of 0.390 (mA) to 1000 (mA).02/09/2026ApprovedFALSE
- 6.02.03.05.02The HSR DC Current Transformer shall provide an average current measurement with a resolution of less than 5 (uA /√Hz).02/09/2026ApprovedFALSE
- 6.02.03.05.02The HSR DC Current Transformer measurement drift tolerance shall be less than 10 (uA) over 1 (hr).02/09/2026ApprovedFALSE
- 6.02.03.05.02The HSR DC Current Transformer system average beam current measurement shall have an absolute accuracy of better than +/- 2 (%).02/09/2026ApprovedFALSE
- 6.02.03.05.02The HSR DC Current Transformer system shall operate in ultra-high vacuum.02/09/2026ApprovedFALSE
- 6.02.03.05.02The impedance of HSR DC Current Transformer sensor shall be approved by beam physics.02/09/2026ApprovedFALSE
- 6.02.03.05.02The HSR DC Current Transformer system shall have a remote controlled calibration system.02/09/2026ApprovedFALSE
- 6.02.03.05.02The HSR DC Current Transformer Calibration system shall be capable of providing an equivalent DC current within +/- 1 (%) over the beam current range of 0.390 (mA) to 1000 (mA).02/09/2026ApprovedFALSE
- 6.02.03.05.02The HSR DC Current Transformer digitizer rate shall be 720 (Hz) and stored in an array of 1 (s) duration for post mortum use.02/09/2026ApprovedFALSE
- 6.02.03.05.02The HSR DC Current Transformer measured average current shall be archived at a rate of 1 (Hz).02/09/2026ApprovedFALSE
- 6.02.03.05.02The HSR DC Current Transformer shall be a radiation hardened device.02/09/2026ApprovedFALSE
HSR-INST-DCCT-CM
- 6.05.05.03Instrumentation Group shall provide design details that defines the location limitations and the mechanical connection for the DC current transformer assembly and its associated subsystems.01/08/2026ReviewedFALSE
- 6.05.05.03The physics group shall indicate the location of the DC current transformer in the lattice designated by a marker that satisfies the instrumentation groups design limits01/08/2026ReviewedFALSE
- 6.05.05.03Vacuum group shall define the installation details for the mechanical connection for DC current transformer assembly and its associated subsystems to the vacuum beamline.01/08/2026ReviewedFALSE
- 6.05.05.03ASR System Installation and Final Integration shall provide funding and scheduling to install DC current transformer by the appropriate technical support group and its subsystems which satisfies the Instrumentation Group design.01/08/2026ReviewedFALSE
- 6.05.05.03Instrumentation Group shall provide radiation design limits for the DC current transformer assembly and its associated subsystems.01/08/2026ReviewedFALSE
- 6.05.05.03Physics Group shall provide the expected radiation dose in its installation location and if required the design of the radiation shielding for the DC Current Transformer and its associated subsystems to mitigate exposure.01/08/2026ReviewedFALSE
- 6.05.05.03Mechanical Engineering group shall define the installation details of the required radiation shielding design for the DC current transformer assembly and its associated subsystems to mitigate exposure which satisfies the Physics Group design.01/08/2026ReviewedFALSE
- 6.05.05.03ASR System Installation and Final Integration shall provide funding and scheduling to install DC current transformer required radiation shielding design by the appropriate technical support group which satisfies the Vacuum Group design.01/08/2026ReviewedFALSE
- 6.05.05.03Instrumentation Group shall provide thermal design limits and required thermal regulation design for the DC current transformer assembly and its associated subsystems exposure.01/08/2026ReviewedFALSE
- 6.05.05.03Mechanical engineering group shall define the installation details for DC current transformer thermal regulation design.01/08/2026ReviewedFALSE
- 6.05.05.03ASR System Installation and Final Integration shall provide funding and scheduling to install DC current transformer thermal regulation design by the appropriate technical support group which satisfies the mechanical group design.01/08/2026ReviewedFALSE
- 6.05.05.03Instrumentation Group shall provide the design for water flow, pressure, supply temperature and heat load into water.01/08/2026ReviewedFALSE
- 6.05.05.03Infrastructure mechanical cooling shall provide water flow, pressure, supply temperature, water resistivity and heat load removal which satisfies the Instrumentation Group design.01/08/2026ReviewedFALSE
- 6.05.05.03Infrastructure mechanical cooling shall provide the piping design and procurement of materials from the cooling water distribution to connections to the DC current transformer cooling loops which satisfies the Instrumentation Group design.01/08/2026ReviewedFALSE
- 6.05.05.03ASR System Installation and Final Integration shall provide funding and scheduling for the installation of piping from the cooling water distribution to each DC current transformer cooling loops by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026ReviewedFALSE
- 6.05.05.03Instrumentation Group shall provide design details that defines the signal cable connection for DC current transformer assembly and its associated subsystems.01/08/2026ReviewedFALSE
- 6.05.05.03ASR System Installation and Final Integration shall provide funding and scheduling to connect the DC current transformer required signal cable by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026ReviewedFALSE
- 6.05.05.03Reference related DC current transformer electronics interface document for signal cable routing interface details inside of tunnel. (I-HSR-INST-DCCT-ELEC.XX)01/08/2026ReviewedFALSE
- 6.05.05.03Vacuum group shall define the cleanliness and installation details for the mechanical connection of the DC current transformer to the beamline.01/08/2026ReviewedFALSE
- 6.05.05.03ASR System Installation and Final Integration shall provide funding and scheduling to insure cleanliness installation of the DC current transformer design by the appropriate technical support group which satisfies the Vacuum Group design.01/08/2026ReviewedFALSE
HSR-INST-DCCT-ELEC
- 6.04.06.02Instrumentation Group shall provide design details that defines the building, rack layouts and power utilities for DC current transformer electronics and its associated subsystems.01/08/2026In ProcessFALSE
- 6.04.06.02Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the DC current transformer electronics and its subcomponents which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.02Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the DC current transformer electronics and its subcomponents which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.02Infrastructure Group shall provide reliable air conditioning and humidity control in the DC current transformer electronic buildings which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.02Instrumentation Group shall provide the DC current transformer electronic rack and its subsystems design, including the Spacial location, thermal and weight details.01/08/2026In ProcessFALSE
- 6.04.06.02Instrumentation Group shall provide the plan and funding for the procurement of the racks to house DC current transformer electronics and its sub components which satisfies the design.01/08/2026In ProcessFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling to move and install DC current transformer electronic racks by the appropriate technical support group and its subsystems which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling for the installation of DC current transformer electronics into the racks by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.02Instrumentation Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each DC current transformer electronic rack.01/08/2026In ProcessFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling for the design and AC cable tray to contain the AC cable distribution from the wall mount distribution to each DC current transformer electronic rack.01/08/2026In ProcessFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each DC current transformer electronic rack by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.02Instrumentation Group shall provide the design details defining the signal cable routing from the DC current transformer electronic and its associated subsystems into the tunnels.01/08/2026In ProcessFALSE
- 6.04.06.02Infrastructure group shall provide tunnel penetrations for signal cables which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.02Reference related DC current transformer interface document for signal cable termination interface details inside of tunnel. (I-HSR-INST-BPM-PU.XX)01/08/2026In ProcessFALSE
- 6.04.06.02Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor DC current transformer electronic status.01/08/2026In ProcessFALSE
- 6.04.06.02Instrumentation Group shall provide output from the MPS interface the data which satisfies MPS design.01/08/2026In ProcessFALSE
- 6.04.06.02Reference related controls interface document for Controls interface signal details. (I-HSR-CNTRL-XXX.XX)01/08/2026In ProcessFALSE
HSR-INST-FBSYS : HSR Instrumentation Global Orbit Feedback System (WBS 6.05.05.03)
- 6.02.03The feedback systems shall be capable of operating in four main EIC parameter configurations (highest average current, highest peak current, ramp configuration and injection configuration) in the HSR. Refer to the MPT [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03.05.05The global slow orbit FBSYS shall provide the data required by the global orbit correction system in HSR at a rate of 1 Hz02/09/2026In ProcessFALSE
- 6.02.03.05.05The FBSYS shall be compatible with the existing Dipole correctors in the HSR arcs02/09/2026In ProcessFALSE
- 6.02.03.05.05The FBSYS shall add new dipole correctors in the interaction region and some straight sections as needed02/09/2026In ProcessFALSE
- 6.02.03.05.05The 10 Hz GFBS shall be able to suppress orbit oscillation at frequencies around 10 Hz02/09/2026In ProcessFALSE
- 6.02.03.05.05New air-core correctors shall be added in the interaction region as needed to make the global orbit corrector system operational02/09/2026In ProcessFALSE
HSR-INST-GAPCL : HSR Instrumentation Gap Cleaner (WBS 6.05.05.03)
- 6.02.03.05.04The kicker stripline and HV PS shall be able to porvide a kick strength for x(seconds)?? see above tbd urad02/09/2026In ProcessFALSE
- 6.02.03.05.04The location of the GAPCL shall any where on the HSR no constraints02/09/2026In ProcessFALSE
- 6.02.03.05.04Impedance values of the GAPCL shall be approved by accelerator physics.02/09/2026In ProcessFALSE
- 6.02.03.05.04The GAPCL assembly shall be capable of being baked for a period of (TBD) hours to 250 deg C02/09/2026In ProcessFALSE
- 6.02.03.05.04The GAPCL shall be able to be combined with other similar kickers tbd02/09/2026In ProcessFALSE
HSR-INST-HTPU : HSR Instrumentation Head-tail Pick-up (WBS 6.05.05.03)
- 6.02.03The head-tail pick-up shall be capable of operating in four main EIC parameter configurations (highest average current, highest peak current, ramp configuration and injection configuration) in the HSR. Refer to the MPT [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03.05.06The HTPU shall have a resolution of tbd tbd02/09/2026In ProcessFALSE
- 6.02.03.05.06The HTPU shall have a X-Y translation stage to center the detector tbd tbd02/09/2026In ProcessFALSE
- 6.02.03.05.06The HTPU shall have a time constant compatible with the time constant of RF fields in crab cavities tbd tbd02/09/2026In ProcessFALSE
HSR-INST-LPM : HSR Instrumentation Longitudinal Profile Monitors (WBS 6.05.05.03)
- 6.02.03An LPM supporting physics requirements shall be strategically placed in the HSR to monitor the HR longitudinal profile at injection, on the ramp, during bunch splitting and at store with bunch compression.02/09/2026ApprovedFALSE
- 6.02.03An LPM supporting physics requirements shall be strategically placed in the HSR to monitor the longitudinal profile and provide data to the LLRF systems at injection, on the ramp, during bunch splitting and at store with bunch compression.02/09/2026ApprovedFALSE
- 6.02.03.05.03The HSR Longitudinal Profile Monitor shall be able to accommodate all bunch parameters set forth in the MPT including RF longitudinal gymnastics with a maximum of 2 (GHz).02/09/2026ApprovedFALSE
- 6.02.03.05.03The HSR Longitudinal Profile Monitor system shall be capable of monitoring satellite bunches in neighboring buckets02/09/2026ApprovedFALSE
- 6.02.03.05.03The HSR Longitudinal Profile Monitor system shall be capable of measuring bunch profiles for each bunch circulating in the HSR from injection to store.02/09/2026ApprovedFALSE
- 6.02.03.05.03The HSR Longitudinal Profile Monitor system shall be capable of measuring bunch profiles during bunch splitting and bunch compression.02/09/2026ApprovedFALSE
- 6.02.03.05.03The HSR Longitudinal Profile Monitor system shall measure bunch profile placement in the RF bucket with 50 (ps) resolution.02/09/2026ApprovedFALSE
- 6.02.03.05.03The HSR Longitudinal Profile Monitor charge measurement shall not vary more than +/- TBD % per mm of beam offset02/09/2026In ProcessFALSE
- 6.02.03.05.03The HSR Longitudinal Profile Monitor charge measurement shall maintain a thermal drift tolerance of < TBD nC/K02/09/2026In ProcessFALSE
- 6.02.03.05.03The HSR Longitudinal Profile Monitor shall be able to measure a single bunch profiles averaged over 1000 turns with resolution of 50 ps02/09/2026ApprovedFALSE
- 6.02.03.05.03The HSR Longitudinal Profile Monitor shall be able to measure the integrated charge of a single bunch averaged over 1000 turns with a resolution of 0.5 nC02/09/2026ApprovedFALSE
- 6.02.03.05.03The HSR Longitudinal Profile Monitor shall operate in ultra-high vacuum02/09/2026ApprovedFALSE
- 6.02.03.05.03The impedance of the HSR Longitudinal Profile Monitor shall be approved by beam physics02/09/2026ApprovedFALSE
- 6.02.03.05.03The HSR Longitudinal Profile Monitor shall be capable of making bunch charge measurements for each bunch circulating in the HSR for the life of the store02/09/2026ApprovedFALSE
- 6.02.03.05.03The HSR Longitudinal Profile Monitor system shall be capable of logging bunch profiles over the life of the store02/09/2026ApprovedFALSE
- 6.02.03.05.03The HSR Longitudinal Profile Monitor system shall be capable of provide mountain range displays of logged profiles02/09/2026ApprovedFALSE
- 6.02.03.05.03The HSR Longitudinal Profile Monitor shall be a radiation hardened device.02/09/2026ApprovedFALSE
HSR-INST-LPM-CM
- 6.05.05.03Instrumentation Group shall provide design details that defines the location limitations and the mechanical connection for the longitudinal profile monitor assembly and its associated subsystems.01/08/2026ReviewedFALSE
- 6.05.05.03The physics group shall indicate the location of the longitudinal profile monitor in the lattice designated by a marker that satisfies the instrumentation groups design limits01/08/2026ReviewedFALSE
- 6.05.05.03Vacuum group shall define the installation details for the mechanical connection for longitudinal profile monitor assembly and its associated subsystems.01/08/2026ReviewedFALSE
- 6.05.05.03ASR System Installation and Final Integration shall provide funding and scheduling to install longitudinal profile monitor by the appropriate technical support group and its subsystems which satisfies the vacuum group design.01/08/2026ReviewedFALSE
- 6.05.05.03Instrumentation Group shall provide radiation design limits for the longitudinal profile monitor assembly and its associated subsystems.01/08/2026ReviewedFALSE
- 6.05.05.03Physics Group shall provide the expected radiation dose in its installation location and if required the design of the required radiation shielding for the longitudinal profile monitor and its associated subsystems to mitigate exposure.01/08/2026ReviewedFALSE
- 6.05.05.03Mechanical engineering group shall define the installation details of the required radiation shielding design for the longitudinal profile monitor assembly and its associated subsystems to mitigate exposure which satisfies the Physics Group design.01/08/2026ReviewedFALSE
- 6.05.05.03ASR System Installation and Final Integration shall provide funding and scheduling to install longitudinal profile monitor required radiation shielding design by the appropriate technical support group which satisfies the Vacuum Group design.01/08/2026ReviewedFALSE
- 6.05.05.03Instrumentation Group shall provide thermal design limits and required thermal regulation design for the longitudinal profile monitor and its associated subsystems exposure01/08/2026ReviewedFALSE
- 6.05.05.03Mechanical engineering group shall define the installation details for longitudinal profile monitor thermal regulation design.01/08/2026ReviewedFALSE
- 6.05.05.03ASR System Installation and Final Integration shall provide funding and scheduling to install longitudinal profile monitor thermal regulation design by the appropriate technical support group which satisfies the mechanical group design.01/08/2026ReviewedFALSE
- 6.05.05.03Instrumentation group shall provide design details that defines the signal cable connection for longitudinal profile monitor assembly and its associated subsystems.01/08/2026ReviewedFALSE
- 6.05.05.03ASR System Installation and Final Integration shall provide funding and scheduling to connect the longitudinal profile monitor required signal cable by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026ReviewedFALSE
- 6.05.05.03Reference related longitudinal profile monitor electronics interface document for signal cable routing interface details inside of tunnel. (I-HSR-INST-LPM-ELEC.XX)01/08/2026ReviewedFALSE
- 6.05.05.03Instrumentation Group shall provide thermal design parameters for the longitudinal profile monitor assembly and its associated subsystems exposure.01/08/2026ReviewedFALSE
- 6.05.05.03Vacuum group shall incorporate the defined thermal design limits for the longitudinal profile monitor assembly into its bakeout procedure for the HSR beamline which satisfies the Instrumentation Group design.01/08/2026ReviewedFALSE
- 6.05.05.03Vacuum group shall define the cleanliness and installation details for the mechanical connection of the longitudinal profile monitor to the beamline.01/08/2026ReviewedFALSE
- 6.05.05.03ASR System Installation and Final Integration shall provide funding and scheduling to insure cleanliness installation of the longitudinal profile monitor design by the appropriate technical support group which satisfies the vacuum group design.01/08/2026ReviewedFALSE
HSR-INST-LPM-ELEC
- 6.04.06.02Instrumentation Group shall provide design details that defines the building, rack layouts and power utilities for Injection Bunch Charge Monitor electronics and its associated subsystems.01/08/2026In ProcessFALSE
- 6.04.06.02Infrastructure Group shall provide buildings, detailed drawings including rack layouts for the Injection Bunch Charge Monitor electronics and its subcomponents which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.02Infrastructure Group shall provide funding and scheduling for the installation of the wall terminated power utilities for distribution to the Injection Bunch Charge Monitor electronics and its subcomponents which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.02Infrastructure Group shall provide reliable air conditioning and humidity control in the Injection Bunch Charge Monitor electronic buildings which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.02Instrumentation Group shall provide the Injection Bunch Charge Monitor electronic rack and its subsystems design, including the Spacial location, thermal and weight details.01/08/2026In ProcessFALSE
- 6.04.06.02Instrumentation Group shall provide the plan and funding for the procurement of the racks to house Injection Bunch Charge Monitor electronics and its sub components which satisfies the design.01/08/2026In ProcessFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling to move and install Injection Bunch Charge Monitor electronic racks by the appropriate technical support group and its subsystems which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling for the installation of Injection Bunch Charge Monitor electronics into the racks by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.02Instrumentation Group shall provide the design and funding for the procurement of the AC cable distribution from the wall mount distribution to each Injection Bunch Charge Monitor electronic rack.01/08/2026In ProcessFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling for the design and AC cable tray to contain the AC cable distribution from the wall mount distribution to each Injection Bunch Charge Monitor electronic rack.01/08/2026In ProcessFALSE
- 6.04.06.02ASR System Installation and Final Integration shall provide funding and scheduling for the installation of AC cable and AC cable tray from the wall mount distribution to each Injection Bunch Charge Monitor electronic rack by the appropriate technical support group which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.02Instrumentation Group shall provide the design details defining the signal cable routing from the Injection Bunch Charge Monitor electronic and its associated subsystems into the tunnels.01/08/2026In ProcessFALSE
- 6.04.06.02Infrastructure group shall provide tunnel penetrations for signal cables which satisfies the Instrumentation Group design.01/08/2026In ProcessFALSE
- 6.04.06.02Reference related Injection Bunch Charge Monitor interface document for signal cable termination interface details inside of tunnel. (I-HSR-INST-BPM-PU.XX)01/08/2026In ProcessFALSE
- 6.04.06.02Machine Protection System (MPS) Group shall define the design details including input connections and data required to monitor Injection Bunch Charge Monitor electronic status.01/08/2026In ProcessFALSE
- 6.04.06.02Instrumentation Group shall provide output from the MPS interface the data which satisfies MPS design.01/08/2026In ProcessFALSE
- 6.04.06.02Reference related controls interface document for Controls interface signal details. (I-HSR-CNTRL-XXX.XX)01/08/2026In ProcessFALSE
HSR-INST-SLK : HSR Instrumentation Stripline Kicker (WBS 6.05.05.03)
- 6.02.03.05.04The location of SLK shall be close to the RF system.02/09/2026In ProcessFALSE
- 6.02.03.05.04The Impedance of the SLK shall not exceed tbd Ohms?02/09/2026In ProcessFALSE
- 6.02.03.05.04The SLK shall be able to deflection capability of tbd (mrad kick)02/09/2026In ProcessFALSE
- 6.02.03.05.04The SLK assembly shall be capable of being baked for a period of (TBD) hours to 250 deg C02/09/2026In ProcessFALSE
- 6.02.03.05.04The SLK shall be able to be combined with other similar kickers tbd02/09/2026In ProcessFALSE
HSR-INST-TPM : HSR Instrumentation Transverse Profile Monitors (WBS 6.05.05.03)
- 6.02.03Transverse profiles monitors shall be strategically placed in the HSR warm sections to monitor the horizontal and vertical beam profiles with sufficient precision.02/09/2026ApprovedFALSE
- 6.02.03.05.03The transverse profile monitors shall have the capability to produce profiles of an individual proton bunch over a bunch charge range from 5 to 44 nC.02/09/2026ReviewedFALSE
- 6.02.03.05.03The transverse profile monitors shall have the capability to measure profiles of bunch trains separated by 1/3 of the HSR circumference.02/09/2026ReviewedFALSE
- 6.02.03.05.03The transverse profile monitors shall provide continuous measurements with an intervals at least 30 s02/09/2026ReviewedFALSE
- 6.02.03.05.03The transverse profile monitors shall have the capability to measure turn-by-turn profiles of a single bunch of protons for at least 100 turns02/09/2026ReviewedFALSE
- 6.02.03.05.03For horizontal plane profile measurement from 44nC bunches to 5nC bunches, the transverse profile monitors shall have a respective resolution range of 0.5 to 1.5 mm02/09/2026ReviewedFALSE
- 6.02.03.05.03For vertical plane profile measurement from 44nC bunches to 5nC bunches, the transverse profile monitors shall have a respective resolution range of 0.15 to 0.5 mm02/09/2026ReviewedFALSE
- 6.02.03.05.03The horizontal transverse profile monitor, transverse measurement range shall be +/- 12 mm02/09/2026ReviewedFALSE
- 6.02.03.05.03The vertical transverse profile monitor, transverse measurement range shall be +/- 12 mm02/09/2026ReviewedFALSE
HSR-INST-DAMP : Longitudnal Damping Instrumentation
- 6.02.03The injection damper shall be capable to operate in injection configuration (main EIC parameter configuration number 4) in the HSR defined in the MPT. Refer to [EIC-SEG- RSI-005].02/09/2026ApprovedFALSE
- 6.02.03The transverse bunch-by-bunch damper shall be capable of operating in injection configuration in the HSR. Refer to the MPT [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
HSR-INST-DAMP-INJDAMP : HSR Instrumentation Injection Damper (WBS 6.05.05.03)
HSR-INST-DAMP-LBBD : HSR Instrumentation Longitudinal Bunch-by-Bunch Damper (WBS 6.05.05.03)
HSR-INST-DAMP-TBBD : HSR Instrumentation Transverse Bunch-by-Bunch Damper (WBS 6.05.05.03)
HSR-INST-GC : Gap Cleaner Instrumentation
- 6.02.03The gap cleaner shall be capable of operating in four main EIC parameter configurations (highest average current, highest peak current, ramp configuration and injection configuration) in the HSR. Refer to the MPT [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
HSR-INST-HFSKOTTY : HF Schottky Instrumentation
- 6.02.03The HF Schottky instrumentation shall be capable of operating in four main EIC parameter configurations (highest average current, highest peak current, ramp configuration and injection configuration) in the HSR defined in the MPT. Refer to [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
HSR-INST-INJDAMP
- 6.02.03.05.04The IDAMP design shall have a kick strength of 10 urad02/09/2026In ProcessFALSE
- 6.02.03.05.04The IDAMP shall be located at tbd02/09/2026In ProcessFALSE
- 6.02.03.05.04The Impedance of the IDAMP shall be approved by beam Physics. tbd02/09/2026In ProcessFALSE
- 6.02.03.05.04The beam induce heating generated in the IDAMP shall be approved by beam physics tbd02/09/2026In ProcessFALSE
- 6.02.03.05.04The IDAMP assembly shall be capable of being baked for a period of (TBD) hours to 250 deg C02/09/2026In ProcessFALSE
HSR-INST-LBBD
- 6.02.03.05.03The HSR shall have longitudinal bunch damper LBBD. tbd02/09/2026In ProcessFALSE
- 6.02.03.05.03The LBBD shall be able to damp an instability with an e-folding time of 1 ms02/09/2026In ProcessFALSE
- 6.02.03.05.03The LBBD damping rate shall be tbd02/09/2026In ProcessFALSE
HSR-INST-LFSKOTTY : LF Schottky Instrumentation
- 6.02.03The LF Schottky instrumentation shall be capable of operating in four main EIC parameter configurations (highest average current, highest peak current, ramp configuration and injection configuration) in the HSR defined in the MPT. Refer to [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
HSR-INST-TBBD
- 6.02.03.05.03The TBBD design shall have a kick strength of tbd02/09/2026In ProcessFALSE
- 6.02.03.05.03The TBBD shall be located at tbd02/09/2026In ProcessFALSE
- 6.02.03.05.03The Impedance requirements of kicker tbd02/09/2026In ProcessFALSE
- 6.02.03.05.03The TBBD assembly shall be capable of being baked for a period of (TBD) hours to 250 deg C02/09/2026In ProcessFALSE
- 6.02.03.05.03The TBBD shall be able to be combined with other similar kickers tbd02/09/2026In ProcessFALSE
HSR-INST-TM : Tune Monitoring Instrumentation
- 6.02.03The horizontal and vertical tune meter kicker shall be able to excite individual bunches and be capable of operating in four main EIC parameter configurations (highest average current, highest peak current, ramp configuration and injection configuration) in the HSR defined in the MPT. Refer to [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
HSR-INST-TM-TMK : HSR Instrumentation Horizontal and Vertical Tune Meter Kicker (WBS 6.05.05.03)
HSR-INST-TMK
- 6.02.03.05.04The TMK design shall have a kick strength of 10 urad02/09/2026In ProcessFALSE
- 6.02.03.05.04The TMK shall be located at02/09/2026In ProcessFALSE
- 6.02.03.05.04The TMK Impedance values shall be approved by accelerator physics.02/09/2026In ProcessFALSE
- 6.02.03.05.04The TMK assembly shall be capable of being baked for a period of (TBD) hours to 250 deg C02/09/2026In ProcessFALSE
- 6.02.03.05.04The TMK shall be able to be combined with other similar kickers tbd02/09/2026In ProcessFALSE
HSR-MPS : HSR Machine Protection System (WBS 6.06.03.01)
HSR-MPS-ABORT_BUMP : HSR Machine Protection System Bump (WBS 6.06.03.01)
- HSR-MPS-ABORT_BUMP EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.04.03.02.02The location (Section) shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The dimension in W shall be tbd (ft)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The dimension in L shall be tbd (ft)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The dimension in H shall be tbd (ft)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The num magnets shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The mag gap shall be tbd (cm)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The rise time shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The fall time shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The flat top time shall be tbd (sq ft)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The waveshape shall be tbd (sq ft)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The flat top repeatability shall be tbd (sec)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The uniformity of the flattop shall be tbd (sec)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The deflecting Angle shall be tbd (sec)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The rep rate spec shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The output voltage Spec shall be tbd (Hz)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The output current spec shall be tbd (Volts)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The inductance with cable shall be tbd (Amps)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The cooling type shall be tbd02/09/2026In ProcessFALSE
HSR-MPS-ABORT_KICK : HSR Machine Protection System Kicker (WBS 6.06.03.01)
- HSR-MPS-ABORT_KICK EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.04.03.02.02The number of kickers shall be 502/09/2026In ProcessFALSE
- 6.04.04.03.02.02The Rise time shall be 900 ns02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The Fall time shall be NA sec02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The flat top time shall be 13 us02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The waveshape shall be trap02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The painting shall be horizontal02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The maximum field shall be TBD T02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The total deflection shall be TBD mrad02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The maximum current shall be 20 kA02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The maximum voltage shall be 33.3 kV02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The inductance with cable shall be TBD (uH)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The Max rep rate shall be 1 pulse per minut02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The flat top repeatability shall be +10 / -20 %02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The flatness of flat top/pulse form shall be 0.45 mod02/09/2026In ProcessFALSE
- 6.04.04.03.02.02Beam abort kicker tbd02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The cooling type shall be water02/09/2026In ProcessFALSE
HSR-MPS-DUMP_BLK : HSR Machine Protection System Dump Block (WBS 6.06.03.01)
- HSR-MPS-DUMP_BLK EXTERNALSRequirements who's parents are in other sub-systems.
- 6.04.04.03.02.02The dimensions shall be 40 x 10 mm02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The length shall be 0.5 / 2.6 / 2 m02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The materials shall be C-C / Gr/ SS02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The energy deposited during abort shall be 3.5 MJ02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The frequency of thermal cycle shall be 1 hour02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The window thickness shall be tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The window material shall be tbd tbd02/09/2026In ProcessFALSE
HSR-MPS-ABORT
- 6.04.04.03.02.02The HSR shall contain an beam abort system to dump the beam.02/09/2026ApprovedFALSE
- 6.04.04.03.02.02The HSR beam abort system shall consist of a set of kickers and a beam dump02/09/2026ApprovedFALSE
- 6.04.04.03.02.02The HSR beam abort system shall be located in the tunnel between Q3 and Q4 at 9 o'clock side of the IR10 straight section.02/09/2026ApprovedFALSE
- 6.04.04.03.02.02The HSR beam abort system shall re-use a RHIC beam dump to safely absorb the energy of the stored beam in a controlled fashion.02/09/2026ApprovedFALSE
- 6.04.04.03.02.02The HSR beam abort system shall receive its trigger from the HSR machine protection system.02/09/2026ApprovedFALSE
- 6.04.04.03.02.02The HSR beam dump shall be capable of absorbing the entire HSR proton beam (275 GeV, 1160 bunches, 11 nC each, 3.2 MJ stored energy) as well the entire Au ion beam (110 GeV/u, 290 bunches, 25 nC each, 2 MJ stored snergy)) without sustaining permanent damage02/09/2026ApprovedFALSE
- 6.04.04.03.02.02The HSR beam dump shall be capable of absorbing the entire HSR full energy beam (proton or Au ion) every 3 hours.02/09/2026ApprovedFALSE
- 6.04.04.03.02.02The HSR beam dump system must ensure reliable protection from quenches, caused by secondary particles, of Q4 SC magnet downstrean of the beam dump.02/09/2026ApprovedFALSE
- 6.04.04.03.02.02Radiation shielding shall be provided as part of the HSR beam dump assembly such that the radiation on the outer surface of the beam dump does not exceed TBD after TBD beam aborts at full intensity.02/09/2026ApprovedFALSE
- 6.04.04.03.02.02The HSR abort kickers shall be installed downstream of Q3 magnet at 9 o'clock side of the IR10 straight section.02/09/2026ApprovedFALSE
- 6.04.04.03.02.02The rise time of the HSR abort kicker system shall not exceed 1 usec.02/09/2026ApprovedFALSE
- 6.04.04.03.02.02The HSR abort kicker pulse shall remain at or near its peak value for a duration of at least 13 usec.02/09/2026ApprovedFALSE
- 6.04.04.03.02.02The HSR abort kicker pulse amplitude shall be sufficiently large to deflect the beam safely into the beam dump.02/09/2026ApprovedFALSE
- 6.04.04.03.02.02The rising edge of the HSR abort kicker pulse shall be synchronized with the abort gap in the HSR bunch train, such that all bunches receive a kick sufficient to deflect them into the beam dump.02/09/2026ApprovedFALSE
- 6.04.04.03.02.02The number of HSR abort kicker modules shall be chosen such that the required total detection angle is provided efficiently.02/09/2026ApprovedFALSE
- 6.04.04.03.02.02The design of the HSR abort kickers must be consistent with the impedance budget requirements of the HSR.02/09/2026ApprovedFALSE
- 6.04.04.03.02.02The HSR abort kicker power supply scheme shall be desing in a way to eliminate a possibility of kicker module sporadic firing (pre-fire).02/09/2026ApprovedFALSE
- 6.04.04.03.02.02The HSR horizontal half aperture for the circulating beam at the location of the beam dump shall correspond to at least 6 horizontal RMS beam sizes, based on the Au injection emittances defined in the Master Parameter Table (MPT). [Document#: EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
- 6.04.04.03.02.02The HSR vertical half aperture for the circulating beam at the location of the beam dump shall correspond to at least 6 vertical RMS beam sizes, based on the Au injection emittances defined in the Master Parameter Table (MPT). [Document#: EIC-SEG-RSI-005]02/09/2026ApprovedFALSE
HSR-MPS-COLLIMATIONL
- 6.04.04.03.02.01A set of collimation systems (horizontal, vertical and momentum) shall be included in the HSR to control detector background and provide protection to the HSR magnets.02/09/2026ApprovedFALSE
- 6.04.04.03.02.01The HSR collimation system shall be flexible enough to operate with the full range of HSR species at all energy ranges defined in the MPT. Refer to [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.04.04.03.02.01The HSR shall have a collimation system capable of ensuring a sufficiently low background at the detector.02/09/2026ApprovedFALSE
- 6.04.04.03.02.01The HSR shall have a collimation system capable of protecting all machine elements in case of failure.02/09/2026ApprovedFALSE
- 6.04.04.03.02.01All HSR collimator stations shall be double-sided.02/09/2026ApprovedFALSE
- 6.04.04.03.02.01The HSR Collimators shall be placed at accelerator locations suitable for background reduction in all operating energy ranges.02/09/2026ApprovedFALSE
- 6.04.04.03.02.01The HSR Collimator jaws shall be independently and remotely movable over a range of 60 (mm).02/09/2026ApprovedFALSE
- 6.04.04.03.02.01The HSR Collimator jaw material shall be chosen such that the collimator jaw can absorb 275 GeV protons and 110 GeV Au ions without sustaining permanent damage.02/09/2026ApprovedFALSE
- 6.04.04.03.02.01All HSR collimator stations shall be equipped with appropriate beam loss monitors to protect the collimator jaws from excessive beam losses by aborting the beam via the Machine Protection System (MPS).02/09/2026ApprovedFALSE
- 6.04.04.03.02.01The HSR collimator jaws shall be wide enough to still be effective in the presence of beam orbit errors of 10 (mm).02/09/2026ApprovedFALSE
- 6.04.04.03.02.01The HSR collimation stations shall be designed such as to minimize their beam impedance.02/09/2026ApprovedFALSE
- 6.04.04.03.02.01The HSR collimation stations shall be designed for operation in a vacuum system with pressure in 5x10-10 (Torr) or less.02/09/2026ApprovedFALSE
HSR-MPS-GENERAL
- 6.04.04.03.02The HSR machine protection system shall protect HSR beam elements and experimental equipment.02/09/2026ApprovedFALSE
- 6.04.04.03.02The HSR MPS shall consist of a set of inputs (beam loss monitors, detector background signals, Beam Position Monitors, manual operator input, quench protection system, ...), an electronic trigger, and a fast abort system.02/09/2026ApprovedFALSE
- 6.04.04.03.02The HSR MPS thresholds at the input devices shall be set such that a sufficient safety margin remains before permanent damage occurs to machine or detector component.02/09/2026ApprovedFALSE
- 6.04.04.03.02The HSR trigger electronics shall be fast enough such that for any realistic failure scenario the beam loss or detector background occurring between loss or background detection and actual beam abort does not result in permanent damage.02/09/2026ApprovedFALSE
- 6.04.04.03.02The HSR trigger electronics shall be synchronized with the beam abort gap in the HSR bunch train such that the rising edge of the fast abort kicker pulse falls into the abort gap and all HSR bunches receive a sufficiently large kick to deflect them safely the beam dump.02/09/2026ApprovedFALSE
HSR-COLL : HSR Momentum Collimator System (WBS 6.06.03.02)
HSR-COLL-1ST_SECDRY : HSR Momentum First Set of Secondary Collimators (WBS 6.06.03.02)
- 6.04.04.03.02.01The HSR secondary vertical collimator shall be placed at Sector 1202/09/2026In ProcessFALSE
- 6.04.04.03.02.01The HSR secondary horizontal collimator shall be placed at Sector 1202/09/2026In ProcessFALSE
- 6.04.04.03.02.01The vertical aperture shall range from 2 to 25 mm02/09/2026In ProcessFALSE
- 6.04.04.03.02.01vertical stepsize (resolution) 10 um02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The horizontal aperture shall range from 12.5 to 45 mm02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The horizontal stepsize (resolution) shall be 10 um02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The secondary HSR collimators shall have dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The aperture shall be centered on the beam axis.02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The duty cycle shall be steady state.02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The tapered jaw slope shall be 1\1002/09/2026In ProcessFALSE
- 6.04.04.03.02.01The jaw tip length shall be 50 cm02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The jaw material shall be C02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The total length shall be tbd cm02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The beam energy deposition shall be tbd W02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The beam failure energy deposition shall be tbd J02/09/2026In ProcessFALSE
HSR-COLL-2ND_SECDRY : HSR Momentum Second Set of Secondary Collimators (WBS 6.06.03.02)
- 6.04.04.03.02.01The HSR secondary vertical collimator shall be placed at Sector 1102/09/2026In ProcessFALSE
- 6.04.04.03.02.01The HSR secondary horizontal collimator shall be placed at Sector 1102/09/2026In ProcessFALSE
- 6.04.04.03.02.01The vertical aperture shall range from 4 to 50 mm02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The vertical stepsize (resolution) shall be 10 um02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The horizontal aperture shall range from 8 to 30 mm02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The horizontal stepsize (resolution) shall be 10 um02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The secondary HSR collimators shall have dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The aperture shall be centered on the beam axis.02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The duty cycle shall be steady state.02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The tapered jaw slope shall be 1\1002/09/2026In ProcessFALSE
- 6.04.04.03.02.01The jaw tip length shall be 50 cm02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The jaw material shall be C02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The total length shall be tbd cm02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The beam energy deposition shall be tbd W02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The beam failure energy deposition shall be tbd J02/09/2026In ProcessFALSE
HSR-COLL-ABS : HSR Momentum Injection Absorbers (WBS 6.06.03.02)
- 6.04.04.03.02.01The HSR Injection absorber shall be placed in Sector 402/09/2026In ProcessFALSE
- 6.04.04.03.02.01The HSR Injection absorber shall be horizontal02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The horizontal aperture shall be tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The horizontal aperture shall be fixed.02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The HSR injection absorber should be one-sided.02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The aperture shall be centered on the beam axis.02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The beam energy deposition shall be intermittent (injection failures)02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The energy deposition from synchrotron radiation shall be negligible.02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The tapered jaw slope shall be 1\1002/09/2026In ProcessFALSE
- 6.04.04.03.02.01The jaw tip length shall be 100 cm02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The jaw material shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The total length shall be tbd cm02/09/2026In ProcessFALSE
HSR-COLL-MOM : HSR Momentum Collimator (WBS 6.06.03.02)
- 6.04.04.03.02.01The HSR momentum collimator shall be horizontal.02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The horizontal aperture shall have a half gap of 40 mm02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The horizontal aperture shall cover a range of gap sizes min=TBD to a max=TBD mm02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The horizontal stepsize (resolution) shall be 10 um02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The HSR momentum collimator shall have dual jaws.02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The aperture shall be centered on the beam axis.02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The beam energy deposition shall be tbd W02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The beam energy deposition shall be continuous02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The impedance shall be less than the Impedance budget of tbd kV/pc02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The tapered jaw slope shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The beam failure energy deposition shall be 1 J02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The failure thermal duty cycle shall be intermittent.02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The jaw tip length shall be 100 cm02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The jaw taper shall be 1\1002/09/2026In ProcessFALSE
- 6.04.04.03.02.01The jaw material shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The total length shall be tbd cm02/09/2026In ProcessFALSE
HSR-COLL-PRIM : HSR Momentum Primary Collimators (WBS 6.06.03.02)
- 6.04.04.03.02.01The HSR primary vertical collimator shall be placed at Sector 1202/09/2026In ProcessFALSE
- 6.04.04.03.02.01The HSR primary horizontal collimator shall be placed at Sector 1202/09/2026In ProcessFALSE
- 6.04.04.03.02.01The vertical aperture shall range from 0.9 to 20 mm02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The vertical stepsize (resolution) shall be 10 um02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The horizontal aperture shall range from 7 to 28 mm02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The horizontal stepsize (resolution) shall be 10 um02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The aperture shall be centered on the beam axis.02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The duty cycle shall be steady state.02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The energy deposition from synchrotron radiation shall be negligible.02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The tapered jaw slope shall be 1\1002/09/2026In ProcessFALSE
- 6.04.04.03.02.01The jaw tip length shall be 50 cm02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The jaw material shall be CU02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The total length shall be tbd cm02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The beam energy deposition shall be tbd W02/09/2026In ProcessFALSE
- 6.04.04.03.02.01The beam failure energy deposition shall be tbd J02/09/2026In ProcessFALSE
HSR-CONT : HSR Controls System (WBS 6.07.02)
- 6.02.04.02The HSR control system shall facilitate all HSR global control requirements. Refer to [EIC- SEG-RSI-010].02/09/2026ApprovedFALSE
- 6.02.04.02The HSR control system shall facilitate all network, relational database, and data archiving required.02/09/2026ApprovedFALSE
- 6.02.04.02The HSR control system shall facilitate all machine protections required.02/09/2026ApprovedFALSE
- 6.02.04.02The HSR control system shall facilitate all EIC machine timing required.02/09/2026ApprovedFALSE
- 6.02.04.02The HSR control system shall facilitate all fast feedback integration required.02/09/2026ApprovedFALSE
- 6.02.04.02The HSR control system shall facilitate all physics application support required.02/09/2026ApprovedFALSE
- 6.02.04.02The HSR control system shall provide mechanism to adjust spin for each bunch02/09/2026ApprovedFALSE
- 6.02.04.02The HSR control system shall provide mechanism to save/load patterns02/09/2026ApprovedFALSE
HSR-CONT-FEEDBACK : HSR Controls System Feedback (WBS 6.07.02)
- 6.02.04.02The Slow Orbit Feedback, BPM data averaging period shall be tbd sec02/09/2026In ProcessFALSE
- 6.02.04.02The Slow Orbit Feedback, correction output rate shall be 1 Hz02/09/2026In ProcessFALSE
- 6.02.04.02The Fast Orbit Feedback, correction output rate shall be 10 Hz02/09/2026In ProcessFALSE
- 6.02.04.02The Tune Feedback, measurement sample rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The Tune Feedback, correction rate shall be tbd Hz02/09/2026In ProcessFALSE
- 6.02.04.02The Chrom Feedback, measurement sample rate shall be tbd Hz02/09/2026In ProcessFALSE
HSR-CONT-SPIN : HSR Controls System Spin Pattern (WBS 6.07.02)
- 6.02.04.02The Capable to produce arbitrary spin pattern at injection shall be tbd02/09/2026In ProcessFALSE
- 6.02.04.02The The injection application can request the source to provide any spin pattern as required up to 290 bunches shall be tbd02/09/2026In ProcessFALSE
HSR-RF : HSR RF System (WBS 6.08)
- 6.02.03The HSR Ring Normal Conducting RF system shall include an, h=315 system capable of capture and acceleration of all beams defined in the MPT. Refer to [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03The HSR Ring Normal Conducting RF system shall include an h=630 system to perform the 1:2 bunch splitting required to produce store bunch patterns defined in the MPT. Refer to [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03The HSR Ring Normal Conducting RF system shall include an h=1260 system to perform the 2:4 bunch splitting required to produce store bunch patterns defined in the MPT. Refer to [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03The HSR Ring Normal Conducting RF system shall include an h=2520 system to perform initial bunch length compression to achieve the required store bunch lengths defined in the MPT. Refer to [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03The HSR Ring Super Conducting RF system final bunch length compression to achieve MPT. Refer to [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03Normal conducting HSR Ring RF systems shall be located in the IR 4 straight section02/09/2026ApprovedFALSE
- 6.02.03Superconducting HSR Ring RF systems shall be located in the IR 10 straight section.02/09/2026ApprovedFALSE
- 6.02.03The Longitudinal Impedance Budget sum of all the longitudinal narrowband impedances from all the HSR Ring RF and Crab RF systems shall not exceed a level which compromises the machine parameters given in the MPT. Refer to [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03The transverse Impedance Budget sum of all the transverse narrowband impedances of all HSR Ring RF and Crab RF systems shall not exceed a level which compromises the machine parameters given in the MPT. Refer to [EIC-SEG-RSI-005].02/09/2026ApprovedFALSE
- 6.02.03The HSR Ring RF system shall provide controls and diagnostics for all cavities and system functionality.02/09/2026ApprovedFALSE
HSR-RF-CCAV:197 : HSR Main RF Capture & Accel Mode (WBS 6.08.05.04)
- 6.08.04.04The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025ReviewedFALSE
- 6.08.04.04The cavity helium bath maximum designed operational temperature shall be 2 K.05/16/2025ReviewedFALSE
- 6.08.04.04The cavity helium bath maximum designed operational pressure shall be 30 mbar.08/28/2025In ProcessFALSE
- 6.08.04.04The cavity helium bath designed operation pressure stability shall be ± 0.1 mbar.08/28/2025In ProcessFALSE
- 6.08.04.04The maximum design helium supply operational temperature shall be 5.5 K.05/16/2025ReviewedFALSE
- 6.08.04.04The range of the design helium supply operational pressure shall be 3 to 3.5 bar.05/16/2025ReviewedFALSE
- 6.08.04.04The range of the combined helium return temperature shall be 64 to 66 K.05/16/2025ReviewedFALSE
- 6.08.04.04The range of the combined helium return pressure shall be 2.4 to 2.6 bar.05/16/2025ReviewedFALSE
- 6.08.04.04The maximum sub-atmospheric helium return temperature shall be 4.5 K.05/16/2025ReviewedFALSE
- 6.08.04.04The maximum Subatmospheric helium return pressure shall be 30 mbar.05/16/2025ReviewedFALSE
- 6.08.04.04The minimum cooldown rate of the SRF cavity between 300K and 4.5K shall be 20 K/hour.05/16/2025ReviewedFALSE
- 6.08.04.04The minimum cooldown rate of the SRF cavity between 4.5K to 2K shall be 0.5 K/hour.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule shall achieve steady state temperature with the cavity bath at 4K in a maximum of 4 days.05/16/2025ReviewedFALSE
- 6.08.04.04The minimum warmup rate of the SRF cavity between 50K to 150K shall be 30 K/hour.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule shall achieve a full warm-up cycle from 4K to 295K in a maximum of 2 days.08/28/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule cooling water subsystem shall be designed to utilize the supply characteristics as defined by the EIC Infrastructure Utility Requirements Document (Doc. No. EIC-IFD-RSI-012).05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule shall operate through a minimum of 100 thermal cycles.05/16/2025ReviewedFALSE
- 6.08.04.04The minimum SRF Cryomodule Slow Tuner 1% range tuning cycles shall be 100,000 cycles.05/16/2025ReviewedFALSE
- 6.08.04.04The minimum SRF Cryomodule Slow Tuner full range tuning cycles shall be 1,000 cycles.05/16/2025ReviewedFALSE
- 6.08.04.04The manufactured SRF Cryomodule Cavity shall produce no field emission at 8.5 MV.08/28/2025In ProcessFALSE
- 6.08.04.04The SRF Cryomodule components that are not replaceable in-situ shall be designed with a radiation tolerance greater than 1 MGy.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule components that are replaceable in-situ shall have a radiation tolerance greater than 1 kGy.05/16/2025ReviewedFALSE
- 6.08.04.04The active SRF cavity tuning mechanism components (bearings/motor) shall be replaceable and maintainable in-situ.08/28/2025ReviewedFALSE
- 6.08.04.04All critical monitoring and control instruments that cannot be maintained in-situ shall utilize a back-up instrument.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule instrument should have maximized instruments that can be maintained and replaced in-situ.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF maximum (per cavity) RF longitudinal impedance shall be 0.26 MΩ GHz.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF maximum (per cavity) RF horizontal impedance shall be 0.132 MΩ/m.08/28/2025ReviewedFALSE
- 6.08.04.04The SRF maximum (per cavity) RF vertical impedance shall be 0.66 MΩ/m.05/16/2025ReviewedFALSE
- 6.08.04.04The minimum cavity aperture radius shall be 50 mm.05/16/2025ReviewedFALSE
- 6.08.04.04The maximum broadband RF power emitted from the cryomodule shall be 100 W for all EIC design energies and currents.10/30/2025In ProcessFALSE
- 6.08.04.04The SRF Cryomodule shall be designed to operate with a beam current up to 1.0 A.08/28/2025ReviewedFALSE
- 6.08.04.04The Maximum Quadrupole multipole content per side at 33.8 MV shall be 8 mT.10/30/2025ReviewedFALSE
- 6.08.04.04The Maximum Sextupole multipole content per side at 33.8 MV shall be 160 mT/m.10/30/2025ReviewedFALSE
- 6.08.04.04The Maximum Octupole multipole content per side at 33.8 MV shall be 7.6 T/m^2.10/30/2025ReviewedFALSE
- 6.08.04.04The Maximum Decapole multipole content per side at 33.8 MV shall be 410 T/m^3.10/30/2025ReviewedFALSE
- 6.08.04.04The separation between the two cavities poles at the apex of the curve shall be 105.3 +/- 0.5 mm.08/28/2025In ProcessFALSE
- 6.08.04.04The SRF cavity minimum manufactured quality factor (Qo) shall be 6e9.08/28/2025ReviewedFALSE
- 6.08.04.04The SRF cavity minimum manufactured voltage shall be 8.5 MV.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF cavity fundamental power coupler Qext shall be (1.75 +/- 0.1)e6.08/28/2025ReviewedFALSE
- 6.08.04.04The SRF cavity field probe Qext range shall be (2.70 to 3.24)e10.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF cavity nominal cold frequency shall be 197.0508 MHz.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF maximum Lorentz force detuning shall be 5 Hz/(Mv/m)^2.08/28/2025In ProcessFALSE
- 6.08.04.04The SRF cavity maximum Niobium temperature shall be 4.5 K.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Pressure sensitivity maximum shall be 10 Hz/mBar.08/28/2025In ProcessFALSE
- 6.08.04.04The SRF Cryomodule shall be designed to handle a minimum forward power of 60 kW.08/28/2025ReviewedFALSE
- 6.08.04.04The warm beamline maximum vacuum shall be 1.0e-7 mbar.05/16/2025ReviewedFALSE
- 6.08.04.04The cold beamline maximum vacuum shall be 1.0e-9 mbar.05/16/2025ReviewedFALSE
- 6.08.04.04The beamline vacuum maximum leak rate shall be 1.0e-11 mbar L/s.05/16/2025ReviewedFALSE
- 6.08.04.04The warm insulating maximum vacuum shall be 1.0e-5 mbar.05/16/2025ReviewedFALSE
- 6.08.04.04The cold insulating maximum vacuum shall be 5.0e-7 mbar.05/16/2025ReviewedFALSE
- 6.08.04.04The insulating vacuum maximum leak rate shall be 1.0e-9 mbar L/s.05/16/2025ReviewedFALSE
- 6.08.04.04The minimum SRF Cavity Slow Tuner tuning range shall be -170 to +101 kHz.08/28/2025ReviewedFALSE
- 6.08.04.04The minimum SRF Cavity Slow Tuner tuning rate shall be 800 Hz/s.05/16/2025In ProcessFALSE
- 6.08.04.04The maximum SRF Cavity Slow Tuner resolution shall be ± 5 Hz.08/28/2025In ProcessFALSE
- 6.08.04.04The maximum SRF Cavity Slow Tuner hysteresis shall be ± 1 Hz.08/28/2025In ProcessFALSE
- 6.08.04.04All cryomodule surfaces accessible to workers shall be within the temperature range of 283 to 333 K05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule shall be designed and manufactured to meet all applicable standards, as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by ASME B31.3.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule shall be designed and manufactured to meet all applicable standards, as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by ASME BPVC.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule shall be designed and manufactured to meet all applicable standards, as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by ASTM C1055.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule shall be designed and manufactured to meet all applicable standards, as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by NFPA 70.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule shall be designed and manufactured to meet all applicable standards, as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), and defined by NFPA 70E.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by API 520 & API 521.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by CGA S1.3.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by AWS.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule shall be designed to meet all applicable standards as directed by the DOE Vacuum Vessel Consensus Standards.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule maximum length shall be 5.21 m.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule maximum width shall be 1.37 m.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule maximum height shall be 2.67 m.08/28/2025In ProcessFALSE
- 6.08.04.04The maximum distance from the beamline to the extremity of the FPC warm side elbow shall be TBD m.08/28/2025In ProcessFALSE
- 6.08.04.04The maximum width of the FPC warm side elbow shall be TBD m.08/28/2025In ProcessFALSE
- 6.08.04.04The distance from the beamline to the tunnel floor shall be 1.27 m.08/28/2025ReviewedFALSE
- 6.08.04.04The Cavity Electromagnetic Center Alignment Tolerance in X shall be ± 250 μm.08/28/2025In ProcessFALSE
- 6.08.04.04The Cavity Electromagnetic Center Alignment Tolerance in Y shall be ± 250 μm.08/28/2025In ProcessFALSE
- 6.08.04.04The Cavity Electromagnetic Center Alignment Tolerance in Z shall be ± 5 mm.08/28/2025In ProcessFALSE
- 6.08.04.04The Cavity Electromagnetic Center Alignment Tolerance for the roll shall be ± 2.0 degrees.08/28/2025In ProcessFALSE
- 6.08.04.04The Cavity Electromagnetic Center Alignment Tolerance for the pitch shall be ± 1.0 degrees.08/28/2025In ProcessFALSE
- 6.08.04.04The Cavity Electromagnetic Center Alignment Tolerance for the yaw shall be ± 0.03 degrees.08/28/2025In ProcessFALSE
- 6.08.04.04The SRF Cryomodule cryogenic valve box minimum vertical stay clear height above the cryomodule shall be 0.92m.05/16/2025In ProcessFALSE
- 6.08.04.04Conditioning for individual cavities shall have a maximum average cryogenic power dissipation of 200 W.05/16/2025In ProcessFALSE
- 6.08.04.04Conditioning for individual cavities shall be achieved with a maximum temperature of 2.1 K.08/28/2025In ProcessFALSE
- 6.08.04.04The SRF Cryomodule shall be capable of withstanding a maximum allowable vertical acceleration of 4 G.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule shall be capable of withstanding a maximum allowable lateral acceleration of 1.5 G.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule shall be capable of withstanding a maximum allowable beamline axis acceleration of 5 G.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule shall be designed to withstand a minimum tilt around the beamline axis (roll) of ± 0.26 radians.05/16/2025In ProcessFALSE
- 6.08.04.04The SRF Cryomodule maximum design ambient magnetic field amplitude shall be 700 mG.05/16/2025In ProcessFALSE
- 6.08.04.04The minimum magnetic shield attenuation factor at SRF cavity equator shall be 50.08/28/2025In ProcessFALSE
- 6.08.04.04The maximum thermal radiative heat transfer to all 2K and 5K surfaces shall be 2 W/m^2.06/05/2025ReviewedFALSE
- 6.08.04.04The maximum thermal radiative heat transfer to all 50K surfaces shall be 2 W/m^2.05/16/2025ReviewedFALSE
- 6.08.04.04The SRF Cryomodule shall be designed to meet or exceed the maximum working pressures defined by the EIC pressure document (Document No. TBD).08/28/2025In ProcessFALSE
- 6.08.04.04The SRF Cryomodule HOM Damper maximum broadband power shall be 5 kW.08/28/2025ReviewedFALSE
HSR-RF-CCAV:394 : HSR Main RF Split1 Mode (WBS 6.08.05.05)
- 6.08.04.05The SRF CM shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing05/16/2025In ProcessFALSE
- 6.08.04.05The cavity helium bath maximum operational temperature shall be TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The cavity helium bath maximum operational pressure shall be TBD mbar05/16/2025In ProcessFALSE
- 6.08.04.05The cavity helium bath operation pressure stability shall be ±TBD mbar05/16/2025In ProcessFALSE
- 6.08.04.05The maximum helium supply operational temperature shall be TBD K05/16/2025In ProcessFALSE
- 6.08.04.05nan05/16/2025In ProcessFALSE
- 6.08.04.05The range of the combined helium return temperature shall be TBD to TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The range of the combined helium return pressure shall be TBD to TBD bar05/16/2025In ProcessFALSE
- 6.08.04.05The maximum sub-atmospheric helium return temperature shall be TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The maximum Subatmospheric helium return pressure shall be TBD mbar05/16/2025In ProcessFALSE
- 6.08.04.05The minimum cooldown rate of the SRF cavity between 300K and 4.5K shall be TBD K/hour05/16/2025In ProcessFALSE
- 6.08.04.05The minimum cooldown rate of the SRF cavity between 4.5K to 2K shall be TBD K/hour05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall achieve steady state temperature with the cavity bath at 4K in a maximum of TBD days05/16/2025In ProcessFALSE
- 6.08.04.05The chilled water and low-conductivity water operational temperature range shall be TBD to TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The chilled water and low-conductivity water operational pressure range shall be TBD to TBD bar05/16/2025In ProcessFALSE
- 6.08.04.05The minimum magnetic shield attenuation factor at SRF cavity equator shall be TBD05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall operate through a minimum of TBD thermal cycles05/16/2025In ProcessFALSE
- 6.08.04.05The minimum SRF Cavity Slow tuner minimum lifetime shall be TBD years05/16/2025In ProcessFALSE
- 6.08.04.05The minimum SRF CM Slow Tuner 1% range tuning cycles shall be TBD cycles05/16/2025In ProcessFALSE
- 6.08.04.05The minimum SRF CM Slow Tuner full range tuning cycles shall be TBD cycles05/16/2025In ProcessFALSE
- 6.08.04.05The manufactured SRF CM Cavity shall produce no field emission at TBD MV05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM components that are not replaceable in-situ shall be designed with a radiation tolerance greater than TBD MGy05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM components that are replaceable in-situ shall have a radiation tolerance greater than TBD kGy05/16/2025In ProcessFALSE
- 6.08.04.05The active SRF cavity tuning mechanism components (bearings/motor/piezo) shall be replaceable and maintainable in-situ.05/16/2025In ProcessFALSE
- 6.08.04.05All critical monitoring and control instruments that cannot be maintained in-situ shall utilize a back-up instrument.05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM instrument should have maximized instruments that can be maintained and replaced in-situ05/16/2025In ProcessFALSE
- 6.08.04.05The SRF maximum (per cavity) RF longitudinal impedance shall be TBD MΩ GHz05/16/2025In ProcessFALSE
- 6.08.04.05The SRF maximum (per cavity) RF horizontal impedance shall be TBD MΩ/m05/16/2025In ProcessFALSE
- 6.08.04.05nan05/16/2025In ProcessFALSE
- 6.08.04.05The minimum cavity aperture radius shall be TBD mm05/16/2025In ProcessFALSE
- 6.08.04.05The maximum broadband RF power emitted from the CM shall be TBD kW05/16/2025In ProcessFALSE
- 6.08.04.05The Maximum Quadrupole multipole content shall be TBD mT05/16/2025In ProcessFALSE
- 6.08.04.05The Maximum Sextupole multipole content shall be TBD mT/m05/16/2025In ProcessFALSE
- 6.08.04.05The Maximum Octupole multipole content shall be TBD T/m^205/16/2025In ProcessFALSE
- 6.08.04.05The Maximum Decapole multipole content shall be TBD T/m^305/16/2025In ProcessFALSE
- 6.08.04.05The SRF cavity minimum manufactured quality factor (Qo) shall be TBD05/16/2025In ProcessFALSE
- 6.08.04.05The SRF cavity minimum manufactured voltage shall be TBD MV05/16/2025In ProcessFALSE
- 6.08.04.05The SRF cavity fundamental power coupler Qext shall be TBD05/16/2025In ProcessFALSE
- 6.08.04.05The SRF cavity field probe Qext range shall be TBD05/16/2025In ProcessFALSE
- 6.08.04.05The SRF cavity nominal cold frequency shall be TBD MHz05/16/2025In ProcessFALSE
- 6.08.04.05The SRF cavity maximum Niobium temperature shall be TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The SRF Pressure sensitivity maximum shall be TBD Hz/mBar05/16/2025In ProcessFALSE
- 6.08.04.05The SRF maximum Lorentz force detuning shall be TBD Hz/(Mv/m)^205/16/2025In ProcessFALSE
- 6.08.04.05The warm beamline maximum vacuum shall be TBD mbar05/16/2025In ProcessFALSE
- 6.08.04.05The cold beamline maximum vacuum shall be TBD mbar05/16/2025In ProcessFALSE
- 6.08.04.05The beamline vacuum maximum leak rate shall be TBD mbar L/s05/16/2025In ProcessFALSE
- 6.08.04.05The warm insulating maximum vacuum shall be TBD mbar05/16/2025In ProcessFALSE
- 6.08.04.05The cold insulating maximum vacuum shall be TBD mbar05/16/2025In ProcessFALSE
- 6.08.04.05The insulating vacuum maximum leak rate shall be TBD mbar L/s05/16/2025In ProcessFALSE
- 6.08.04.05The minimum SRF Cavity Slow Tuner tuning range shall be shall be -TBD, +TBD kHz05/16/2025In ProcessFALSE
- 6.08.04.05The minimum SRF Cavity slow tuner tuning rate shall be TBD Hz/s05/16/2025In ProcessFALSE
- 6.08.04.05The maximum SRF Cavity Slow Tuner resolution shall be TBD Hz05/16/2025In ProcessFALSE
- 6.08.04.05The maximum SRF Cavity Slow Tuner hysteresis shall be ±TBD Hz05/16/2025In ProcessFALSE
- 6.08.04.05The external warm maximum allowable working pressure of the SRF cavity shall not exceed TBD bar05/16/2025In ProcessFALSE
- 6.08.04.05The external cold maximum allowable working pressure of the SRF cavity shall not exceed TBD bar05/16/2025In ProcessFALSE
- 6.08.04.05The internal maximum allowable working pressure of the SRF cavity shall not exceed TBD bar05/16/2025In ProcessFALSE
- 6.08.04.05All cryomodule surfaces accessible to workers shall be within the temperature range of TBD to TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the EIC code of records to meet all applicable safety standards as defined by ASME B31.305/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the EIC code of records to meet all applicable safety standards as defined by ASME BPVC05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the EIC code of records to meet all applicable safety standards as defined by ASTM C105505/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the EIC code of records to meet all applicable safety standards as defined by NFPA 7005/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by API 520 & API 52105/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the EIC code of records to meet all applicable safety standards as defined by NFPA 70E05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by CGA S1.305/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by AWS05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM maximum length shall be TBD m05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM maximum width shall be TBD m05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM maximum height shall be TBD m05/16/2025In ProcessFALSE
- 6.08.04.05nan05/16/2025In ProcessFALSE
- 6.08.04.05The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in X shall be ±TBD μm05/16/2025In ProcessFALSE
- 6.08.04.05The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Y shall be ±TBD μm05/16/2025In ProcessFALSE
- 6.08.04.05The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Z shall be ±TBD mm05/16/2025In ProcessFALSE
- 6.08.04.05The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the roll shall be ±TBD degrees05/16/2025In ProcessFALSE
- 6.08.04.05The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the pitch shall be ±TBD degrees05/16/2025In ProcessFALSE
- 6.08.04.05The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the yaw shall be ±TBD degrees05/16/2025In ProcessFALSE
- 6.08.04.05Conditioning for individual cavities shall have a maximum average cryogenic power dissipation of TBD W05/16/2025In ProcessFALSE
- 6.08.04.05Conditioning for individual cavities shall be achieved with a maximum temperature of TBD K05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be capable of withstanding a maximum allowable vertical acceleration of TBD G05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be capable of withstanding a maximum allowable lateral acceleration of TBD G05/16/2025In ProcessFALSE
- 6.08.04.05The SRF CM shall be capable of withstanding a maximum allowable beamline axis acceleration of TBD G05/16/2025In ProcessFALSE
- 6.08.04.05The SRF Cryomodule shall be designed to withstand a minimum tilt around the beamline axis (roll) of ±0.26 radians.05/16/2025In ProcessFALSE
- 6.08.04.05The SRF Cryomodule loaded quality factor shall be TBD ± TBD.05/16/2025In ProcessFALSE
- 6.08.04.05The SRF Cryomodule FPC external quality factor balance shall be TBD.05/16/2025In ProcessFALSE
HSR-RF-ACAV:197 : HSR RF Systems NCRF 197 MHz Cavity
- 6.08.05.07The NCRF Cavity System shall be outfitted with flow control, thermometry, vacuum pressure, and RF instrumentation as to monitor and control all sub-systems during operation and testing.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System shall be designed to operate at a maximum steady state temperature of 70°C.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System cooling water subsystem shall be designed to utilize the supply characteristics as defined by the EIC Infrastructure Utility Requirements Document (Doc. No. EIC-IFD-RSI-012).08/15/2025ApprovedFALSE
- 6.08.05.07The minimum NCRF Cavity System Slow Tuner 1% range tuning cycles shall be 1,200,000 cycles.08/15/2025ApprovedFALSE
- 6.08.05.07The minimum NCRF Cavity System Slow Tuner full range tuning cycles shall be shall be 120,000 cycles.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System maximum manufactured field emission at operational voltage shall be 10 Gy.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System components that are not replaceable in-situ shall be designed with a minimum lifetime radiation tolerance of 1,000 kGy.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System components that are replaceable in-situ shall have a minimum lifetime radiation tolerance of 1 kGy.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System critical monitoring and control instruments that cannot be maintained in-situ shall utilize a back-up instrument.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System shall maximize the number of instrumentats that can be maintained and replaced in-situ.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System components shall be ergonomically accessible.08/15/2025ApprovedFALSE
- 6.08.05.07The sum of all NCRF Cavity System RF longitudinal impedance (accelerator definition) shall be no greater than 180 kΩ Ghz.08/15/2025ApprovedFALSE
- 6.08.05.07The sum of all NCRF Cavity System RF horizontal impedance (accelerator definition) shall be no greater than 5 MΩ/m.08/15/2025ApprovedFALSE
- 6.08.05.07The sum of all NCRF Cavity System RF vertical impedance (accelerator definition) shall be no greater than 5 MΩ/m.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System minimum cavity aperture radius shall be 75 mm.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System maximum broadband RF power emitted from the cavity via the beampipe shall be 1 kW.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System minimum manufactured quality factor (Qo) shall be 43,000.08/15/2025ApprovedFALSE
- 6.08.05.07The sum of all NCRF Cavity System minimum manufactured gradients shall be 6 MV.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System field probe Qext range shall be (1.7 ± 0.4)e8.11/12/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System nominal frequency shall be 197.051 MHz.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System FPC external quality factor shall be (4.8 ± 0.2)e4.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System FPC window design shall be rated to a minimum input power of 60 kW Continuous Wave.11/12/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System loop HOM Damper maximum total broadband power on each shall be 5 kW.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System e-probe HOM Damper maximum total broadband power on each shall be 0.1 kW.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System loop HOM Damper maximum fundamental power leakage under nominal frequency and voltage shall be 200 W.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System maximum beamline vacuum shall be 5.0e-10 mbar.08/15/2025In ProcessFALSE
- 6.08.05.07The NCRF Cavity System maximum beamline vacuum leak rate shall be 5.0e-10 mbar L/s.08/15/2025In ProcessFALSE
- 6.08.05.07The NCRF Cavity System Slow Tuner tuning range shall be -120 to +120 KHz.08/15/2025ApprovedFALSE
- 6.08.05.07The minimum NCRF Cavity System slow tuner resolution shall be ± 10 Hz.08/15/2025ApprovedFALSE
- 6.08.05.07The minimum NCRF Cavity System slow tuner tuning rate shall be 1,600 Hz/s.08/15/2025ApprovedFALSE
- 6.08.05.07The maximum NCRF Cavity System Slow Tuner hysteresis shall be ± 100 Hz.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System maximum Qext of the Fundamental Mode Damper shall be 500 when the FMD is fully inserted.11/12/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System Fundamental Mode Damper shall handle a minimum power of 20 W.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System Fundamental Mode Damper maximum insertion time, from the externally tangential to cavity inner surface position to the fully inserted position, shall be 1 second.11/12/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System Fundamental Mode Damper maximum retraction time, from the fully inserted position to the externally tangential to cavity inner surface position, shall be 0. 7 seconds11/12/2025ApprovedFALSE
- 6.08.05.07All NCRF Cavity System surfaces accessible to workers shall be less than 60°C.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by ASME B31.3.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by ASME BPVC.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by ASTM C1055.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by NFPA 70.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by NFPA 70E.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System shall be designed and manufactured as directed by the BNL SBMS to meet all applicable safety standards as defined by API 520 & API 521.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System shall be designed and manufactured as directed by the BNL SBMS to meet all applicable safety standards as defined by AWS.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System shall be designed and manufactured as directed by the BNL SBMS to meet all applicable safety standards as defined by the DOE Vacuum Vessel Consensus Standards.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System full assembly maximum length shall be 0.9 m.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System full assembly maximum width shall be 1.9 m.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System full assembly maximum height (including tetrode amplifier) shall be 3.0 m.08/15/2025ApprovedFALSE
- 6.08.05.07The distance from the NCRF Cavity System beamline to the tunnel floor shall be 1270 ± 15 mm.11/12/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System Electromagnetic Center Alignment Tolerance in X shall be ± 0.7 mm.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System Electromagnetic Center Alignment Tolerance in Y shall be ± 0.7 mm.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System Electromagnetic Center Alignment Tolerance in Z shall be ± 10 mm.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System Electromagnetic Center Alignment Tolerance for the roll shall be ± 0.1 radians.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System Electromagnetic Center Alignment Tolerance for the pitch shall be ± 0.1 radians.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System Electromagnetic Center Alignment Tolerance for the yaw shall be ± 0.1 radians.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System shall be capable of withstanding a maximum allowable vertical acceleration of 4 G.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System shall be capable of withstanding a maximum allowable lateral acceleration of 1.5 G.08/15/2025ApprovedFALSE
- 6.08.05.07The NCRF Cavity System shall be capable of withstanding a maximum allowable beamline axis acceleration of 5 G.08/15/2025ApprovedFALSE
HSR-RF-ACAV:24 : HSR RF System NCRF 24.6 MHz Cavity
- 6.08.05.04The NCRF Cavity System shall be outfitted with flow control, thermometry, vacuum pressure, and RF instrumentation as to monitor and control all sub-systems during operation and testing.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System shall be designed to operate at a maximum steady state temperature of 70°C.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System cooling water subsystem shall be designed to utilize the supply characteristics as defined by the EIC Infrastructure Utility Requirements Document (Doc. No. EIC-IFD-RSI-012).05/16/2025ApprovedFALSE
- 6.08.05.04The minimum lifetime NCRF Cavity System Slow Tuner 1% range tuning cycles shall be 1,200,000 cycles.08/29/2025ApprovedFALSE
- 6.08.05.04The minimum lifetime NCRF Cavity System Slow Tuner full range tuning cycles shall be 120,000 cycles.08/29/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System maximum manufactured field emission at operational voltage shall be 10 Gy.07/02/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System components that are not replaceable in-situ shall be designed with a minimum lifetime radiation tolerance of 1,000 kGy.07/02/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System components that are replaceable in-situ shall have a minimum lifetime radiation tolerance of 1 kGy.07/02/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System critical monitoring and control instruments that cannot be maintained in-situ shall utilize a back-up instrument.07/02/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System shall maximize the number of instruments that can be maintained and replaced in-situ.07/02/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System components shall be ergonomically accessible.07/02/2025ApprovedFALSE
- 6.08.05.04The sum of all NCRF Cavity System RF longitudinal impedance (accelerator definition) shall be no greater than 180 kΩ Ghz.05/16/2025ApprovedFALSE
- 6.08.05.04The sum of all NCRF Cavity System RF horizontal impedance (accelerator definition) shall be no greater than 5 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.05.04The sum of all NCRF Cavity System RF vertical impedance (accelerator definition) shall be no greater than 5 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System minimum cavity aperture radius shall be 75 mm.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System maximum broadband RF power emitted from the cavity via both beampipe ports shall be 1 kW.08/29/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System minimum manufactured quality factor (Qo) shall be 12,500.05/16/2025ApprovedFALSE
- 6.08.05.04The sum of all NCRF Cavity System minimum accelerating voltages shall be 0.6 MV.08/29/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System field probe external quality factor (Qext) range shall be (2.7 ± 0.5)e7.08/29/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System nominal frequency shall be 24.631 MHz.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System FPC external quality factor shall be (7.1 ± 0.3)e3.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System FPC window design shall be rated to a minimum input power of 60 kW continuous wave.08/29/2025ApprovedFALSE
- 6.08.05.04The maximum total broadbad power on each NCRF Cavity System loop HOM Damper shall be 5 kW.08/29/2025ApprovedFALSE
- 6.08.05.04The maximum total broadband power on each NCRF Cavity System e-probe HOM Damper shall be 0.1 kW.08/29/2025ApprovedFALSE
- 6.08.05.04The maximum fundamental power leakage under nominal frequency and voltage of the NCRF Cavity System loop HOM Damper shall be 200 W.08/29/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System maximum beamline vacuum shall be 5.0e-10 mbar.05/16/2025In ProcessFALSE
- 6.08.05.04The NCRF Cavity System maximum beamline vacuum leak rate shall be 5.0e-10 mbar L/s.05/16/2025In ProcessFALSE
- 6.08.05.04The NCRF Cavity System Slow Tuner tuning range shall be -160 to +40 KHz.05/16/2025ApprovedFALSE
- 6.08.05.04The minimum NCRF Cavity System slow tuner resolution shall be ± 500 Hz.08/29/2025ApprovedFALSE
- 6.08.05.04The minimum NCRF Cavity System slow tuner tuning rate shall be 1,600 Hz/s.08/29/2025ApprovedFALSE
- 6.08.05.04The maximum NCRF Cavity System Slow Tuner hysteresis shall be ± 2,500 Hz.08/29/2025ApprovedFALSE
- 6.08.05.04The minimum NCRF Cavity System Fast Tuner tuning range shall be 20 kHz.05/16/2025ApprovedFALSE
- 6.08.05.04The minimum NCRF Cavity System Fast Tuner resolution shall be ± 10 Hz.05/16/2025ApprovedFALSE
- 6.08.05.04The minimum NCRF Cavity System Fast tuning rate shall be 10 MHz/s.05/16/2025ApprovedFALSE
- 6.08.05.04The maximum NCRF Cavity System Fast Tuner hysteresis shall be ± 100 Hz.05/16/2025ApprovedFALSE
- 6.08.05.04All NCRF Cavity System surfaces accessible to workers shall be less than 60°C.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by ASME B31.3.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by ASME BPVC.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by ASTM C1055.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by NFPA 70.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by NFPA 70E.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System shall be designed and manufactured as directed by the BNL SBMS to meet all applicable safety standards as defined by API 520 & API 521.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System shall be designed and manufactured as directed by the BNL SBMS to meet all applicable safety standards as defined by AWS.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System shall be designed and manufactured as directed by the BNL SBMS to meet all applicable safety standards as defined by the DOE Vacuum Vessel Consensus Standards.07/22/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System full assembly maximum length shall be 3.0 m.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System full assembly maximum width shall be 1.8 m.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System full assembly maximum height (including tetrode amplifier) shall be 2.3 m.05/16/2025ApprovedFALSE
- 6.08.05.04The distance from the NCRF Cavity System beamline to the tunnel floor shall be 1270.0 ± 15 mm.08/29/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System Electromagnetic Center Alignment Tolerance in X shall be ± 0.7 mm.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System Electromagnetic Center Alignment Tolerance in Y shall be ± 0.7 mm.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System Electromagnetic Center Alignment Tolerance in Z shall be ± 10 mm.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System Electromagnetic Center Alignment Tolerance for the roll shall be ± 0.1 radians.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System Electromagnetic Center Alignment Tolerance for the pitch shall be ± 0.1 radians.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System Electromagnetic Center Alignment Tolerance for the yaw shall be ± 0.1 radians.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System shall be capable of withstanding a maximum allowable vertical acceleration of 4 G.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System shall be capable of withstanding a maximum allowable lateral acceleration of 1.5 G.05/16/2025ApprovedFALSE
- 6.08.05.04The NCRF Cavity System shall be capable of withstanding a maximum allowable beamline axis acceleration of 5 G.05/16/2025ApprovedFALSE
HSR-RF-ACAV:49 : HSR RF Systems NCRF 49.2 MHz Cavity
- 6.08.05.05The NCRF Cavity System shall be outfitted with flow control, thermometry, vacuum pressure, and RF instrumentation as to monitor and control all sub-systems during operation and testing.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System shall be designed to operate at a maximum steady state temperature of 70°C.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System cooling water subsystem shall be designed to utilize the supply characteristics as defined by the EIC Infrastructure Utility Requirements Document (Doc. No. EIC-IFD-RSI-012).05/16/2025ApprovedFALSE
- 6.08.05.05The minimum NCRF Cavity System Slow Tuner 1% range tuning cycles shall be 1,200,000 cycles.05/16/2025ApprovedFALSE
- 6.08.05.05The minimum NCRF Cavity System Slow Tuner full range tuning cycles shall be shall be 120,000 cycles.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System maximum manufactured field emission at operational voltage shall be 10 Gy.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System components that are not replaceable in-situ shall be designed with a minimum lifetime radiation tolerance of 1,000 kGy.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System components that are replaceable in-situ shall have a minimum lifetime radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System critical monitoring and control instruments that cannot be maintained in-situ shall utilize a back-up instrument.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System shall maximize the number of instrumentats that can be maintained and replaced in-situ.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System components shall be ergonomically accessible.05/16/2025ApprovedFALSE
- 6.08.05.05The sum of all NCRF Cavity System RF longitudinal impedance (accelerator definition) shall be no greater than 180 kΩ Ghz.05/16/2025ApprovedFALSE
- 6.08.05.05The sum of all NCRF Cavity System RF horizontal impedance (accelerator definition) shall be no greater than 5 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.05.05The sum of all NCRF Cavity System RF vertical impedance (accelerator definition) shall be no greater than 5 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System minimum cavity aperture radius shall be 75 mm.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System maximum broadband RF power emitted from the cavity via the beampipe shall be 1 kW.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System minimum manufactured quality factor (Qo) shall be 10,000.05/16/2025ApprovedFALSE
- 6.08.05.05The sum of all NCRF Cavity System minimum manufactured gradients shall be 0.5 MV.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System field probe Qext range shall be (5.3 ± 1.0)e7.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System nominal frequency shall be 49.263 MHz.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System FPC external quality factor shall be (4.6 ± 0.2)e3.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System FPC window design shall be rated to a minimum input power of 120 kW Continuous Wave.11/12/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System loop HOM Damper maximum total broadband power on each shall be 5 kW.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System e-probe HOM Damper maximum total broadband power on each shall be 0.5 kW.11/12/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System loop HOM Damper maximum fundamental power leakage under nominal frequency and voltage shall be 200 W.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System maximum beamline vacuum shall be 5.0e-10 mbar.05/16/2025In ProcessFALSE
- 6.08.05.05The NCRF Cavity System maximum beamline vacuum leak rate shall be 5.0e-10 mbar L/s.05/16/2025In ProcessFALSE
- 6.08.05.05The NCRF Cavity System Slow Tuner tuning range shall be -280 to +40 KHz.05/16/2025ApprovedFALSE
- 6.08.05.05The minimum NCRF Cavity System slow tuner resolution shall be ± 500 Hz.11/12/2025ApprovedFALSE
- 6.08.05.05The minimum NCRF Cavity System slow tuner tuning rate shall be 1600 Hz/s.05/16/2025ApprovedFALSE
- 6.08.05.05The maximum NCRF Cavity System Slow Tuner hysteresis shall be ± 2500 Hz.11/12/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System maximum Qext of the Fundamental Mode Damper shall be 250 when the FMD is fully inserted.11/12/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System Fundamental Mode Damper shall handle a minimum power of 5 kW.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System Fundamental Mode Damper maximum insertion time, from the externally tangential to cavity inner surface position to the fully inserted position, shall be 1 second.11/12/2025ApprovedFALSE
- 6.08.05.05he NCRF Cavity System Fundamental Mode Damper maximum retraction time, from the fully inserted position to the externally tangential to cavity inner surface position, shall be 0.2 seconds11/12/2025ApprovedFALSE
- 6.08.05.05All NCRF Cavity System surfaces accessible to workers shall be less than 60°C.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by ASME B31.3.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by ASME BPVC.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by ASTM C1055.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by NFPA 70.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by NFPA 70E.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System shall be designed and manufactured as directed by the BNL SBMS to meet all applicable safety standards as defined by API 520 & API 521.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System shall be designed and manufactured as directed by the BNL SBMS to meet all applicable safety standards as defined by AWS.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System shall be designed and manufactured as directed by the BNL SBMS to meet all applicable safety standards as defined by the DOE Vacuum Vessel Consensus Standards.07/22/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System full assembly maximum length shall be 1.5 m.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System full assembly maximum width shall be 1.9 m.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System full assembly maximum height shall be 1.9 m.05/16/2025ApprovedFALSE
- 6.08.05.05The distance from the NCRF Cavity System beamline to the tunnel floor shall be 1270 ± 15 mm.11/12/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System Electromagnetic Center Alignment Tolerance in X shall be ± 0.7 mm.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System Electromagnetic Center Alignment Tolerance in Y shall be ± 0.7 mm.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System Electromagnetic Center Alignment Tolerance in Z shall be ± 10 mm.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System Electromagnetic Center Alignment Tolerance for the roll shall be ± 0.1 radians.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System Electromagnetic Center Alignment Tolerance for the pitch shall be ± 0.1 radians.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System Electromagnetic Center Alignment Tolerance for the yaw shall be ± 0.1 radians.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System shall be capable of withstanding a maximum allowable vertical acceleration of 4 G.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System shall be capable of withstanding a maximum allowable lateral acceleration of 1.5 G.05/16/2025ApprovedFALSE
- 6.08.05.05The NCRF Cavity System shall be capable of withstanding a maximum allowable beamline axis acceleration of 5 G.05/16/2025ApprovedFALSE
- 6.08.05Infrastructure shall provide supply and return headers within the tunnel for Low Conductivity Water (LCW) to be utilized by NCRF systems.09/04/2025In ProcessFALSE
- 6.08.05Infrastructure shall provide Low Conductivity Water (LCW) to/from the common supply/return header(s) to be utilized by NCRF systems.09/04/2025In ProcessFALSE
- 6.08.05RF Pre-Installation shall provide all distribution design, materials, and installation of the piping (or hoses) for Low Conductivity Water (LCW) from the tunnel header to the systems to be utilized by NCRF systems.09/04/2025In ProcessFALSE
- 6.08.05NCRF systems shall provide Low Conductivity Water (LCW) supply/return receptacles at the systems to facilitate installation by RF Pre-Installation.09/04/2025In ProcessFALSE
- 6.08.05NCRF systems shall provide instrument air receptacles to be utilized by TBD.09/04/2025In ProcessFALSE
- 6.08.05TBD shall provide an instrument air supply system for the required NCRF systems components in the tunnel.09/04/2025In ProcessFALSE
- 6.08.05TBD shall provide all routing design, installation, and control logic to the instrument air receptacles on the NCRF systems.09/04/2025In ProcessFALSE
- 6.08.05NCRF systems shall provide Beamline All Metal Gate Valve receptacles and controllers to be utilized by HSR Vacuum System.10/08/2025In ProcessFALSE
- 6.08.05NCRF systems shall provide Beamline Ion pump receptacles and controllers to be utilized by HSR Vacuum System.10/08/2025In ProcessFALSE
- 6.08.05NCRF systems shall provide Vacuum pressure receptacles and controllers to be utilized by HSR Vacuum System.10/08/2025In ProcessFALSE
- 6.08.05TBD shall provide all cabling, routing design, installation, and control logic to the NCRF cavity vacuum control receptacles at the NCRF cavity to be utilized by NCRF systems.09/04/2025In ProcessFALSE
- 6.08.05NCRF systems shall provide a RF signal pickup port to be utilized by RF Controls.10/08/2025In ProcessFALSE
- 6.08.05NCRF systems shall provide temperature sensor with wires to the applicable building(s) to be utilized by RF Controls.10/08/2025In ProcessFALSE
- 6.08.05NCRF systems shall provide tuner motor with wires to the applicable building(s) to be utilized by RF Controls.10/08/2025In ProcessFALSE
- 6.08.05RF Controls shall provide all cabling, routing design, and control logic to the NCRF cavity control instrumentation at the cavity to be utilized by NCRF systems.10/08/2025In ProcessFALSE
- 6.08.05High Power RF shall design and provide a coaxial line to be utilized by NCRF systems.09/04/2025In ProcessFALSE
- 6.08.05NCRF systems shall provide a receptacle for the High Power RF coaxial line to be utilized by High Power RF.09/04/2025In ProcessFALSE
- 6.08.05Accelerator Installation shall provide the schedule and funding for the coaxial line installation to the NCRF systems.09/04/2025In ProcessFALSE
- 6.08.05High Power RF shall provide DC Bias to be utilized by the NCRF Systems.09/04/2025In ProcessFALSE
- 6.08.05NCRF Systems shall provide a receptable on the NCRF systems for the DC Bias connection to be used by High Power RF.09/04/2025In ProcessFALSE
- 6.08.05High Power RF shall provide all design, fabrication, and controls of the DC Bias system to be utilized by NCRF Systems.09/04/2025In ProcessFALSE
- 6.08.05NCRF systems shall provide water flow instrumentation with wires to the applicable building(s) to be utilized by TBD for fault detection.10/08/2025In ProcessFALSE
- 6.08.05NCRF systems shall provide air flow instrumentation with wires to the applicable building(s) to be utilize by TBD.10/08/2025In ProcessFALSE
- 6.08.05HPRF shall provide all cabling, routing design, and installation to the NCRF cavity monitor receptacles at the cavity to be utilized by NCRF systems.09/04/2025In ProcessFALSE
- 6.08.05NCRF Systems shall provide fiducialization points on the NCRF cavities relating back to the electromagnetic center of the beamline to be utilized by Accelerator Installation.09/04/2025In ProcessFALSE
- 6.08.05RF Pre-Installation shall arrange the installation location/area to be utilized by NCRF Systems.09/04/2025In ProcessFALSE
- 6.08.05Accelerator Installation shall provide the schedule and funding for the NCRF systems installation and app technician support (lag bolts/rough alignment/pedestal/etc.).09/04/2025In ProcessFALSE
- 6.08.05The Mechanical Design Group shall model the tunnel to define the required spatial locations to be utilized by NCRF Systems.09/04/2025In ProcessFALSE
- 6.08.05NCRF Systems shall provide a receptacle for the beamline connection on both ends of the NCRF cavities to be utilized by HSR Vacuum Systems.09/04/2025In ProcessFALSE
- 6.08.05HSR Vacuum System shall provide installation labor of the NCRF systems to the beamline.09/04/2025In ProcessFALSE
- 6.08.05TBD shall ensure that during installation the NCRF systems cleanliness does not degrade.09/04/2025In ProcessFALSE
HSR-RF-ACAV:591S
- 6.08.04.01The SRF Cryomodule shall be outfitted with flow control, thermometry, pressure, and RF instrumentation as to monitor and control all sub-systems during the cooldown, warm-up, operation and testing.05/16/2025In ProcessFALSE
- 6.08.04.01The cavity helium bath maximum operational temperature shall be 2 K.05/16/2025In ProcessFALSE
- 6.08.04.01The cavity helium bath maximum operational pressure shall be 30 mbar.05/16/2025In ProcessFALSE
- 6.08.04.01The cavity helium bath operation pressure stability shall be ±0.1 mbar.05/16/2025In ProcessFALSE
- 6.08.04.01The maximum helium supply operational temperature shall be 5.5 K.05/16/2025In ProcessFALSE
- 6.08.04.01The range of the helium supply operational pressure shall be 3 to 3.5 bar.05/16/2025In ProcessFALSE
- 6.08.04.01The range of the combined helium return temperature shall be 64 to 66 K.05/16/2025In ProcessFALSE
- 6.08.04.01The range of the combined helium return pressure shall be 2.4 to 2.6 bar.05/16/2025In ProcessFALSE
- 6.08.04.01The maximum sub-atmospheric helium return temperature shall be 4.5 K.05/16/2025In ProcessFALSE
- 6.08.04.01The maximum Subatmospheric helium return pressure shall be 30 mbar.05/16/2025In ProcessFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 300K to 150K shall be 10 K/hour.05/16/2025In ProcessFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 150K to 50K shall be 30 K/hour.05/16/2025In ProcessFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 50K to 4.5K shall be 10 K/hour.05/16/2025In ProcessFALSE
- 6.08.04.01The minimum cooldown rate of the SRF cavity between 4.5K to 2K shall be 0.5 K/hour.05/16/2025In ProcessFALSE
- 6.08.04.01The minimum warmup rate of the SRF cavity between 50K to 150K shall be 30 K/hour.05/16/2025In ProcessFALSE
- 6.08.04.01The maximum thermal radiative heat transfer to all 2K and 5K surfaces shall be 2 W/cm^2.05/16/2025In ProcessFALSE
- 6.08.04.01The maximum thermal radiative heat transfer to all 50K surfaces shall be 2 W/m^2.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall achieve steady state temperature with the cavity bath at 4K in a maximum of 2 days.05/16/2025In ProcessFALSE
- 6.08.04.01The chilled water and low-conductivity water operational temperature range shall be 295 to 315 K.05/16/2025In ProcessFALSE
- 6.08.04.01The chilled water and low-conductivity water operational pressure range shall be 7.5 to 8.5 bar.05/16/2025In ProcessFALSE
- 6.08.04.01The minimum magnetic shield attenuation factor at SRF cavity equator shall be 50 .05/16/2025In ProcessFALSE
- 6.08.04.01The SRF cryomodule maximum design ambient magnetic field amplitude shall be 700 mG.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall operate through a minimum of 200 thermal cycles.05/16/2025In ProcessFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner 1% range tuning cycles shall be 100000 cycles.05/16/2025In ProcessFALSE
- 6.08.04.01The minimum SRF Cryomodule Slow Tuner full range tuning cycles shall be 1000 cycles05/16/2025In ProcessFALSE
- 6.08.04.01The manufactured SRF Cryomodule Cavity shall produce no field emission at 4 MV05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule components that cannot be maintained in-situ shall be designed with a minimum lifetime radiation tolerance of 1000 kGy05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule components that can be maintained in-situ shall have an annual minimum radiation tolerance of 1 kGy05/16/2025In ProcessFALSE
- 6.08.04.01The active SRF cavity tuning mechanism components (bearings/motor/piezo) shall be replaceable and maintainable in-situ.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cavity Fast Tuner shall have a minimum lifetime of 1 year between maintenance cycles .05/16/2025In ProcessFALSE
- 6.08.04.01All critical monitoring and control instruments that cannot be maintained in-situ shall utilize a back-up instrument.05/16/2025In ProcessFALSE
- 6.08.04.01The total SRF maximum RF longitudinal impedance (accelerator definition) shall be 52 MΩ Ghz.05/16/2025In ProcessFALSE
- 6.08.04.01The total SRF maximum RF horizontal impedance (accelerator definition) shall be 24 MΩ/m.05/16/2025In ProcessFALSE
- 6.08.04.01The total SRF maximum RF vertical impedance (accelerator definition) shall be 24 MΩ/m.05/16/2025In ProcessFALSE
- 6.08.04.01The minimum cavity aperture radius shall be 30 mm.05/16/2025In ProcessFALSE
- 6.08.04.01The maximum broadband RF power emitted from the cryomodule shall be 30 kW for all EIC design energies and currents.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to operate with a beam current up to 2.5 A.05/16/2025In ProcessFALSE
- 6.08.04.01The Maximum Dipole content shall be 50 mT-m.05/16/2025In ProcessFALSE
- 6.08.04.01The Maximum Quadrupole content shall be 4 mT.05/16/2025In ProcessFALSE
- 6.08.04.01The Maximum Sextuple content shall be 2 T/m.05/16/2025In ProcessFALSE
- 6.08.04.01The Maximum Octupole content shall be 50 mT/m^2.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF cavity minimum manufactured quality factor (Qo) shall be 1.5E10.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF cavity minimum manufactured gradient shall be 4 MV.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF cavity field probe Qext range shall be 1.00E11 to 2.00E11.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF cavity nominal cold frequency shall be 591.149 MHz.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF pressure sensitivity maximum shall be 10 Hz/mbar.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF maximum lorentz force detuning shall be 5 Hz/(MV/m)^2.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF cavity maximum Niobium temperature shall be 5 K.05/16/2025In ProcessFALSE
- 6.08.04.01The warm beamline maximum vacuum shall be 5.0e-7 mbar.05/16/2025In ProcessFALSE
- 6.08.04.01The cold beamline maximum vacuum shall be 1.0e-9 mbar.05/16/2025In ProcessFALSE
- 6.08.04.01The beamline vacuum maximum leak rate shall be 5e-10 mbar L/s.05/16/2025In ProcessFALSE
- 6.08.04.01The warm insulating maximum vacuum shall be 1.0e-5 mbar.05/16/2025In ProcessFALSE
- 6.08.04.01The cold insulating maximum vacuum shall be 5.0e-7 mbar.05/16/2025In ProcessFALSE
- 6.08.04.01The insulating vacuum maximum leak rate shall be 1.0e-8 mbar L/s.05/16/2025In ProcessFALSE
- 6.08.04.01The The minimum SRF Cavity Slow Tuner tuning range shall be shall be 600 KHz.05/16/2025In ProcessFALSE
- 6.08.04.01The minimum SRF Cavity slow tuner tuning rate shall be 800 Hz/s.05/16/2025In ProcessFALSE
- 6.08.04.01The maximum SRF Cavity Slow Tuner resolution shall be ±1 Hz.05/16/2025In ProcessFALSE
- 6.08.04.01The maximum SRF Cavity Slow Tuner hysteresis shall be ±10 Hz.05/16/2025In ProcessFALSE
- 6.08.04.01The minimum SRF Cavity Fast Tuner tuning range shall be 400 Hz.05/16/2025In ProcessFALSE
- 6.08.04.01The minimum SRF Cavity Fast Tuner resolution shall be ±1 Hz.05/16/2025In ProcessFALSE
- 6.08.04.01The minimum SRF Cavity Fast Tuner tuning rate shall be 10000 Hz/s.05/16/2025In ProcessFALSE
- 6.08.04.01The maximum SRF Cavity Fast Tuner hysteresis shall be ±1 Hz.05/16/2025In ProcessFALSE
- 6.08.04.01The external warm maximum allowable working pressure of the SRF cavity shall not exceed 2.2 bar.05/16/2025In ProcessFALSE
- 6.08.04.01The external cold maximum allowable working pressure of the SRF cavity shall not exceed 5.2 bar.05/16/2025In ProcessFALSE
- 6.08.04.01The internal maximum allowable working pressure of the SRF cavity shall not exceed 1.8 bar.05/16/2025In ProcessFALSE
- 6.08.04.01All cryomodule surfaces accessible to workers shall be within the temperature range of 283 to 333 K.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by ASME B31.3.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by ASME BPVC.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by ASTM C1055.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by NFPA 70.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by NFPA 70E.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by API 520 & API 521.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by CGA S1.3.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall be designed and manufactured as directed by the JLAB ES&H Manual to meet all applicable safety standards as defined by AWS.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to meet all applicable standards as directed by the DOE Vacuum Vessel Consensus Standards .05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule maximum length shall be 7.2 m.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule maximum width shall be 2.15 m.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule maximum height shall be 1.7 m.05/16/2025In ProcessFALSE
- 6.08.04.01The distance from the beamline to the tunnel floor shall be 1381.09 ± 20 mm.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in X shall be ±250 μm.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Y shall be ±250 μm.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance in Z shall be ±5 mm.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the roll shall be ±0.04 radians.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the pitch shall be ±0.01 radians.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule Cavity Electromagnetic Center Alignment Tolerance for the yaw shall be ±0.01 radians.05/16/2025In ProcessFALSE
- 6.08.04.01Conditioning for individual cavities shall have a maximum average cryogenic power dissipation of 200 W.05/16/2025In ProcessFALSE
- 6.08.04.01Conditioning for individual cavities shall be achieved with a maximum temperature of 2.1 K.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall be capable of withstanding a maximum allowable vertical acceleration of ±4 G.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall be capable of withstanding a maximum allowable lateral acceleration of ±1.5 G.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall be capable of withstanding a maximum allowable beamline axis acceleration of ±5 G.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule shall be designed to withstand a tilt around the beamline axis (roll) up to ±1.4 radians.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule cavity loaded quality factor shall be 2.9e5 ± TBD.05/16/2025In ProcessFALSE
- 6.08.04.01The SRF Cryomodule FPC external quality factor balance shall be TBD.05/16/2025In ProcessFALSE
HSR-RF-ACAV:98 : HSR RF Systems NCRF 98.4 MHz Cavity
- 6.08.05.06The NCRF Cavity System shall be outfitted with flow control, thermometry, vacuum pressure, and RF instrumentation as to monitor and control all sub-systems during operation and testing.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System shall be designed to operate at a maximum steady state temperature of 70°C.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System cooling water subsystem shall be designed to utilize the supply characteristics as defined by the EIC Infrastructure Utility Requirements Document (Doc. No. EIC-IFD-RSI-012).05/16/2025ApprovedFALSE
- 6.08.05.06The minimum NCRF Cavity System Slow Tuner 1% range tuning cycles shall be 1,200,000 cycles.05/16/2025ApprovedFALSE
- 6.08.05.06The minimum NCRF Cavity System Slow Tuner full range tuning cycles shall be shall be 120,000 cycles.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System maximum manufactured field emission at operational voltage shall be 10 Gy.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System components that are not replaceable in-situ shall be designed with a minimum lifetime radiation tolerance of 1,000 kGy.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System components that are replaceable in-situ shall have a minimum lifetime radiation tolerance of 1 kGy.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System critical monitoring and control instruments that cannot be maintained in-situ shall utilize a back-up instrument.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System shall maximize the number of instrumentats that can be maintained and replaced in-situ.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System components shall be ergonomically accessible.05/16/2025ApprovedFALSE
- 6.08.05.06The sum of all NCRF Cavity System RF longitudinal impedance (accelerator definition) shall be no greater than 180 kΩ Ghz.05/16/2025ApprovedFALSE
- 6.08.05.06The sum of all NCRF Cavity System RF horizontal impedance (accelerator definition) shall be no greater than 5 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.05.06The sum of all NCRF Cavity System RF vertical impedance (accelerator definition) shall be no greater than 5 MΩ/m.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System minimum cavity aperture radius shall be 37.5 mm.11/12/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System maximum broadband RF power emitted from the cavity via the beampipe shall be 1 kW.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System minimum manufactured quality factor (Qo) shall be 7,650.05/16/2025ApprovedFALSE
- 6.08.05.06The sum of all NCRF Cavity System minimum manufactured gradients shall be 0.6 MV.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System field probe Qext range shall be (5.4 ± 1.0)e7.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System nominal frequency shall be 98.525 MHz.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System FPC external quality factor shall be (3.9 ± 0.2)e3.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System FPC window design shall be rated to a minimum input power of 120 kW Continuous Wave.11/12/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System loop HOM Damper maximum total broadband power on each shall be 5 kW.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System e-probe HOM Damper maximum total broadband power on each shall be 0.5 kW.11/12/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System loop HOM Damper maximum fundamental power leakage under nominal frequency and voltage shall be 200 W.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System maximum beamline vacuum shall be 5.0e-10 mbar.05/16/2025In ProcessFALSE
- 6.08.05.06The NCRF Cavity System maximum beamline vacuum leak rate shall be 5.0e-10 mbar L/s.05/16/2025In ProcessFALSE
- 6.08.05.06The NCRF Cavity System Slow Tuner tuning range shall be -120 to +120 KHz.05/16/2025ApprovedFALSE
- 6.08.05.06The minimum NCRF Cavity System slow tuner resolution shall be ± 500 Hz.11/12/2025ApprovedFALSE
- 6.08.05.06The minimum NCRF Cavity System slow tuner tuning rate shall be 1600 Hz/s.05/16/2025ApprovedFALSE
- 6.08.05.06The maximum NCRF Cavity System Slow Tuner hysteresis shall be ± 2500 Hz.11/12/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System maximum Qext of the Fundamental Mode Damper shall be 150 when the FMD is fully inserted.11/12/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System Fundamental Mode Damper shall handle a minimum power of 5 kW.05/16/2025ApprovedFALSE
- 6.08.05.06he NCRF Cavity System Fundamental Mode Damper maximum insertion time, from the externally tangential to cavity inner surface position to the fully inserted position, shall be 1 second.11/12/2025ApprovedFALSE
- 6.08.05.06he NCRF Cavity System Fundamental Mode Damper maximum retraction time, from the fully inserted position to the externally tangential to cavity inner surface position, shall be 0.2 seconds.11/12/2025ApprovedFALSE
- 6.08.05.06All NCRF Cavity System surfaces accessible to workers shall be less than 60°C.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by ASME B31.3.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by ASME BPVC.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by ASTM C1055.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by NFPA 70.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System shall be designed and manufactured to meet all applicable standards,as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA), as defined by NFPA 70E.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System shall be designed and manufactured as directed by the BNL SBMS to meet all applicable safety standards as defined by API 520 & API 521.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System shall be designed and manufactured as directed by the BNL SBMS to meet all applicable safety standards as defined by AWS.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System shall be designed and manufactured as directed by the BNL SBMS to meet all applicable safety standards as defined by the DOE Vacuum Vessel Consensus Standards.07/22/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System full assembly maximum length shall be 0.9 m.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System full assembly maximum width shall be 1.5 m.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System full assembly maximum height shall be 1.3 m.05/16/2025ApprovedFALSE
- 6.08.05.06The distance from the NCRF Cavity System beamline to the tunnel floor shall be 1270 ± 15 mm.11/12/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System Electromagnetic Center Alignment Tolerance in X shall be ± 0.7 mm.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System Electromagnetic Center Alignment Tolerance in Y shall be ± 0.7 mm.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System Electromagnetic Center Alignment Tolerance in Z shall be ± 10 mm.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System Electromagnetic Center Alignment Tolerance for the roll shall be ± 0.1 radians.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System Electromagnetic Center Alignment Tolerance for the pitch shall be ± 0.1 radians.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System Electromagnetic Center Alignment Tolerance for the yaw shall be ± 0.1 radians.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System shall be capable of withstanding a maximum allowable vertical acceleration of 4 G.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System shall be capable of withstanding a maximum allowable lateral acceleration of 1.5 G.05/16/2025ApprovedFALSE
- 6.08.05.06The NCRF Cavity System shall be capable of withstanding a maximum allowable beamline axis acceleration of 5 G.05/16/2025ApprovedFALSE
HSR-RF-NCRF
HSR-RF-NCRF-ACAV:197
- 6.02.03.09.04Infrastructure shall provide supply and return headers within the tunnel for Chilled Water (CW) to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.04Infrastructure shall provide Chilled Water (CW) to/from the common supply/return header(s) to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.04NCRF systems shall provide Chilled Water (CW) supply/return receptacles on the HSR 197 MHz cavity to facilitate installation.01/08/2026In ProcessFALSE
- 6.02.03.09.04NCRF systems shall provide water flow instrumentation with wire which satisfies the LLRF cable schematic bill of material to the applicable building(s).01/08/2026In ProcessFALSE
- 6.02.03.09.04Mechanical group shall provide all distribution design and bill of materials for the piping (or hoses) for the Chilled Water (CW) from the tunnel header to the NCRF cavity.01/08/2026In ProcessFALSE
- 6.02.03.09.04Mechanical group shall provide all materials for the piping (or hoses) for Chilled Water (CW) from the tunnel header to the systems to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.04ASR System Installation and Final Integration shall schedule and fund the installation of the piping (or hoses) and water flow instrumentation for Chilled Water (CW) from the tunnel header to the NCRF cavity by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.04ASR System Installation and Final Integration shall schedule and fund a leak check to verify the installation of the piping (or hoses) for Chilled Water (CW) from the tunnel header to the NCRF cavity by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.04ASR System Installation and Final Integration shall schedule and fund a electrical check to verify the installation of the NCRF water flow instrumentation for Chilled Water (CW) by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.04Infrastructure shall provide supply header within the tunnel for compressed instrument air to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.04NCRF systems shall provide compressed instrument air receptacles on the HSR 197 MHz cavity to facilitate installation.01/08/2026In ProcessFALSE
- 6.02.03.09.04NCRF systems shall provide air flow instrumentation with wire which satisfies the LLRF cable schematic bill of material to the applicable building(s).01/08/2026In ProcessFALSE
- 6.02.03.09.04Infustructure mechanical compressed air shall provide all distribution design and bill of materials for the piping (or hoses) for the compressed instrument air from the tunnel header to the NCRF cavity.01/08/2026In ProcessFALSE
- 6.02.03.09.04Infustructure mechanical compressed air shall provide all materials for the piping (or hoses) for the compressed instrument air from the tunnel header to the systems to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.04ASR System Installation and Final Integration shall schedule and fund the installation of the piping (or hoses) and air flow instrumentation for compressed instrument air from the tunnel header to the NCRF cavity by the appropriate technical group..01/08/2026In ProcessFALSE
- 6.02.03.09.04ASR System Installation and Final Integration shall schedule and fund the leak check to verify the installation of the piping (or hoses) for the compressed instrument air from the tunnel header to the NCRF cavity by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.04ASR System Installation and Final Integration shall schedule and fund a electrical check to verify the installation of the NCRF air flow instrumentation for the compressed instrument air by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.04NCRF systems shall provide Beamline All Metal Gate Valve flange to be utilized by HSR Vacuum System.01/08/2026In ProcessFALSE
- 6.02.03.09.04NCRF systems shall provide a vacuum pump flange to be utilized by HSR Vacuum System.01/08/2026In ProcessFALSE
- 6.02.03.09.04Reference related Vacuum interface document for gate valve, vacuum pump, pressure gauge, bakeout equipment interface details and bakeout process in compliance with NCRF thermal limits. (I-HSR-VAC.XXX)01/08/2026In ProcessFALSE
- 6.02.03.09.04NCRF systems shall provide a RF signal pickup port to be utilized by RF Controls.01/08/2026In ProcessFALSE
- 6.02.03.09.04NCRF systems shall provide temperature sensor to be utilized by RF Controls and wire which satisfies the LLRF cable schematic bill of material to the applicable building(s).01/08/2026In ProcessFALSE
- 6.02.03.09.04NCRF systems shall provide tuner to be utilized by RF Controls and wire which satisfies the LLRF cable schematic bill of material to the applicable building(s).01/08/2026In ProcessFALSE
- 6.02.03.09.04NCRF systems shall provide receptacle for ARC detector on the FPC window.01/08/2026In ProcessFALSE
- 6.02.03.09.04Reference related RF Controls interface document for temperature, tuner motor and ARC detector controls interface details and the installation inside of tunnel. (I-RF-CTRL-NCRF.XX)01/08/2026In ProcessFALSE
- 6.02.03.09.04High Power RF shall design and provide a coaxial line to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.04NCRF systems shall provide a receptacle for the High Power RF coaxial line to be utilized by High Power RF.01/08/2026In ProcessFALSE
- 6.02.03.09.04ASR System Installation and Final Integration shall schedule and fund the installation of the coaxial line installation to the NCRF systems by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.04Reference related interface document for controls interface details inside of tunnel. (I-RF-CTRL-VAC.XX)01/08/2026In ProcessFALSE
- 6.02.03.09.04Reference related interface document for HPRF interface details inside of tunnel. (I-HPRF.XX)01/08/2026In ProcessFALSE
- 6.02.03.09.04NCRF systems shall provide design details of the cavity and the location limitations for the cavities and its associated subsystems.01/08/2026In ProcessFALSE
- 6.02.03.09.04The physics group shall indicate the location of the NCRF cavities in the lattice designated by a marker that satisfies the NCRF design limits.01/08/2026In ProcessFALSE
- 6.02.03.09.04The Mechanical group shall model the tunnel to define the required spatial locations to be utilized by NCRF Cavities.01/08/2026In ProcessFALSE
- 6.02.03.09.04HSR Vacuum System shall provide design details for the beamline connecting to the NCRF cavity.01/08/2026In ProcessFALSE
- 6.02.03.09.04NCRF Systems shall provide a receptacle for the beamline connection on both ends of the NCRF cavities which satisfies the HSR Vacuum Systems design.01/08/2026In ProcessFALSE
- 6.02.03.09.04NCRF Systems shall provide cleanliness and installation details for the mechanical connection of the NCRF cavity to the beamline.01/08/2026In ProcessFALSE
- 6.02.03.09.04NCRF Systems shall provide feudalization points on the NCRF cavities relating back to the electromagnetic center of the beamline.01/08/2026In ProcessFALSE
- 6.02.03.09.04ASR System Installation and Final Integration shall schedule and fund the installation of the NCRF cavity and support (lag bolts/rough alignment/pedestal/etc.) by the appropriate technical group which satisfies the cleanliness design.01/08/2026In ProcessFALSE
HSR-RF-NCRF-ACAV:24
- 6.02.03.09.01Infrastructure shall provide supply and return headers within the tunnel for Chilled Water (CW) to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.01Infrastructure shall provide Chilled Water (CW) to/from the common supply/return header(s) to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.01NCRF systems shall provide Chilled Water (CW) supply/return receptacles on the HSR 24.6 MHz cavity to facilitate installation.01/08/2026In ProcessFALSE
- 6.02.03.09.01NCRF systems shall provide water flow instrumentation with wire which satisfies the LLRF cable schematic bill of material to the applicable building(s).01/08/2026In ProcessFALSE
- 6.02.03.09.01Mechanical group shall provide all distribution design and bill of materials for the piping (or hoses) for the Chilled Water (CW) from the tunnel header to the NCRF cavity.01/08/2026In ProcessFALSE
- 6.02.03.09.01Mechanical group shall provide all materials for the piping (or hoses) for Chilled Water (CW) from the tunnel header to the systems to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.01ASR System Installation and Final Integration shall schedule and fund the installation of the piping (or hoses) and water flow instrumentation for Chilled Water (CW) from the tunnel header to the NCRF cavity by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.01ASR System Installation and Final Integration shall schedule and fund a leak check to verify the installation of the piping (or hoses) for Chilled Water (CW) from the tunnel header to the NCRF cavity by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.01ASR System Installation and Final Integration shall schedule and fund a electrical check to verify the installation of the NCRF water flow instrumentation for Chilled Water (CW) by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.01Infrastructure shall provide supply header within the tunnel for compressed instrument air to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.01NCRF systems shall provide compressed instrument air receptacles on the HSR 24.6 MHz cavity to facilitate installation.01/08/2026In ProcessFALSE
- 6.02.03.09.01NCRF systems shall provide air flow instrumentation with wire which satisfies the LLRF cable schematic bill of material to the applicable building(s).01/08/2026In ProcessFALSE
- 6.02.03.09.01Infustructure mechanical compressed air group shall provide all distribution design and bill of materials for the piping (or hoses) for the compressed instrument air from the tunnel header to the NCRF cavity.01/08/2026In ProcessFALSE
- 6.02.03.09.01Infustructure mechanical compressed air shall provide all materials for the piping (or hoses) for the compressed instrument air from the tunnel header to the systems to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.01ASR System Installation and Final Integration shall schedule and fund the installation of the piping (or hoses) and air flow instrumentation for compressed instrument air from the tunnel header to the NCRF cavity by the appropriate technical group..01/08/2026In ProcessFALSE
- 6.02.03.09.01ASR System Installation and Final Integration shall schedule and fund the leak check to verify the installation of the piping (or hoses) for the compressed instrument air from the tunnel header to the NCRF cavity by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.01ASR System Installation and Final Integration shall schedule and fund a electrical check to verify the installation of the NCRF air flow instrumentation for the compressed instrument air by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.01NCRF systems shall provide Beamline All Metal Gate Valve flange to be utilized by HSR Vacuum System.01/08/2026In ProcessFALSE
- 6.02.03.09.01NCRF systems shall provide a vacuum pump flange to be utilized by HSR Vacuum System.01/08/2026In ProcessFALSE
- 6.02.03.09.01Reference related Vacuum interface document for gate valve, vacuum pump, pressure gauge, bakeout equipment interface details and bakeout process in compliance with NCRF thermal limits. (I-HSR-VAC.XXX)01/08/2026In ProcessFALSE
- 6.02.03.09.01NCRF systems shall provide a RF signal pickup port to be utilized by RF Controls.01/08/2026In ProcessFALSE
- 6.02.03.09.01NCRF systems shall provide temperature sensor to be utilized by RF Controls and wire which satisfies the LLRF cable schematic bill of material to the applicable building(s).01/08/2026In ProcessFALSE
- 6.02.03.09.01NCRF systems shall provide tuner to be utilized by RF Controls and wire which satisfies the LLRF cable schematic bill of material to the applicable building(s).01/08/2026In ProcessFALSE
- 6.02.03.09.01NCRF systems shall provide receptacle for ARC detector on the FPC window.01/08/2026In ProcessFALSE
- 6.02.03.09.01Reference related RF Controls interface document for temperature, tuner motor and ARC detector controls interface details and the installation inside of tunnel. (I-RF-CTRL-NCRF.XX)01/08/2026In ProcessFALSE
- 6.02.03.09.01High Power RF shall design and provide a coaxial line to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.01NCRF systems shall provide a receptacle for the High Power RF coaxial line to be utilized by High Power RF.01/08/2026In ProcessFALSE
- 6.02.03.09.01ASR System Installation and Final Integration shall schedule and fund the installation of the coaxial line installation to the NCRF systems by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.01Reference related interface document for controls interface details inside of tunnel. (I-RF-CTRL-VAC.XX)01/08/2026In ProcessFALSE
- 6.02.03.09.01Reference related interface document for HPRF interface details inside of tunnel. (I-HPRF.XX)01/08/2026In ProcessFALSE
- 6.02.03.09.01NCRF systems shall provide design details of the cavity and the location limitations for the cavities and its associated subsystems.01/08/2026In ProcessFALSE
- 6.02.03.09.01The physics group shall indicate the location of the NCRF cavities in the lattice designated by a marker that satisfies the NCRF design limits.01/08/2026In ProcessFALSE
- 6.02.03.09.01The Mechanical group shall model the tunnel to define the required spatial locations to be utilized by NCRF Cavities.01/08/2026In ProcessFALSE
- 6.02.03.09.01HSR Vacuum System shall provide design details for the beamline connecting to the NCRF cavity.01/08/2026In ProcessFALSE
- 6.02.03.09.01NCRF Systems shall provide a receptacle for the beamline connection on both ends of the NCRF cavities which satisfies the HSR Vacuum Systems design.01/08/2026In ProcessFALSE
- 6.02.03.09.01NCRF Systems shall provide cleanliness and installation details for the mechanical connection of the NCRF cavity to the beamline.01/08/2026In ProcessFALSE
- 6.02.03.09.01NCRF Systems shall provide feudalization points on the NCRF cavities relating back to the electromagnetic center of the beamline.01/08/2026In ProcessFALSE
- 6.02.03.09.01ASR System Installation and Final Integration shall schedule and fund the installation of the NCRF cavity and support (lag bolts/rough alignment/pedestal/etc.) by the appropriate technical group which satisfies the cleanliness design.01/08/2026In ProcessFALSE
HSR-RF-NCRF-ACAV:49
- 6.02.03.09.02Infrastructure shall provide supply and return headers within the tunnel for Chilled Water (CW) to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.02Infrastructure shall provide Chilled Water (CW) to/from the common supply/return header(s) to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.02NCRF systems shall provide Chilled Water (CW) supply/return receptacles on the HSR 49.2 MHz cavity to facilitate installation.01/08/2026In ProcessFALSE
- 6.02.03.09.02NCRF systems shall provide water flow instrumentation with wire which satisfies the LLRF cable schematic bill of material to the applicable building(s).01/08/2026In ProcessFALSE
- 6.02.03.09.02Mechanical group shall provide all distribution design and bill of materials for the piping (or hoses) for the Chilled Water (CW) from the tunnel header to the NCRF cavity.01/08/2026In ProcessFALSE
- 6.02.03.09.02Mechanical group shall provide all materials for the piping (or hoses) for Chilled Water (CW) from the tunnel header to the systems to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.02ASR System Installation and Final Integration shall schedule and fund the installation of the piping (or hoses) and water flow instrumentation for Chilled Water (CW) from the tunnel header to the NCRF cavity by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.02ASR System Installation and Final Integration shall schedule and fund a leak check to verify the installation of the piping (or hoses) for Chilled Water (CW) from the tunnel header to the NCRF cavity by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.02ASR System Installation and Final Integration shall schedule and fund a electrical check to verify the installation of the NCRF water flow instrumentation for Chilled Water (CW) by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.02Infustructure mechanical compressed air shall provide supply header within the tunnel for compressed instrument air to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.02NCRF systems shall provide compressed instrument air receptacles on the HSR 49.2 MHz cavity to facilitate installation.01/08/2026In ProcessFALSE
- 6.02.03.09.02NCRF systems shall provide air flow instrumentation with wire which satisfies the LLRF cable schematic bill of material to the applicable building(s).01/08/2026In ProcessFALSE
- 6.02.03.09.02Infustructure mechanical compressed air group shall provide all distribution design and bill of materials for the piping (or hoses) for the compressed instrument air from the tunnel header to the NCRF cavity.01/08/2026In ProcessFALSE
- 6.02.03.09.02Infustructure mechanical compressed air shall provide all materials for the piping (or hoses) for the compressed instrument air from the tunnel header to the systems to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.02ASR System Installation and Final Integration shall schedule and fund the installation of the piping (or hoses) and air flow instrumentation for compressed instrument air from the tunnel header to the NCRF cavity by the appropriate technical group..01/08/2026In ProcessFALSE
- 6.02.03.09.02ASR System Installation and Final Integration shall schedule and fund the leak check to verify the installation of the piping (or hoses) for the compressed instrument air from the tunnel header to the NCRF cavity by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.02ASR System Installation and Final Integration shall schedule and fund a electrical check to verify the installation of the NCRF air flow instrumentation for the compressed instrument air by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.02NCRF systems shall provide Beamline All Metal Gate Valve flange to be utilized by HSR Vacuum System.01/08/2026In ProcessFALSE
- 6.02.03.09.02NCRF systems shall provide a vacuum pump flange to be utilized by HSR Vacuum System.01/08/2026In ProcessFALSE
- 6.02.03.09.02Reference related Vacuum interface document for gate valve, vacuum pump, pressure gauge, bakeout equipment interface details and bakeout process in compliance with NCRF thermal limits. (I-HSR-VAC.XXX)01/08/2026In ProcessFALSE
- 6.02.03.09.02NCRF systems shall provide a RF signal pickup port to be utilized by RF Controls.01/08/2026In ProcessFALSE
- 6.02.03.09.02NCRF systems shall provide temperature sensor to be utilized by RF Controls and wire which satisfies the LLRF cable schematic bill of material to the applicable building(s).01/08/2026In ProcessFALSE
- 6.02.03.09.02NCRF systems shall provide tuner to be utilized by RF Controls and wire which satisfies the LLRF cable schematic bill of material to the applicable building(s).01/08/2026In ProcessFALSE
- 6.02.03.09.02NCRF systems shall provide receptacle for ARC detector on the FPC window.01/08/2026In ProcessFALSE
- 6.02.03.09.02Reference related RF Controls interface document for temperature, tuner motor and ARC detector controls interface details and the installation inside of tunnel. (I-RF-CTRL-NCRF.XX)01/08/2026In ProcessFALSE
- 6.02.03.09.02High Power RF shall design and provide a coaxial line to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.02NCRF systems shall provide a receptacle for the High Power RF coaxial line to be utilized by High Power RF.01/08/2026In ProcessFALSE
- 6.02.03.09.02ASR System Installation and Final Integration shall schedule and fund the installation of the coaxial line installation to the NCRF systems by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.02Reference related interface document for controls interface details inside of tunnel. (I-RF-CTRL-VAC.XX)01/08/2026In ProcessFALSE
- 6.02.03.09.02Reference related interface document for HPRF interface details inside of tunnel. (I-HPRF.XX)01/08/2026In ProcessFALSE
- 6.02.03.09.02NCRF systems shall provide design details of the cavity and the location limitations for the cavities and its associated subsystems.01/08/2026In ProcessFALSE
- 6.02.03.09.02The physics group shall indicate the location of the NCRF cavities in the lattice designated by a marker that satisfies the NCRF design limits.01/08/2026In ProcessFALSE
- 6.02.03.09.02The Mechanical group shall model the tunnel to define the required spatial locations to be utilized by NCRF Cavities.01/08/2026In ProcessFALSE
- 6.02.03.09.02HSR Vacuum System shall provide design details for the beamline connecting to the NCRF cavity.01/08/2026In ProcessFALSE
- 6.02.03.09.02NCRF Systems shall provide a receptacle for the beamline connection on both ends of the NCRF cavities which satisfies the HSR Vacuum Systems design.01/08/2026In ProcessFALSE
- 6.02.03.09.02NCRF Systems shall provide cleanliness and installation details for the mechanical connection of the NCRF cavity to the beamline.01/08/2026In ProcessFALSE
- 6.02.03.09.02NCRF Systems shall provide feudalization points on the NCRF cavities relating back to the electromagnetic center of the beamline.01/08/2026In ProcessFALSE
- 6.02.03.09.02ASR System Installation and Final Integration shall schedule and fund the installation of the NCRF cavity and support (lag bolts/rough alignment/pedestal/etc.) by the appropriate technical group which satisfies the cleanliness design.01/08/2026In ProcessFALSE
HSR-RF-NCRF-ACAV:98
- 6.02.03.09.03Infrastructure shall provide supply and return headers within the tunnel for Chilled Water (CW) to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.03Infrastructure shall provide Chilled Water (CW) to/from the common supply/return header(s) to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.03NCRF systems shall provide Chilled Water (CW) supply/return receptacles on the HSR 98 MHz cavity to facilitate installation.01/08/2026In ProcessFALSE
- 6.02.03.09.03NCRF systems shall provide water flow instrumentation with wire which satisfies the LLRF cable schematic bill of material to the applicable building(s).01/08/2026In ProcessFALSE
- 6.02.03.09.03Mechanical group shall provide all distribution design and bill of materials for the piping (or hoses) for the Chilled Water (CW) from the tunnel header to the NCRF cavity.01/08/2026In ProcessFALSE
- 6.02.03.09.03Mechanical group shall provide all materials for the piping (or hoses) for Chilled Water (CW) from the tunnel header to the systems to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.03ASR System Installation and Final Integration shall schedule and fund the installation of the piping (or hoses) and water flow instrumentation for Chilled Water (CW) from the tunnel header to the NCRF cavity by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.03ASR System Installation and Final Integration shall schedule and fund a leak check to verify the installation of the piping (or hoses) for Chilled Water (CW) from the tunnel header to the NCRF cavity by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.03ASR System Installation and Final Integration shall schedule and fund a electrical check to verify the installation of the NCRF water flow instrumentation for Chilled Water (CW) by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.03Infrastructure shall provide supply header within the tunnel for compressed instrument air to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.03NCRF systems shall provide compressed instrument air receptacles on the HSR 98 MHz cavity to facilitate installation.01/08/2026In ProcessFALSE
- 6.02.03.09.03NCRF systems shall provide air flow instrumentation with wire which satisfies the LLRF cable schematic bill of material to the applicable building(s).01/08/2026In ProcessFALSE
- 6.02.03.09.03Infustructure mechanical compressed air group shall provide all distribution design and bill of materials for the piping (or hoses) for the compressed instrument air from the tunnel header to the NCRF cavity.01/08/2026In ProcessFALSE
- 6.02.03.09.03Infustructure mechanical compressed air shall provide all materials for the piping (or hoses) for the compressed instrument air from the tunnel header to the systems to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.03ASR System Installation and Final Integration shall schedule and fund the installation of the piping (or hoses) and air flow instrumentation for compressed instrument air from the tunnel header to the NCRF cavity by the appropriate technical group..01/08/2026In ProcessFALSE
- 6.02.03.09.03ASR System Installation and Final Integration shall schedule and fund the leak check to verify the installation of the piping (or hoses) for the compressed instrument air from the tunnel header to the NCRF cavity by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.03ASR System Installation and Final Integration shall schedule and fund a electrical check to verify the installation of the NCRF air flow instrumentation for the compressed instrument air by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.03NCRF systems shall provide Beamline All Metal Gate Valve flange to be utilized by HSR Vacuum System.01/08/2026In ProcessFALSE
- 6.02.03.09.03NCRF systems shall provide a vacuum pump flange to be utilized by HSR Vacuum System.01/08/2026In ProcessFALSE
- 6.02.03.09.03Reference related Vacuum interface document for gate valve, vacuum pump, pressure gauge, bakeout equipment interface details and bakeout process in compliance with NCRF thermal limits. (I-HSR-VAC.XXX)01/08/2026In ProcessFALSE
- 6.02.03.09.03NCRF systems shall provide a RF signal pickup port to be utilized by RF Controls.01/08/2026In ProcessFALSE
- 6.02.03.09.03NCRF systems shall provide temperature sensor to be utilized by RF Controls and wire which satisfies the LLRF cable schematic bill of material to the applicable building(s).01/08/2026In ProcessFALSE
- 6.02.03.09.03NCRF systems shall provide tuner to be utilized by RF Controls and wire which satisfies the LLRF cable schematic bill of material to the applicable building(s).01/08/2026In ProcessFALSE
- 6.02.03.09.03NCRF systems shall provide receptacle for ARC detector on the FPC window.01/08/2026In ProcessFALSE
- 6.02.03.09.03Reference related RF Controls interface document for temperature, tuner motor and ARC detector controls interface details and the installation inside of tunnel. (I-RF-CTRL-NCRF.XX)01/08/2026In ProcessFALSE
- 6.02.03.09.03High Power RF shall design and provide a coaxial line to be utilized by NCRF systems.01/08/2026In ProcessFALSE
- 6.02.03.09.03NCRF systems shall provide a receptacle for the High Power RF coaxial line to be utilized by High Power RF.01/08/2026In ProcessFALSE
- 6.02.03.09.03ASR System Installation and Final Integration shall schedule and fund the installation of the coaxial line installation to the NCRF systems by the appropriate technical group.01/08/2026In ProcessFALSE
- 6.02.03.09.03Reference related interface document for controls interface details inside of tunnel. (I-RF-CTRL-VAC.XX)01/08/2026In ProcessFALSE
- 6.02.03.09.03Reference related interface document for HPRF interface details inside of tunnel. (I-HPRF.XX)01/08/2026In ProcessFALSE
- 6.02.03.09.03NCRF systems shall provide design details of the cavity and the location limitations for the cavities and its associated subsystems.01/08/2026In ProcessFALSE
- 6.02.03.09.03The physics group shall indicate the location of the NCRF cavities in the lattice designated by a marker that satisfies the NCRF design limits.01/08/2026In ProcessFALSE
- 6.02.03.09.03The Mechanical group shall model the tunnel to define the required spatial locations to be utilized by NCRF Cavities.01/08/2026In ProcessFALSE
- 6.02.03.09.03HSR Vacuum System shall provide design details for the beamline connecting to the NCRF cavity.01/08/2026In ProcessFALSE
- 6.02.03.09.03NCRF Systems shall provide a receptacle for the beamline connection on both ends of the NCRF cavities which satisfies the HSR Vacuum Systems design.01/08/2026In ProcessFALSE
- 6.02.03.09.03NCRF Systems shall provide cleanliness and installation details for the mechanical connection of the NCRF cavity to the beamline.01/08/2026In ProcessFALSE
- 6.02.03.09.03NCRF Systems shall provide feudalization points on the NCRF cavities relating back to the electromagnetic center of the beamline.01/08/2026In ProcessFALSE
- 6.02.03.09.03ASR System Installation and Final Integration shall schedule and fund the installation of the NCRF cavity and support (lag bolts/rough alignment/pedestal/etc.) by the appropriate technical group which satisfies the cleanliness design.01/08/2026In ProcessFALSE
HSR-ARC
- 6.02.03The HSR lattice will utlise the existing RHIC arc sections02/09/2026ApprovedFALSE
- 6.02.03The changes required to the existing RHIC arc sections shall be kept to a minimum02/09/2026ApprovedFALSE
- 6.02.03For operation in the energy range 100-275 GeV the HSR shall use 6 Yellow sextants.02/09/2026ApprovedFALSE
- 6.02.03The inner arc 12-2 shall be used instead of 12-2 outer arc for maintaining synchronization of the hadron beam at 41 GeV/nucleon beam energy with the electron beam.02/09/2026ApprovedFALSE
- 6.02.03Switchyards on each side of the 12-2 arc, in IR12 and in IR2, shall be in place to redirect beam at different energies to the respective arc.02/09/2026ApprovedFALSE
HSR-CRYO
- 6.02.04.04The cryogenic system shall provide enough cooling power to the superconducting magnets in HSR for them to operate safely.02/09/2026ApprovedFALSE
- 6.02.04.04The cryogenic system shall provide enough cooling power to the superconducting RF cavities in HSR for them to operate safely.02/09/2026ApprovedFALSE
- 6.02.04.04All cryogenic components shall meet the relevant Cryogenic pressure design codes ASME B31.3 etc.02/09/2026ApprovedFALSE
HSR-MP : Machine Protection
HSR-MP-ABORT
HSR-SCMR
HSR-SCMR-SNAKE
- 6.02.03.10.03The Hadron Storage Ring (HSR) shall have Six Siberian Snakes replicate the internal structure of the existing RHIC Siberian snake design:02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR shall have one upgraded Siberian snake transferred over from the RHIC Blue ring (bi9-snk7) and placed between Q7 and Q8 at 11 o’clock area of high energy arc.02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR shall have one upgraded Siberian snake from the RHIC Yellow ring (Yi3-snk7) and placed between Q7 and Q8 at 3 o’clock area of high energy arc.02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR shall have one upgraded Siberian snake transferred over from the RHIC Blue ring (bo3-snk7) and placed between Q8 and Q7 in sector 1 of the 2 o’clock area.02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR shall have one upgraded Siberian snake transferred over from the RHIC Blue ring (Yo9-snk7) and placed between Q7 and Q8 at 9 o’clock area of high energy arc.02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR shall have one additional new Siberian snake constructed by reconfiguring 4RH helical magnet storage units from spin rotators removed from the RHIC Blue Ring placed between sector 5 with its axis parallel to the snake in sector 11.02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR shall have one additional new Siberian snake constructed by reconfiguring 4 LH helical magnet storage units from spin rotators removed from the RHIC Blue Ring between Q7 and Q8 in sector 7 of the 8 o’clock area.02/09/2026ReviewedFALSE
- 6.02.03.10.03Warm Heaters shall be installed in the new snakes which meet the existing requirements for snake magnets.02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR Siberian snake design mechanical center horizontal and vertical position alignment tolerances with respect to its fiducials shall be known to a certainty within +/- XXX (um).02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR Siberian snake design shall be less than or equal to the allocated impedance and is within the accepted overall HSR impedance budget approved by physics.02/09/2026ReviewedFALSE
- 6.02.03.10.03(Check on Vacuum requirements to make sure aperture is captured.)02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR Siberian snake shall be designed to accommodate a maximum bake-out temperature of 250 (C) except where the high temperature will damage sensitive components.02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR Siberian snake design shall conform to the EIC Code of Records.02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR Siberian snake shall be designed to be cooled and sustained at its operational temperature utilizing the M,R,U,S,H Lines connecting to existing HSR cryogenic interconnect.02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR Siberian snake shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the constraints identified in the following HSR magnet requirements: P-HSR-MAG-SNAKE.06.02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR Siberian snake shall be designed to have two relief plates for the insulating vacuum vessel, which meets the existing snake magnet design.02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR Siberian snake shall be designed to utilize a cryogenic bypass pipe for the ACBS which meets the constraints identified in the following HSR vacuum cryomodule requirements: P-HSR-VAC-CRYOMOD.02, P-HSR-VAC-CRYOMOD.03, P-HSR-VAC-CRYOMOD.07, P-HSR-VAC-CRYOMOD.08 and P-HSR-VAC-CRYOMOD.09.02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR Siberian snake shall be designed to provide an mount for the cryogenic bypass pipe for the ACBS in the insulating vacuum.02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR Siberian snake shall be designed to utilize the magnet assembly applicable which meets the constraints identified in the HSR magnet requirements. (REF. P-HSR-MAG-SNAKE.01 to P-HSR-MAG-SNAKE.10)02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR Siberian snake shall be designed to utilize an copper coated and amorphous carbon coated (Cu/aC) beam pipe which meets the constraints identified in the following HSR vacuum requirements: P-HSR-VAC.01, P-HSR-VAC.02, P-HSR-ARC-VAC.01, P-HSR-ARC-VAC.02 and P-HSR-ARC-VAC.03, P-HSR-VAC-SNAKE.XX-XX02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR Siberian snake shall be designed to utilize a tapered beampipe transition at its interconnects.02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR Siberian snake shall be designed to utilize a Beam Position Monitor (BPM) pickup which meets the constraints identified in the following HSR BPM requirements P-HSR-INST-BPM-PU.01, P-HSR-INST-BPM-PU.02.03, P-HSR-INST-BPM-PU.03.03, P-HSR-INST-BPM-PU.04, P-HSR-INST-BPM-PU.05, P-HSR-INST-BPM-PU.06, P-HSR-INST-BPM-PU.07.02, P-HSR-INST-BPM-PU.04, and P-HSR-INST-BPM-PU.08 to P-HSR-INST-BPM-PU.13.02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR Siberian snake shall be designed to utilize a Cu/aC coated beam position monitor pickup.02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR Siberian snake shall be designed to utilize the existing feedthrough turret for the Beam Position Monitor (BPM) cryogenic cables which meets the constraints identified in the HSR BPM cryogenic cable requirements. (REF. P-HSR-INST-BPM-CRYO_CABLES.01 to P-HSR-INST-BPM-CRYO_CABLES.05)02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR Siberian snake feedthrough turret shall be designed to utilize a SiO2 beam position monitor cables02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR Siberian snake feedthrough turret shall be designed to utilize a heatshield and heat strap for the beam position monitor cables02/09/2026ReviewedFALSE
- 6.02.03.10.03The HSR Siberian snake shall be designed to utilize a feedthrough turret for the power supply cables which meets the constraints identified in the HSR power supply requirements. (REF. P-HSR-PS-SNAKE.01 to P-HSR-PS-SNAKE.20)02/09/2026ReviewedFALSE
HSR-SCMR-SPINROTATOR
- 6.02.03.10.04The Hadron Storage Ring (HSR) shall have Two(2) spin rotators replicate the internal structure of the existing RHIC spin rotator design:02/09/2026In ProcessFALSE
- 6.02.03.10.04TBD02/09/2026In ProcessFALSE
- 6.02.03.10.04TBD02/09/2026In ProcessFALSE
- 6.02.03.10.04Warm Heaters shall be installed in the new spin rotator which meet the existing requirements for spin rotator magnets.02/09/2026In ProcessFALSE
- 6.02.03.10.04The HSR spin rotator design mechanical center horizontal and vertical position alignment tolerances with respect to its fiducials shall be known to a certainty within +/- XXX (um).02/09/2026In ProcessFALSE
- 6.02.03.10.04The HSR spin rotator design shall be less than or equal to the allocated impedance and is within the accepted overall HSR impedance budget approved by physics.02/09/2026In ProcessFALSE
- 6.02.03.10.04(Check on Vacuum requirements to make sure aperture is captured.)02/09/2026In ProcessFALSE
- 6.02.03.10.04The HSR spin rotator shall be designed to accommodate a maximum bake-out temperature of 250 (C) except where the high temperature will damage sensitive components.02/09/2026In ProcessFALSE
- 6.02.03.10.04The HSR spin rotator design shall conform to the EIC Code of Records.02/09/2026In ProcessFALSE
- 6.02.03.10.04The HSR spin rotator shall be designed to be cooled and sustained at its operational temperature utilizing the M,R,U,S,H Lines connecting to existing HSR cryogenic interconnect.02/09/2026In ProcessFALSE
- 6.02.03.10.04The HSR spin rotator shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the constraints identified in the following HSR magnet requirements: P-HSR-MAG-SPINROTATOR.06.02/09/2026In ProcessFALSE
- 6.02.03.10.04The HSR spin rotator shall be designed to have two relief plates for the insulating vacuum vessel, which meets the existing snake magnet design.02/09/2026In ProcessFALSE
- 6.02.03.10.04The HSR spin rotator shall be designed to utilize a cryogenic bypass pipe for the ACBS which meets the constraints identified in the following HSR vacuum cryomodule requirements: P-HSR-VAC-CRYOMOD.02, P-HSR-VAC-CRYOMOD.03, P-HSR-VAC-CRYOMOD.07, P-HSR-VAC-CRYOMOD.08 and P-HSR-VAC-CRYOMOD.09.02/09/2026In ProcessFALSE
- 6.02.03.10.04The HSR spin rotator shall be designed to provide an mount for the cryogenic bypass pipe for the ACBS in the insulating vacuum.02/09/2026In ProcessFALSE
- 6.02.03.10.04The HSR spin rotator shall be designed to utilize the magnet assembly applicable which meets the constraints identified in the HSR magnet requirements. (REF. P-HSR-MAG-SPINROTATOR.01 to P-HSR-MAG-SPINROTATOR.10)02/09/2026In ProcessFALSE
- 6.02.03.10.04The HSR spin rotator shall be designed to utilize an copper coated and amorphous carbon coated (Cu/aC) beam pipe which meets the constraints identified in the following HSR vacuum requirements: P-HSR-VAC.01, P-HSR-VAC.02, P-HSR-ARC-VAC.01, P-HSR-ARC-VAC.02 and P-HSR-ARC-VAC.03, P-HSR-VAC-SNAKE.XX-XX02/09/2026In ProcessFALSE
- 6.02.03.10.04The HSR spin rotator shall be designed to utilize a tapered beampipe transition at its interconnects.02/09/2026In ProcessFALSE
- 6.02.03.10.04The HSR spin rotator shall be designed to utilize a Beam Position Monitor (BPM) pickup which meets the constraints identified in the following HSR BPM requirements P-HSR-INST-BPM-PU.01, P-HSR-INST-BPM-PU.02.03, P-HSR-INST-BPM-PU.03.03, P-HSR-INST-BPM-PU.04, P-HSR-INST-BPM-PU.05, P-HSR-INST-BPM-PU.06, P-HSR-INST-BPM-PU.07.02, P-HSR-INST-BPM-PU.04, and P-HSR-INST-BPM-PU.08 to P-HSR-INST-BPM-PU.13.02/09/2026In ProcessFALSE
- 6.02.03.10.04The HSR spin rotator shall be designed to utilize a Cu/aC coated beam position monitor pickup.02/09/2026In ProcessFALSE
- 6.02.03.10.04The HSR spin rotator shall be designed to utilize the existing feedthrough turret for the Beam Position Monitor (BPM) cryogenic cables which meets the constraints identified in the HSR BPM cryogenic cable requirements. (REF. P-HSR-INST-BPM-CRYO_CABLES.01 to P-HSR-INST-BPM-CRYO_CABLES.05)02/09/2026In ProcessFALSE
- 6.02.03.10.04The HSR spin rotator feedthrough turret shall be designed to utilize a SiO2 beam position monitor cables02/09/2026In ProcessFALSE
- 6.02.03.10.04The HSR spin rotator feedthrough turret shall be designed to utilize a heatshield and heat strap for the beam position monitor cables02/09/2026In ProcessFALSE
- 6.02.03.10.04The HSR spin rotator shall be designed to utilize a feedthrough turret for the power supply cables which meets the constraints identified in the HSR power supply requirements. (REF. P-HSR-PS-SPINROTATOR.01 to P-HSR-PS-SPINROTATOR.20)02/09/2026In ProcessFALSE
HSR-SCMR-TRIPLET
HSR-SCMR-TRIPLET-DUAL
- 6.02.03.10.01The reconfigured dual cryostat triplets shall be located in IR8 and IR12 utilizing the RHIC yellow Q1/Q2/Q3 cold masses.02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat Triplet redesign shall conform to the apertures in table in P-HSR-TRIPLET-DUAL.02.01.02/09/2026In ProcessFALSE
- 6.02.03.10.01Location Q1 GV size (mm) Q3 GV size (mm) IR8 7 88 125 8 88 125 IR12 11 88 125 12 88 125 | Location | Q1 GV size (mm) | Q3 GV size (mm) IR8 | 7 | 88 | 125 | 8 | 88 | 125 IR12 | 11 | 88 | 125 | 12 | 88 | 12502/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets mechanical center horizontal and vertical position alignment tolerances with respect to its fiducials shall be known to a certainty within +/- TBD (um).02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets redesign shall be less than or equal to the allocated impedance and is within the accepted overall HSR impedance budget approved by physics.02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets redesign shall be designed to operate reliability with capability to withstand a lifetime radiation dose of TBD MGy.02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets shall be redesigned to remove the D0 magnet cryostat connection.02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets shall be redesigned to remove the DX magnet connections.02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets shall be redesigned to have gate valves at each end.02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets shall be redesigned such that the blue line cold mass Q1/Q2/Q3 superconducting magnet shall passively cooled.02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets beamline shall be redesigned to have a warm to cold tapering transition to the Q1 superconducting magnet inside the cryostat.02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets beamline shall be redesigned to have a cold to warm tapering transition after the Q3 superconducting magnet inside the cryostat.02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets beamline shall be redesigned to have RF Shielded bellows in its cold to warm beamline inside the cryostat.02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets beamline shall be redesigned to have BPMs mounted in its beamline inside the cryostat and conform to meet the applicable HSR BPM requirements (P-HSR-INST-BPM-PU.XXX).02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets beamline shall be redesigned to be sleeved with the HSR beam screens and conform to meet the applicable HSR Beam Screen requirements (P-HSR-VAC-SCREENS.XXX).02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets cryogenic M-line shall be redesigned to accommodate the removal of the D0 and Dx magnet.02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets cryogenic H-line shall be redesigned to accommodate the removal of the D0 and Dx magnet.02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets cryogenic M,R,U,S,H Lines shall conform to the applicable cryogenics load tables in EIC Cryogenics Systems Functional Requirements [Document: EIC-SEG-RSI-010].02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets cryogenic shall be redesigned such that the H-line from the yellow line connects to the blue Q3 M-line.02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets cryogenic shall be reconfigured such that the Q1 M-line from the blue line connects to the blue side H-line.02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets cryogenic shall be reconfigured such that the Q3 H-line from the blue line connects to the yellow side H-line in the Q3 pant leg.02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets vacuum shielding and thermal blanketing shall be redesigned to accommodate the chnages in the cryostat.02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets vacuum capabilities shall conform with the applicable HSR Vacuum requirements (P-HSR-VAC.XXX).02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets vacuum shall be redesigned to contain a beam screen heater assembly attached to the Q1 supply line02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets vacuum shall be redesigned to contain a beam screen heater control valve assembly attached to the Q3 utility line02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets power supply feedthroughs shall be redesigned such that the blue line Q1/Q2/Q3 superconducting magnets power supply feedthroughs are disabled.02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets quench protection feedthroughs shall be redesigned such that the blue line Q1/Q2/Q3 superconducting magnets quench protection feedthroughs are disabled.02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets controls systems feedthroughs shall be redesigned such that the blue line Q1/Q2/Q3 superconducting magnets control feedthroughs are disabled.02/09/2026In ProcessFALSE
- 6.02.03.10.01The reconfigured dual cryostat triplets redesign shall conform to the EIC Code of Records.02/09/2026In ProcessFALSE
HSR-SCMR-TRIPLET-SINGLE
- 6.02.03.10.02The single cryostat triplet shall be designed to be located in IR2, IR4 and IR10 utilizing a single cryostat with existing Q1/Q2/Q3 cold masses.02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet design shall conform to the apertures in table in P-HSR-TRIPLET-SINGLE.02.01.02/09/2026In ProcessFALSE
- 6.02.03.10.02Location Q1 GV size (mm) Q3 GV size (mm) IR2 1 125 125 2 125 125 IR4 3 88 125 4 125 125 IR10 9 88 125 10 88 125 | Location | Q1 GV size (mm) | Q3 GV size (mm) IR2 | 1 | 125 | 125 | 2 | 125 | 125 IR4 | 3 | 88 | 125 | 4 | 125 | 125 IR10 | 9 | 88 | 125 | 10 | 88 | 12502/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet design mechanical center horizontal and vertical position alignment tolerances with respect to its fiducials shall be known to a certainty within +/- TBD (um).02/09/2026In ProcessFALSE
- 6.02.03.10.02The Single Cryostat Triplet design shall be designed to not have a resonant frequency at or below TBD (Hz).02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet design shall be less than or equal to the allocated impedance and is within the accepted overall HSR impedance budget approved by physics.02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet shall be designed to operate reliability with capability to withstand a lifetime radiation dose of TBD MGy.02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet shall be designed to have gate valves at each end.02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet design shall conform to the EIC Code of Records.02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet beamline in IR2, IR4 and IR10 shall be designed to have a cold to warm tapering transition to the Q1 superconducting magnet inside the cryostat.02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet beamline in IR2, IR4 and IR10 shall be designed to have a cold to warm tapering transition after the Q3 superconducting magnet inside the cryostat.02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet beamline shall be designed to have RF Shielded bellows in its cold to warm beamline inside the cryostat.02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet beamline shall be designed to have BPMs mounted in its beamline inside the cryostat and conform to meet the applicable HSR BPM requirements (P-HSR-INST-BPM-PU.XXX).02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet beamline shall be designed to be sleeved with the HSR beam screens and conform to meet the applicable HSR Beam Screen requirements (P-HSR-VAC-SCREENS.XXX).02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet cryogenic M,R,U,S,H Lines shall have two(2) configurations for IR2, IR4 and IR10 to interconnect on each side of the IR.02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet cryogenic first M,R,U,S,H Lines configuration shall be redesigned to be a standard HSR ARC configuration.02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet cryogenic second M,R,U,S,H Lines configuration shall be redesigned to be mirror of the standard HSR ARC configuration.02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet cryogenic M,R,U,S,H Lines shall conform to the applicable cryogenics load tables in EIC Cryogenics Systems Functional Requirements [Document: EIC-SEG-RSI-010].02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet in IR2, IR4 and IR10 cryogenic system shall be designed such that the Q1 M,R,U,S,H Lines connects to existing HSR Q1 yellow pant leg.02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet in IR2, IR4 and IR10 cryogenic system shall be designed such that the Q3 M,R,U,S,H Lines connects to existing HSR Q3 yellow pant leg.02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet vacuum shielding and thermal blanketing shall be redesigned to accommodate the changes in the cryostat.02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet vacuum design capabilities shall conform with applicable HSR Vacuum requirements (P-HSR-VAC.XXX).02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet in IR2, IR4 and IR10 vacuum system shall be designed to contain a beam screen heater assembly attached to the Q1 supply line02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet in IR2, IR4 and IR10 vacuum system shall be designed to contain a beam screen heater control valve assembly attached to the Q3 utility line02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet in IR2, IR4 and IR10 shall be designed such that the Q1/Q2/Q3 superconducting magnets power supply has feedthroughs.02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet in IR2, IR4 and IR10 shall be designed such that the Q1/Q2/Q3 superconducting magnets quench protection has feedthroughs.02/09/2026In ProcessFALSE
- 6.02.03.10.02The single cryostat triplet in IR2, IR4 and IR10 shall be designed such that the Q1/Q2/Q3 superconducting magnets control system has feedthroughs.02/09/2026In ProcessFALSE
HSR-SNAKE
- 6.02.03Six Siberian Snakes shall be required. · Two existing yellow ring snakes, one in RHIC sector 9 and one in RHIC sector 3, shall stay. · Four additional snakes will be positioned as specified in requirements F-HSR-SNAKE.05 to F-HSR-SNAKE.1102/09/2026ApprovedFALSE
- 6.02.03All the snake magnets shall operate utilizing exsisting RHIC ARC cyrogenic distrubution system.02/09/2026ApprovedFALSE
- 6.02.03All individual snake magnets shall be powered by individual power supplies.02/09/2026ApprovedFALSE
- 6.02.03The HSR snakes shall have the modifications required to accommodate the retrofitted HSR beam screens.02/09/2026ApprovedFALSE
- 6.02.03Two additional snakes shall be transferred over from the RHIC Blue ring.02/09/2026ApprovedFALSE
- 6.02.03One additional snake shall be placed between Q7 and Q8 at 11 o’clock area of high energy arc.02/09/2026ApprovedFALSE
- 6.02.03One additional snake shall be placed between Q8 and Q7 in sector 1 of the 2 o’clock area.02/09/2026ApprovedFALSE
- 6.02.03Two additional snakes shall be constructed by reconfiguring four spin rotators removed from the RHIC Blue ring.02/09/2026ApprovedFALSE
- 6.02.03One additional reconfigured snake shall be placed sector 5 with its axis parallel to the snake in sector 11.02/09/2026ApprovedFALSE
- 6.02.03One additional reconfigured snake shall be placed between Q7 and Q8 in sector 7 of the 8 o’clock area.02/09/2026ApprovedFALSE
- 6.02.03All additional snakes shall repeat the internal structure of existing Snakes.02/09/2026ApprovedFALSE
HSR-STR : Hadron Storage Ring Straight Section IR Beam
- 6.02.03All straight section modifications shall allow for proper placement of Siberian snakes (6 in total) to preserve the beam polarization.02/09/2026ApprovedFALSE
- 6.02.03All RHIC DX magnets in the middle of the straight sections shall be removed.02/09/2026ApprovedFALSE
- 6.02.03Appropriate spacing shall be provided in the straight sections for beam diagnostic devices.02/09/2026ApprovedFALSE
HSR-STR-IR02 : IR02 Straight Section
- 6.02.03IR2 shall host the electron and hadron beam elements for the Low Energy Cooling system.02/09/2026ApprovedFALSE
- 6.02.03IR2 modifications shall affect the area between Q10 quadrupoles on the 1 and 2 o’clock side.02/09/2026ApprovedFALSE
- 6.02.03No new magnets shall be required for IR2 only existing superconducting magnets from RHIC shall be used to create the IR2 lattice,02/09/2026ApprovedFALSE
- 6.02.03Existing magnets, beam components and instrumentation in IR2 shall be moved as required to realize the IR2 lattice design.02/09/2026ApprovedFALSE
- 6.02.03The HSR IR2 straight section magnets shall be individually tunable to achieve the required optics between injection and collision energies.02/09/2026ApprovedFALSE
HSR-STR-IR04 : IR04 Straight Section
- 6.02.03IR4 straight section shall host the hadron injection system, hadron polarimetry and warm RF systems.02/09/2026ApprovedFALSE
- 6.02.03IR4 HSR modifications shall provide sufficient aperture for the injected and circulating beam.02/09/2026ApprovedFALSE
- 6.02.03IR4 HSR modifications shall accommodate the crossing of ESR and HSR beamline.02/09/2026ApprovedFALSE
- 6.02.03The vacuum pipes in IR4 shall be reconfigured to connect the existing arcs and accommodate the new warm dipole magnets.02/09/2026ApprovedFALSE
HSR-STR-IR06 : IR06 Straight Section
- 6.02.03IR6 HSR modifications shall conform to the functional requirements defined in the Interaction Region Requirement document [EIC-SEG-RSI-006].02/09/2026ApprovedFALSE
- 6.02.03The HSR IR6 straight section magnets shall be individually tunable to achieve the required optics between injection and collision energies.02/09/2026ApprovedFALSE
HSR-STR-IR08 : IR08 Straight Section
- 6.02.03The HSR beam dynamics design shall incorporate the need for collision points at IR6 and IR8.02/09/2026ApprovedFALSE
- 6.02.03The DX and D0 magnets in IR8 shall be removed and new warm dipole magnets shall be added near triplet on each side.02/09/2026ApprovedFALSE
HSR-STR-IR10 : IR10 Straight Section
- 6.02.03The HSR IR10 shall host the hadron beam diagnostics, abort system and the hadron superconducting RF system.02/09/2026ApprovedFALSE
- 6.02.03The DX and D0 magnets in IR10 shall be removed and new warm dipole magnets shall be added near triplet or the Q4 magnet.02/09/2026ApprovedFALSE
- 6.02.03The new warm magnets added into the HSR IR10 straight drift near the 9 o’clock triplet assembly shall leave enough space for the hadron SRF cryomodules.02/09/2026ApprovedFALSE
HSR-STR-IR12 : IR12 Straight Section
- 6.02.03The HSR IR12 shall host the 41 GeV switchyard and the transverse collimation system.02/09/2026ApprovedFALSE
- 6.02.03Low and high energy beams in the HSR IR12 shall be redirected to the inner and outer 12-2 arc respectively by a new warm magnets. (based on the new warm magnet added into IR12 straight drift near the 11 o'clock triplets).02/09/2026ApprovedFALSE
- 6.02.03The DX and D0 magnets in IR12 shall be removed and new warm dipole magnets shall be added near triplet on each side.02/09/2026ApprovedFALSE
- 6.02.03The HSR IR12 power supply cables shall be reconfigured to support operation of inner 12-2 arc in 41 GeV operation mode.02/09/2026ApprovedFALSE

Interaction Region Requirements
General, functional and performance requirements associated with the Interaction Region of the Electron Ion Collider.
- NameWBSDescriptionUpdatedStatusTBD
IR : Interaction Region
- 6.06The IR shall focus the electron, and hadron beams to sufficiently small spot sizes at the collision point, necessary to achieve the design luminosity set forth in MPT [EIC-SEG-RSI-005].08/20/2025ApprovedFALSE
- 6.06There shall be at least one interaction region and detector system in the EIC while maintaining the feasibility of adding a second.08/20/2025ApprovedFALSE
- 6.06The IR shall be contained within the existing RHIC tunnel in the wide-angle hall detector building at IP6 between the associated arcs.08/20/2025ApprovedFALSE
- 6.06The IR shall accommodate the space for all other required EIC systems along with their installation needs08/20/2025ApprovedFALSE
- 6.06The IR shall be designed to allow both the hadron and electron beam spins to be controlled at the IP, meeting all the requirements set forth in the MPT [EIC-SEG- RSI-005].08/20/2025ApprovedFALSE
- 6.06The IR shall be equipped with beam position monitors and dipole correctors to correct the HSR and ESR orbits as required to enable stable accelerator operation08/20/2025ApprovedFALSE
- 6.06The IR shall be designed to accommodate all the detector elements required to meet the physics goals of the EIC in the MPT [EIC-SEG-RSI-005].08/20/2025ApprovedFALSE
- 6.06The IR shall be designed to minimize all background on the detector elements as required to meet the physics goals of the EIC.08/20/2025ApprovedFALSE
- 6.06The design should guarantee the operational availability of the IR shall be consistent with the operational availability required for the overall EIC as set forth in the GRD [EIC-ORG-PLN-010].08/20/2025ApprovedFALSE
- 6.06The design operational availability of the IR shall be consistent with the operational availability required for the overall EIC as set forth in the GRD [EIC- ORG-PLN-010].08/20/2025ApprovedFALSE
- 6.06The IR shall provide all the connections for all the services (Cooling, process air, process water, instrumentation connections, control system connections, cryogenic system connections) required to meet the operational needs of all components in IR6.08/20/2025ApprovedFALSE
- 6.06The 1st EIC IR detector system shall be located at the IP of IR6.08/20/2025ApprovedFALSE
- 6.06The EIC IR shall guide the hadron and electron beams to collide at the IP of IR6.08/20/2025ApprovedFALSE
- 6.06The EIC IR shall include the regions which extend circumferentially into the RHIC tunnel between the periodic arc cells of the HSR/ESR at IR6, approximately +/- 160m around the IP.08/20/2025ApprovedFALSE
- 6.06The EIC IR electron and hadron beam lines shall have linear lattice functions matched to the incoming and outgoing arcs of the ESR and HSR respectively.08/20/2025ApprovedFALSE
- 6.06The EIC IR shall include a stay clear volume around the IP, as required to accommodate the EIC detector system. Relative to the IP (orbit crossing point) the stay clear shall extend in Z -4.5(m) in the Electron direction and +5(m) along Z in Hadron direction, with an additional 0.5m on either side in Z. Creating a total stay clear length in Z of 10.5(m).08/20/2025ApprovedFALSE
- 6.06The EIC IR shall include a stay clear volume between the detector and the front face of the IR SC-magnets of 0.5m to allow the installation for vacuum components (valves, bellows, pumping stations)08/20/2025ApprovedFALSE
- 6.06The EIC IR crossing angle shall allow the low beta focusing magnets of both beams to be installed close to the IP.08/20/2025ApprovedFALSE
- 6.06The EIC IR shall be designed to provide the necessary beam cross sections to support the luminosity goals set forth in the MPT [EIC-SEG-RSI-005].08/20/2025ApprovedFALSE
- 6.06The EIC IR shall be designed so that the electron and hadron beams have the same cross- sectional area and maximum overlap to achieve the high luminosities required in the MPT [EIC-SEG-RSI-005].08/20/2025ApprovedFALSE
- 6.06The EIC IR shall separate the beams at the smallest geometrically possible crossing angle to limit crab cavity voltage.08/20/2025ApprovedFALSE
- 6.06The IR operational uptime shall match the operational uptime requirements of the EIC refer to the EIC GRD [EIC-ORG-PLN-010].08/20/2025ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.01.02.02The magnet shall be designed to specifically constrain the external fringe field Y (Yes or No)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be equipped with trim coils which are capable of trimming the field within +/-3.5 (%) of the Peak main bus field. (See figure P-ESR-MSG-D13.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D13.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The physical magnet length shall be <2.73 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet pole gap height and width shall be H=52 (mm), W=140(mm)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.79(T.m) (See figure P-ESR-MSG-D13.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The field shall be measured at 4 locations (see figure P-ESR-MSG-D13.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The reference field for the different design energies shall be Measurement 1; Bref1=0.07 (T) at R1 Measurement 2; Bref2=0.13 (T) at R2 Measurement 3; Bref3=0.284 (T) at R2 Measurement 4; Bref4=0.284(T) at R=002/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: b1 = 10000, Region 2: b1 = 10000, *Region 3: b1 = 10000,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region1: -4<b2<4, Region2: -4<b2<4, *Region3: -4<b2<402/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b3<0.6, Region 2: -0.5<b3<0.6, *Region 3: -0.5<b3<0.6,02/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -1<b4< 0.5, Region 2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b15 <0.5, Region2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01*Region 1: -0.5<b16 <0.5, Region2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.01The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be a single function dipole with a vertical field direction.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be equipped with trim coils which are capable of trimming the field within +/- 2.8(%) of the Peak main bus field. (See figure P-ESR-MSG-D2.01.02-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02To operate at a fixed bus current for 5GeV,10GeV and 18GeV the magnet shall be designed to accommodate turns. (See figure P-ESR-MSG-D2.01.03-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The physical magnet length shall be <1.13 (m).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet pole gap height and width shall be H=52 (mm), W=140(mm).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnet installation tolerances, the magnet install center and install alignment must be within a translational value of +/-150(um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be able to deliver an absolute nominal integrated dipole field ranging from Bmin=0(T.m) to Bmax=0.33(T.m). (See figure P-ESR-MSG-D2.02.01-1)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet good field aperture dAx required shall be 35.0345 mm.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet-to-magnet variability shall be < 0.1%.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02Magnetic field position and alignment within the magnet, the magnetic field, center and alignment, within the magnet must be known to within a translational value of +/-50 (um) and a rotational alignment value of +/-0.5(mrad).02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The field shall be measured at 4 locations (See figure P-ESR-MSG-D2.03.01-1) as follows Harmonic Measurements region 1; Rref1=13mm centered at (-14,0) mm, Harmonic Measurements region 2; Rref2=13mm centered at (0,0) mm, Harmonic Measurements region 3; Rref3=13mm centered at (14,0), Relative field Measurements region 4; Relative to the central field at B(0,0), sampled in an Annulus 25mm>dRvol3>31mm02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The reference field for the different measurements shall be Measurement 1; Bref1=-0.375 (T) in Region1, Region2 and Region3 Measurement 2; Bref2=0.12 (T) in Region1, Region2 and Region3 Measurement 3; Bref2=0.23 (T) in Region1, Region2 and Region3 Measurement 3; Bref3=0.23 (T) in Region402/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet bore field shall have a field homogeneity in region 4, of better than dB/B<10-3 with respect to the central field at R(0,0) and shall meet the following harmonic multipole content in regions 1, 2 and 3. (Note: The following calculated multipoles values are given for reference radius of 17mm and centered on axis at x=0, y=0. *The multipole values need to be scaled accordingly in regions 1 and 3 with appropriate off axis values.)02/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: b1 = 10000, Region2: b1 = 10000, *Region3: b1 = 1000002/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -6<b2<6, Region 2: -6<b2<6, *Region 3: -6<b2<602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -0.5<b3<0.6, Region2: -0.5<b3<0.6, *Region3: -0.5<b3<0.602/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region1: -1<b4< 0.5, Region2: -1<b4< 0.5, *Region 3: -1<b4< 0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b5 <0.5, Region 2: -0.5<b5 <0.5, *Region 3: -0.5<b5 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b6 <0.5, Region 2: -0.5<b6 <0.5, *Region 3: -0.5<b6 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b7 <0.5, Region 2: -0.5<b7 <0.5, *Region 3: -0.5<b7 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b8 <0.5, Region 2: -0.5<b8 <0.5, *Region 3: -0.5<b8 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b9 <0.5, Region 2: -0.5<b9 <0.5, *Region 3: -0.5<b9 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b10 <0.5, Region 2: -0.5<b10 <0.5, *Region 3: -0.5<b10 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b11 <0.5, Region 2: -0.5<b11 <0.5, *Region 3: -0.5<b11 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b12 <0.5, Region 2: -0.5<b12 <0.5, *Region 3: -0.5<b12 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b13 <0.5, Region 2: -0.5<b13 <0.5, *Region 3: -0.5<b13 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b14 <0.5, Region 2: -0.5<b14 <0.5, *Region 3: -0.5<b14 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b15 <0.5, Region 2: -0.5<b15 <0.5, *Region 3: -0.5<b15 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02*Region 1: -0.5<b16 <0.5, Region 2: -0.5<b16 <0.5, *Region 3: -0.5<b16 <0.502/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall not be designed to limit CrossTalk requirements.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet fringe field shall not exceed 10 Gauss at a radial distance greater than 900mm from the magnet centerline02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet design and verification process shall ensure the final magnet will meet the reliability needs of the EIC over it planned operational life of >20 Years.02/09/2026ApprovedFALSE
- 6.02.02.03.01.02The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is a Dipole(D5I) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a Dipole(D5I) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a Dipole(D5I) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is a Dipole(D5O) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a Dipole(D5O) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a Dipole(D5O) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is a Dipole(D6) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a Dipole(D6) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a Dipole(D6) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is a Dipole(D8) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a Dipole(D8) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a Dipole(D8) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is a Dipole(D9) RHIC Magnet, the multipole homogeneity measurements and transfer function are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a Dipole(D9) RHIC Magnet, the Magnet-Cross-talk calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet is a Dipole(D9) RHIC Magnet, the Magnet-Fringe-field calculations are maintained in the BNL magnet repository.02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026In ProcessFALSE
- 6.02.03.10The magnet shall have an appropriate Magnet-Quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a Magnet-Quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10All Magnet-Electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.02.03.10The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40 thermal cycles, 120 Magnet-Quenches and 20000 power cycles.02/09/2026ApprovedFALSE
- 6.02.03.10The magnet shall be designed to operate reliably given the cumulative radiation dose it will experience over the lifetime of the EIC of >20 Years.02/09/2026ApprovedFALSE
- 6.06The EIC IR electron and hadron spin manipulation components shall be designed to provide the spin orientation at the IP as specified in the EIC GRD [EIC-ORG-PLN-010].09/30/2025ApprovedFALSE
- 6.06The EIC IR process of orientating the spin to longitudinal direction at the IP shall not affect the spin outside the IR.08/20/2025ApprovedFALSE
IR-PS : IR Magnet Power Supply (WBS 6.06.02)
IR-PS-ESR
IR-PS-ESR-B1EF : IR Magnet Power Supply D1EF (WBS 6.06.02.01)
IR-PS-ESR-Q0EF : IR Magnet Power Supply Q0EF (WBS 6.06.02.01)
IR-PS-ESR-Q1EF : IR Magnet Power Supply Q1EF (WBS 6.06.02.01)
IR-PS-ESR-Q1ER : IR Magnet Power Supply Q1ER (WBS 6.06.02.01)
IR-PS-ESR-Q2EF : IR Magnet Power Supply Q2EF (WBS 6.06.02.01)
IR-PS-ESR-Q2ER : IR Magnet Power Supply Q2ER (WBS 6.06.02.01)
IR-PS-ESR-LSR : IR Magnet Power Supply LONG_S (WBS 6.06.02.02)
- 6.06.07.01.16The number of Independent functions on the magnets being powered shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.16The maximum magnet string resistance to be powered shall be TBD ohm09/25/2025In ProcessFALSE
- 6.06.07.01.16The maximum magnet string inductance to be powered shall be TBD H09/25/2025In ProcessFALSE
- 6.06.07.01.16The magnets being powered shall be saturated TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.16The miits rating of the magnet being powred shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.16The voltage to ground of the magnet being powered shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.16The nominal current of the magnets being powered shall be TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.16The minmum current the PS must operate at shall be TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.16The maximum current the PS must operate at shall be TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.16The PS current type DC or AC shall be TBD DC\AC09/25/2025In ProcessFALSE
- 6.06.07.01.16The PS AC waveshape required shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.16The peak waveshape di/dt during ramping shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.16The full power bandwidth required shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.16The ppm of full scale current (peak to peak) shall be TBD %09/25/2025In ProcessFALSE
- 6.06.07.01.16The time period for specified stability shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.16The short term stability shall be TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.16The long term stability shall be TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.16The current setpoint resolution (min size in bits) shall be TBD bits09/25/2025In ProcessFALSE
- 6.06.07.01.16The synchronization required between PS's shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.16The synchronization timing of synchronization shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.16The max allowable current ripple (peak to peak) TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.16The max current ripple frequency range (Hz) TBD Hz09/25/2025In ProcessFALSE
- 6.06.07.01.16WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz09/25/2025In ProcessFALSE
- 6.06.07.01.16The max voltage ripple (peak to peak) shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.16An NMR shall be required to measure the field TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.16The voltage tap configuration shall be TBD -09/25/2025In ProcessFALSE
- 6.06.07.01.16The threshold levels shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.16The peak di/dt without inducing a quench shall be TBD A/S09/25/2025In ProcessFALSE
- 6.06.07.01.16The design shall have quench heaters TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.16The quench heater power rating shall be TBD W09/25/2025In ProcessFALSE
- 6.06.07.01.16The design shall have warm up heaters TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.16The warmup heater power rating shall be TBD W09/25/2025In ProcessFALSE
- 6.06.07.01.16The current required to be shunted through the magnet shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.16The magnet turns ratio shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.16The terminal voltage shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.16The design shall have thermal switches TBD09/25/2025In ProcessFALSE
IR-PS-ESR-SSR : IR Magnet Power Supply SHORT_S (WBS 6.06.02.02)
- 6.06.07.01.17The number of Independent functions on the magnets being powered shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.17The maximum magnet string resistance to be powered shall be TBD ohm09/25/2025In ProcessFALSE
- 6.06.07.01.17The maximum magnet string inductance to be powered shall be TBD H09/25/2025In ProcessFALSE
- 6.06.07.01.17The magnets being powered shall be saturated TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.17The miits rating of the magnet being powred shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.17The voltage to ground of the magnet being powered shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.17The nominal current of the magnets being powered shall be TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.17The minmum current the PS must operate at shall be TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.17The maximum current the PS must operate at shall be TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.17The PS current type DC or AC shall be TBD DC\AC09/25/2025In ProcessFALSE
- 6.06.07.01.17The PS AC waveshape required shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.17The peak waveshape di/dt during ramping shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.17The full power bandwidth required shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.17The ppm of full scale current (peak to peak) shall be TBD %09/25/2025In ProcessFALSE
- 6.06.07.01.17The time period for specified stability shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.17The short term stability shall be TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.17The long term stability shall be TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.17The current setpoint resolution (min size in bits) shall be TBD bits09/25/2025In ProcessFALSE
- 6.06.07.01.17The synchronization required between PS's shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.17The synchronization timing of synchronization shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.17The max allowable current ripple (peak to peak) TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.17The max current ripple frequency range (Hz) TBD Hz09/25/2025In ProcessFALSE
- 6.06.07.01.17WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz09/25/2025In ProcessFALSE
- 6.06.07.01.17The max voltage ripple (peak to peak) shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.17An NMR shall be required to measure the field TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.17The voltage tap configuration shall be TBD -09/25/2025In ProcessFALSE
- 6.06.07.01.17The threshold levels shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.17The peak di/dt without inducing a quench shall be TBD A/S09/25/2025In ProcessFALSE
- 6.06.07.01.17The design shall have quench heaters TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.17The quench heater power rating shall be TBD W09/25/2025In ProcessFALSE
- 6.06.07.01.17The design shall have warm up heaters TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.17The warmup heater power rating shall be TBD W09/25/2025In ProcessFALSE
- 6.06.07.01.17The current required to be shunted through the magnet shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.17The magnet turns ratio shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.17The terminal voltage shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.17The design shall have thermal switches TBD09/25/2025In ProcessFALSE
IR-PS-HSR
IR-PS-HSR-B0APF : IR Magnet Power Supply B0APF (WBS 6.06.02.03)
IR-PS-HSR-B0PF : IR Magnet Power Supply B0PF (WBS 6.06.02.03)
IR-PS-HSR-B1APF : IR Magnet Power Supply B1APF (WBS 6.06.02.03)
- 6.06.07.01.10The number of Independent functions on the magnets being powered shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.10The maximum magnet string resistance to be powered shall be TBD ohm09/25/2025In ProcessFALSE
- 6.06.07.01.10The maximum magnet string inductance to be powered shall be TBD H09/25/2025In ProcessFALSE
- 6.06.07.01.10The magnets being powered shall be saturated TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.10The miits rating of the magnet being powred shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.10The voltage to ground of the magnet being powered shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.10The nominal current of the magnets being powered shall be TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.10The minmum current the PS must operate at shall be TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.10The maximum current the PS must operate at shall be TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.10The PS current type DC or AC shall be TBD DC\AC09/25/2025In ProcessFALSE
- 6.06.07.01.10The PS AC waveshape required shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.10The peak waveshape di/dt during ramping shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.10The full power bandwidth required shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.10The ppm of full scale current (peak to peak) shall be TBD %09/25/2025In ProcessFALSE
- 6.06.07.01.10The time period for specified stability shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.10The short term stability shall be TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.10The long term stability shall be TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.10The current setpoint resolution (min size in bits) shall be TBD bits09/25/2025In ProcessFALSE
- 6.06.07.01.10The synchronization required between PS's shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.10The synchronization timing of synchronization shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.10The max allowable current ripple (peak to peak) TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.10The max current ripple frequency range (Hz) TBD Hz09/25/2025In ProcessFALSE
- 6.06.07.01.10WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz09/25/2025In ProcessFALSE
- 6.06.07.01.10The max voltage ripple (peak to peak) shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.10An NMR shall be required to measure the field TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.10The voltage tap configuration shall be TBD -09/25/2025In ProcessFALSE
- 6.06.07.01.10The threshold levels shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.10The peak di/dt without inducing a quench shall be TBD A/S09/25/2025In ProcessFALSE
- 6.06.07.01.10The design shall have quench heaters TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.10The quench heater power rating shall be TBD W09/25/2025In ProcessFALSE
- 6.06.07.01.10The design shall have warm up heaters TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.10The warmup heater power rating shall be TBD W09/25/2025In ProcessFALSE
- 6.06.07.01.10The current required to be shunted through the magnet shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.10The magnet turns ratio shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.10The terminal voltage shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.10The design shall have thermal switches TBD09/25/2025In ProcessFALSE
IR-PS-HSR-B1PF : IR Magnet Power Supply B1PF (WBS 6.06.02.03)
- 6.06.07.01.09The number of Independent functions on the magnets being powered shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.09The maximum magnet string resistance to be powered shall be TBD ohm09/25/2025In ProcessFALSE
- 6.06.07.01.09The maximum magnet string inductance to be powered shall be TBD H09/25/2025In ProcessFALSE
- 6.06.07.01.09The magnets being powered shall be saturated TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.09The miits rating of the magnet being powred shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.09The voltage to ground of the magnet being powered shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.09The nominal current of the magnets being powered shall be TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.09The minmum current the PS must operate at shall be TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.09The maximum current the PS must operate at shall be TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.09The PS current type DC or AC shall be TBD DC\AC09/25/2025In ProcessFALSE
- 6.06.07.01.09The PS AC waveshape required shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.09The peak waveshape di/dt during ramping shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.09The full power bandwidth required shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.09The ppm of full scale current (peak to peak) shall be TBD %09/25/2025In ProcessFALSE
- 6.06.07.01.09The time period for specified stability shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.09The short term stability shall be TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.09The long term stability shall be TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.09The current setpoint resolution (min size in bits) shall be TBD bits09/25/2025In ProcessFALSE
- 6.06.07.01.09The synchronization required between PS's shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.09The synchronization timing of synchronization shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.09The max allowable current ripple (peak to peak) TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.09The max current ripple frequency range (Hz) TBD Hz09/25/2025In ProcessFALSE
- 6.06.07.01.09WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz09/25/2025In ProcessFALSE
- 6.06.07.01.09The max voltage ripple (peak to peak) shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.09An NMR shall be required to measure the field TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.09The voltage tap configuration shall be TBD -09/25/2025In ProcessFALSE
- 6.06.07.01.09The threshold levels shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.09The peak di/dt without inducing a quench shall be TBD A/S09/25/2025In ProcessFALSE
- 6.06.07.01.09The design shall have quench heaters TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.09The quench heater power rating shall be TBD W09/25/2025In ProcessFALSE
- 6.06.07.01.09The design shall have warm up heaters TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.09The warmup heater power rating shall be TBD W09/25/2025In ProcessFALSE
- 6.06.07.01.09The current required to be shunted through the magnet shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.09The magnet turns ratio shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.09The terminal voltage shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.09The design shall have thermal switches TBD09/25/2025In ProcessFALSE
IR-PS-HSR-B1PR : IR Magnet Power Supply B1PR (WBS 6.06.02.03)
IR-PS-HSR-B2PR : IR Magnet Power Supply B2PR (WBS 6.06.02.03)
IR-PS-HSR-Q1APF : IR Magnet Power Supply Q1APF (WBS 6.06.02.03)
- 6.06.07.01.05The number of Independent functions on the magnets being powered shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.05The maximum magnet string resistance to be powered shall be TBD ohm09/25/2025In ProcessFALSE
- 6.06.07.01.05The maximum magnet string inductance to be powered shall be TBD H09/25/2025In ProcessFALSE
- 6.06.07.01.05The magnets being powered shall be saturated TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.05The miits rating of the magnet being powred shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.05The voltage to ground of the magnet being powered shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.05The nominal current of the magnets being powered shall be TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.05The minmum current the PS must operate at shall be TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.05The maximum current the PS must operate at shall be TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.05The PS current type DC or AC shall be TBD DC\AC09/25/2025In ProcessFALSE
- 6.06.07.01.05The PS AC waveshape required shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.05The peak waveshape di/dt during ramping shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.05The full power bandwidth required shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.05The ppm of full scale current (peak to peak) shall be TBD %09/25/2025In ProcessFALSE
- 6.06.07.01.05The time period for specified stability shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.05The short term stability shall be TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.05The long term stability shall be TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.05The current setpoint resolution (min size in bits) shall be TBD bits09/25/2025In ProcessFALSE
- 6.06.07.01.05The synchronization required between PS's shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.05The synchronization timing of synchronization shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.05The max allowable current ripple (peak to peak) TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.05The max current ripple frequency range (Hz) TBD Hz09/25/2025In ProcessFALSE
- 6.06.07.01.05WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz09/25/2025In ProcessFALSE
- 6.06.07.01.05The max voltage ripple (peak to peak) shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.05An NMR shall be required to measure the field TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.05The voltage tap configuration shall be TBD -09/25/2025In ProcessFALSE
- 6.06.07.01.05The threshold levels shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.05The peak di/dt without inducing a quench shall be TBD A/S09/25/2025In ProcessFALSE
- 6.06.07.01.05The design shall have quench heaters TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.05The quench heater power rating shall be TBD W09/25/2025In ProcessFALSE
- 6.06.07.01.05The design shall have warm up heaters TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.05The warmup heater power rating shall be TBD W09/25/2025In ProcessFALSE
- 6.06.07.01.05The current required to be shunted through the magnet shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.05The magnet turns ratio shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.05The terminal voltage shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.05The design shall have thermal switches TBD09/25/2025In ProcessFALSE
IR-PS-HSR-Q1APR : IR Magnet Power Supply Q1APR (WBS 6.06.02.03)
IR-PS-HSR-Q1BPF : IR Magnet Power Supply Q1BPF (WBS 6.06.02.03)
- 6.06.07.01.06The number of Independent functions on the magnets being powered shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.06The maximum magnet string resistance to be powered shall be TBD ohm09/25/2025In ProcessFALSE
- 6.06.07.01.06The maximum magnet string inductance to be powered shall be TBD H09/25/2025In ProcessFALSE
- 6.06.07.01.06The magnets being powered shall be saturated TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.06The miits rating of the magnet being powred shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.06The voltage to ground of the magnet being powered shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.06The nominal current of the magnets being powered shall be TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.06The minmum current the PS must operate at shall be TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.06The maximum current the PS must operate at shall be TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.06The PS current type DC or AC shall be TBD DC\AC09/25/2025In ProcessFALSE
- 6.06.07.01.06The PS AC waveshape required shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.06The peak waveshape di/dt during ramping shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.06The full power bandwidth required shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.06The ppm of full scale current (peak to peak) shall be TBD %09/25/2025In ProcessFALSE
- 6.06.07.01.06The time period for specified stability shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.06The short term stability shall be TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.06The long term stability shall be TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.06The current setpoint resolution (min size in bits) shall be TBD bits09/25/2025In ProcessFALSE
- 6.06.07.01.06The synchronization required between PS's shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.06The synchronization timing of synchronization shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.06The max allowable current ripple (peak to peak) TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.06The max current ripple frequency range (Hz) TBD Hz09/25/2025In ProcessFALSE
- 6.06.07.01.06WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz09/25/2025In ProcessFALSE
- 6.06.07.01.06The max voltage ripple (peak to peak) shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.06An NMR shall be required to measure the field TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.06The voltage tap configuration shall be TBD -09/25/2025In ProcessFALSE
- 6.06.07.01.06The threshold levels shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.06The peak di/dt without inducing a quench shall be TBD A/S09/25/2025In ProcessFALSE
- 6.06.07.01.06The design shall have quench heaters TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.06The quench heater power rating shall be TBD W09/25/2025In ProcessFALSE
- 6.06.07.01.06The design shall have warm up heaters TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.06The warmup heater power rating shall be TBD W09/25/2025In ProcessFALSE
- 6.06.07.01.06The current required to be shunted through the magnet shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.06The magnet turns ratio shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.06The terminal voltage shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.06The design shall have thermal switches TBD09/25/2025In ProcessFALSE
IR-PS-HSR-Q1BPR : IR Magnet Power Supply Q1BPR (WBS 6.06.02.03)
IR-PS-HSR-Q2PF : IR Magnet Power Supply Q2PF (WBS 6.06.02.03)
- 6.06.07.01.08The number of Independent functions on the magnets being powered shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.08The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.06.07.01.08The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.06.07.01.08The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.06.07.01.08The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.06.07.01.08The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.06.07.01.08The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.06.07.01.08The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.06.07.01.08The number of Independent functions on the magnets being powered shall be TBD02/09/2026In ProcessFALSE
- 6.06.07.01.08The PS current type DC or AC shall be TBD DC\AC09/25/2025In ProcessFALSE
- 6.06.07.01.08The PS AC waveshape required shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.08The peak waveshape di/dt during ramping shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.08The full power bandwidth required shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.08The ppm of full scale current (peak to peak) shall be TBD %09/25/2025In ProcessFALSE
- 6.06.07.01.08The time period for specified stability shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.08The short term stability shall be TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.08The long term stability shall be TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.08The current setpoint resolution (min size in bits) shall be TBD bits09/25/2025In ProcessFALSE
- 6.06.07.01.08The synchronization required between PS's shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.08The synchronization timing of synchronization shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.08The max allowable current ripple (peak to peak) TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.08The max current ripple frequency range (Hz) TBD Hz09/25/2025In ProcessFALSE
- 6.06.07.01.08WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz09/25/2025In ProcessFALSE
- 6.06.07.01.08The max voltage ripple (peak to peak) shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.08An NMR shall be required to measure the field TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.08The voltage tap configuration shall be TBD -09/25/2025In ProcessFALSE
- 6.06.07.01.08The threshold levels shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.08The peak di/dt without inducing a quench shall be TBD A/S09/25/2025In ProcessFALSE
- 6.06.07.01.08The design shall have quench heaters TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.08The quench heater power rating shall be TBD W09/25/2025In ProcessFALSE
- 6.06.07.01.08The design shall have warm up heaters TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.08The warmup heater power rating shall be TBD W09/25/2025In ProcessFALSE
- 6.06.07.01.08The current required to be shunted through the magnet shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.08The magnet turns ratio shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.08The terminal voltage shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.08The design shall have thermal switches TBD09/25/2025In ProcessFALSE
IR-PS-HSR-Q2PR : IR Magnet Power Supply Q2PR (WBS 6.06.02.03)
IR-PS-HSR-B2PF : IR Magnet Power Supply B2PF (WBS 6.06.02.06)
- 6.06.07.01.18The number of Independent functions on the magnets being powered shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.18The maximum magnet string resistance to be powered shall be TBD ohm09/25/2025In ProcessFALSE
- 6.06.07.01.18The maximum magnet string inductance to be powered shall be TBD H09/25/2025In ProcessFALSE
- 6.06.07.01.18The magnets being powered shall be saturated TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.18The miits rating of the magnet being powred shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.18The voltage to ground of the magnet being powered shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.18The nominal current of the magnets being powered shall be TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.18The minmum current the PS must operate at shall be TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.18The maximum current the PS must operate at shall be TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.18The PS current type DC or AC shall be TBD DC\AC09/25/2025In ProcessFALSE
- 6.06.07.01.18The PS AC waveshape required shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.18The peak waveshape di/dt during ramping shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.18The full power bandwidth required shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.18The ppm of full scale current (peak to peak) shall be TBD %09/25/2025In ProcessFALSE
- 6.06.07.01.18The time period for specified stability shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.18The short term stability shall be TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.18The long term stability shall be TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.18The current setpoint resolution (min size in bits) shall be TBD bits09/25/2025In ProcessFALSE
- 6.06.07.01.18The synchronization required between PS's shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.18The synchronization timing of synchronization shall be TBD s09/25/2025In ProcessFALSE
- 6.06.07.01.18The max allowable current ripple (peak to peak) TBD A09/25/2025In ProcessFALSE
- 6.06.07.01.18The max current ripple frequency range (Hz) TBD Hz09/25/2025In ProcessFALSE
- 6.06.07.01.18WRT the ripple frequency the following resonant frequencies shall be avoided TBD Hz09/25/2025In ProcessFALSE
- 6.06.07.01.18The max voltage ripple (peak to peak) shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.18An NMR shall be required to measure the field TBD A/s09/25/2025In ProcessFALSE
- 6.06.07.01.18The voltage tap configuration shall be TBD -09/25/2025In ProcessFALSE
- 6.06.07.01.18The threshold levels shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.18The peak di/dt without inducing a quench shall be TBD A/S09/25/2025In ProcessFALSE
- 6.06.07.01.18The design shall have quench heaters TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.18The quench heater power rating shall be TBD W09/25/2025In ProcessFALSE
- 6.06.07.01.18The design shall have warm up heaters TBD Y/N09/25/2025In ProcessFALSE
- 6.06.07.01.18The warmup heater power rating shall be TBD W09/25/2025In ProcessFALSE
- 6.06.07.01.18The current required to be shunted through the magnet shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.18The magnet turns ratio shall be TBD09/25/2025In ProcessFALSE
- 6.06.07.01.18The terminal voltage shall be TBD V09/25/2025In ProcessFALSE
- 6.06.07.01.18The design shall have thermal switches TBD09/25/2025In ProcessFALSE
IR-MAG : IR Magnet (WBS 6.06.02.01)
IR-MAG-ESR : Interaction Region/Electron Storage Ring Magnets
IR-MAG-ESR-Q0EF : IR Magnet Q0EF (WBS 6.06.02.01.01)
- 6.06.05.01The magnet shall have a single function normal Quadrupole field.02/09/2026ApprovedFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 1.27 (m).02/09/2026ApprovedFALSE
- 6.06.05.01The inner beam tube bore radius when warm, shall be greater than 28.5(mm).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cryostat shall be designed such that The main cylindrical volume has An outside diameter less than 0.9(m) A length less than 1.65(m). All ancillary equipment, support structures and turrets, which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: Displacement in X= +/-150 (um) Displacement in Y= +/-150 (um) Displacement in Z= +/-150 (um)02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: Rotational about X= +/-0.2 (mrad) Rotational about Y= +/-0.2 (mrad) Rotational about Z= +/-0.2 (mrad)02/09/2026ApprovedFALSE
- 6.06.05.01The maximum integrated Quadrupole field required in the bore of Q0eF is 15.8 (T), the magnet design shall include an additional 10% tuning margin giving a required field of 17.4 (T).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position Displacement in X= 2(mm) Displacement in Y= 2(mm) Displacement in Z= 2(mm)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis Rotational about X= +/-0.2(mrad) Rotational about Y= +/-0.2(mrad) Rotational about Z= +/-0.2(mrad)02/09/2026ApprovedFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The harmonic reference radius at which the field quality shall be measured is 18(mm) wrt the ESR axis02/09/2026ApprovedFALSE
- 6.06.05.01The field harmonics shall be made at the reference radius for the following energies: Measurement 1: at 5GeV Measurement 2: at 10GeV Measurement 3: at 18GeV02/09/2026ApprovedFALSE
- 6.06.05.01The magnet bore field SHALL have the following multipole content. The units are specified in parts 10-4 of the main component.(see comments For additional notes)02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: b2= 10000, Measurement 2: b2= 10000, Measurement 3: b2= 1000002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1< b3 < 1, Measurement 2: -1< b3 < 1, Measurement 3: -1< b3 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1< b4 < 1, Measurement 2: -1< b4 < 1, Measurement 3: -1< b4 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1< b5 <1, Measurement 2: -1< b5 <1, Measurement 3: -1< b5 <102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1< b6 < 1, Measurement 2: -1< b6 < 1, Measurement 3: -1< b6 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1< b7 < 1, Measurement 2: -1< b7 < 1, Measurement 3: -1< b7 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1< b8 < 1, Measurement 2: -1< b8 < 1, Measurement 3: -1< b8 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1< b9 < 1, Measurement 2: -1< b9 < 1, Measurement 3: -1< b9 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1< b10 <1, Measurement 2: -1< b10 <1, Measurement 3: -1< b10 <102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1< b11 < 1, Measurement 2: -1< b11 < 1, Measurement 3: -1< b11 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1< b12 < 1, Measurement 2: -1< b12 < 1, Measurement 3: -1< b12 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1< b13 < 1, Measurement 2: -1< b13 < 1, Measurement 3: -1< b13 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1< b14 < 1, Measurement 2: -1< b14 < 1, Measurement 3: -1< b14 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1< b15 < 1, Measurement 2: -1< b15 < 1, Measurement 3: -1< b15 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1< b16 < 1, Measurement 2: -1< b16 < 1, Measurement 3: -1< b16 < 102/09/2026ApprovedFALSE
- 6.06.05.01The magnet cross-talk shall be constrained such that all harmonic multipoles within the HSR beampipe are as follows02/09/2026ApprovedFALSE
- 6.06.05.01The field shall be measured within a cylinder containing the volume occupied by the HSR bore having a radius ~ 50(mm) centered at X=160(mm), y=0(mm) with respect to the ESR axis. The length of the cylinder L shall extend along the length of the Q0eF magnet. along the length of the B0PF magnet.02/09/2026ApprovedFALSE
- 6.06.05.01The field measurements shall be made with the Quadrupole Q0EF energized to its maximum field the following values. The measurement may be made with B0eF off or on or and is not required to be present in the B0pF bore.02/09/2026ApprovedFALSE
- 6.06.05.01The multipole crosstalk in the Q0EF magnet bore from the B0PF field SHALL not exceed the following values, Note; The units are (Gauss.m). (Comment contains additional notes)02/09/2026ApprovedFALSE
- 6.06.05.01B1 has no requirements02/09/2026ApprovedFALSE
- 6.06.05.01B2 has no requirements02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3< B3 <3, Measurement 2: -3< B3 <3, Measurement 3: -3< B3 <302/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3< B4 <3, Measurement 2: -3< B4 <3, Measurement 3: -3< B4 <302/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3< B5 <3, Measurement 2: -3< B5 <3, Measurement 3: -3< B5 <302/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3< B6 <3, Measurement 2: -3< B6 <3, Measurement 3: -3< B6 <302/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3< B7 <3, Measurement 2: -3< B7 <3, Measurement 3: -3< B7 <302/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3< B8 <3, Measurement 2: -3< B8 <3, Measurement 3: -3< B8 <302/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3< B9 <3, Measurement 2: -3< B9 <3, Measurement 3: -3< B9 <3, Measurement 4: -3< B9 <302/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3< B10 <3, Measurement 2: -3< B10 <3, Measurement 3: -3< B10 <302/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3< B11 <3, Measurement 2: -3< B11 <3, Measurement 3: -3< B11 <302/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3< B12 <3, Measurement 2: -3< B12 <3, Measurement 3: -3< B12 <302/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3< B13 <3, Measurement 2: -3< B13 <3, Measurement 3: -3< B13 <302/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3< B14 <3, Measurement 2: -3< B14 <3, Measurement 3: -3< B14 <302/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3< B15 <3, Measurement 2: -3< B15 <3, Measurement 3: -3< B15 <302/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3< B16 <3, Measurement 2: -3< B16 <3, Measurement 3: -3< B16 <302/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a forced flow circuit of supercritical helium flow at 3.5 bar, and 4.7K and at a sufficient flowrate to maintain a sensible temperature rise of no more than 0.2K.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet HTS current leads’ HTS/Copper-leads heat station shall be designed to be cooled and sustain operations at nominal operating conditions using supply helium at 3.5 (bar) and can be part of the cooling circuit of the HTS station of the B0pF and shall have an exit temperature of 40K.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be capable of removing a maximum total heat load of 2(W) while maintaining nominal operating conditions under a forced flow cooling circuit of supercritical helium at 3.5 bar and 4.7K02/09/2026ApprovedFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be 10.3 (bar)02/09/2026ApprovedFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.03(bar).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026ApprovedFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026ApprovedFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026ApprovedFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 1.9 K.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: 60 thermal cycles, 180 quenches 30000 power cycles.02/09/2026ApprovedFALSE
- 6.06.05.01Over its planned life of 30(yrs) the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.03.01The magnet design team shall design the cold mass piping and connections including heat exchanger pipes and yoke cooling channels to ensure adequate free flow for all operating conditions including quenches.10/22/2025In ProcessFALSE
- 6.06.03.01The cryogenics group shall create schematics with the piping and connectors needed to connect the magnet to the 4.5 K distribution system.10/22/2025In ProcessFALSE
- 6.06.03.01The cryogenics group shall provide the piping and accessories necessary to plumb the cryostat to the 4.5 K Cryo system.10/22/2025In ProcessFALSE
- 6.06.03.01The cryostat design shall provide a mating pipe weld stub to connect the cryostat 4.5 K system to the 4.5 K cryogenic distribution system.10/22/2025In ProcessFALSE
- 6.06.03.01The cryogenics group shall weld and leak check the final pipe connections from the cryostat 4.5 K system to the 4.5 K cryogenic distribution system.10/22/2025In ProcessFALSE
- 6.06.03.01The magnet design team shall provide the magnet design with adequate position and alignment adjustments for operation.10/22/2025In ProcessFALSE
- 6.06.03.01The magnet design team shall adjust the magnet at 300 K before cryostat closure to ensure it will settle in its correct position when operational.10/22/2025In ProcessFALSE
- 6.06.03.01The magnet design team shall specify the power requirement.10/22/2025In ProcessFALSE
- 6.06.03.01The Power Supply Group shall supply The magnet design team with schematics for all cables and connectors needed to power the magnet and associated equipment (Quench detection/protection).10/22/2025In ProcessFALSE
- 6.06.03.01The Power Supply Group shall provide all necessary cables interfaces with the cryostat.10/22/2025In ProcessFALSE
- 6.06.03.01The Power Supply Group shall provide all necessary cabling to go from the power supply to any quench protection equipment needed for the magnets.10/22/2025In ProcessFALSE
- 6.06.03.01The magnet design team shall perform electrical testing to verify at room temperature the instrumentation lead connections are capable of meeting operational needs.10/22/2025In ProcessFALSE
- 6.06.03.01The cryogenics Group shall create schematics showing all the instrumentation to connect the cryostat to the 4.5 K cryo control system.10/22/2025In ProcessFALSE
- 6.06.03.01The cryogenics Group shall purchase the wire and connectors necessary to connect the cryostat to the 4.5 K cryo control system.10/22/2025In ProcessFALSE
- 6.06.03.01The cryogenics Group shall install and connect all connections to the cryostat instrumentation, confirm the connections are good and the instrumentation is functioning correctly.10/22/2025In ProcessFALSE
- 6.06.03.01The magnet design team shall define position and alignment values which will be used to set the 300K position and alignments of the Electron beam pipe.10/22/2025In ProcessFALSE
- 6.06.03.01The Mechanical Design Group shall provide the support structure design (concrete pedestal) and CAD model to be utilized by the magnet group. They will ensure the design does not interfere with magnet, cables, cryogenic connections to the cryostat.10/22/2025In ProcessFALSE
- 6.06.03.01The magnet design team shall provide the concrete pedestal specifications.10/22/2025In ProcessFALSE
- 6.06.03.01The installation team shall provide the concrete pedstal design and install it.10/22/2025In ProcessFALSE
- 6.06.03.01The magnet design team shall install the cryostat on the support structure.10/22/2025In ProcessFALSE
- 6.06.03.01The magnet design team shall design the cryostat support which should account for the adjustability of the final position and alignment.10/22/2025In ProcessFALSE
- 6.06.03.01The Mechanical Design Group shall provide the volume within the tunnel to be occupied by the cryostat. It should identify the location of the cryostat center and its alignment wrt the ESR and ESR beamlines and IP6.10/22/2025In ProcessFALSE
- 6.06.03.01The magnet design team shall align the cryostat such that the fiducial marks on the cryostat are located wrt the install locations provided by the survey group to ensure the cryostat is aligned.10/22/2025In ProcessFALSE
- 6.06.03.01The cryostat shall provide a volume to receive the scintillator elements for the detector system.10/22/2025In ProcessFALSE
- 6.06.03.01The detector group shall align the EMCAL to the cryostat design.10/22/2025In ProcessFALSE
- 6.06.03.01Changes to the size or position of either the magnet or the HCAL must be coordinated with the other group.10/22/2025In ProcessFALSE
- 6.06.03.01The magnet design team shall design the cryostat to fit the detector inside.10/22/2025In ProcessFALSE
- 6.06.03.01The magnet design team shall design the cryostat to allow a minimum of 20 cm free space on the IP-side of the B0 magnet for the installation and access of the detectors.10/22/2025In ProcessFALSE
- 6.06.03.01The Detector Group shall provide a forward magnet platform to support the detectors, installation tooling, and the associated vacuum valve and bellows.10/22/2025In ProcessFALSE
- 6.06.03.01The detector group shall provide the cooling requirement, including the peak energy inside the detector the peak temperature without cooling, to the magnet design team for designing the cooling stratagies.10/22/2025In ProcessFALSE
- 6.06.03.01The magnet design team shall provide the fringe field map based on the acceptable limit.10/22/2025In ProcessFALSE
IR-MAG-ESR-Q1EF : IR Magnet Q1EF (WBS 6.06.02.01.01)
- 6.06.05.01The magnet shall have a single function normal Quadrupole field.02/09/2026In ProcessFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 1.61(m). The magnet design needs to comply with all the geometery constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The beam tube inner bore radius when warm, shall be greater than or equal to 63(mm). The inner radius of the coil must incorporate appropriate allowances for all the structure required between the coil inner radius and the beam tube inner radius (To include the beam tube wall thickness, Coil inner support tube, ground plane insulation, additional coil windings appropriate build tolerances etc.) The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet and its cryostat (designated FC-1) shall be designed to fit within a cylindrical volume having an Outside diameter less than 1.822(m) Length less than 4.47(m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: dx=+/-na dy=+/-na dz=+/-na02/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: About X=+/- na About Y=+/- na About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The maximum integrated Quadrupole field required is 9.7(Tm), the magnet design shall include an additional 10% tuning margin giving a required field of 10.67 (Tm).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to ramp to field within na. Aditionally all HSR magnets must be able to follow the RHIC ramp profile [reference to appropriate RHIC ramp profile document to be added here]02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position dx=+/- 2 dy=+/- 2 dz=+/- 202/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/- 0.2 About Y=+/- 0.2 About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The harmonic reference radius Rr shall be 42(mm), centered at (x=0,y=0) mm with respect to the beam axis.02/09/2026In ProcessFALSE
- 6.06.05.01The measurements at the reference radius Bref shall be made at the design field for the 4 following energisation levels, Measurement 1: Design field for 5GeV Measurement 2: Design field for 10GeV Measurement 3: Design field for 18GeV02/09/2026In ProcessFALSE
- 6.06.05.01The magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components. All undefined harmonics are assumed to be less than +/-0.5 units.02/09/2026In ProcessFALSE
- 6.06.05.01-02/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: b2= 10000, Measurement 2: b2= 10000, Measurement 3: b2= 1000002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b3 < 2, Measurement 2: -2 < b3 < 2, Measurement 3: -2 < b3 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b4 < 2, Measurement 2: -2 < b4 < 2, Measurement 3: -2 < b4 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b5 < 2, Measurement 2: -2 < b5 < 2, Measurement 3: -2 < b5 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b6 < 2, Measurement 2: -2 < b6 < 2, Measurement 3: -2 < b6 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b7 < 2, Measurement 2: -2 < b7 < 2, Measurement 3: -2 < b7 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b8 < 2, Measurement 2: -2 < b8 < 2, Measurement 3: -2 < b8 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b9 < 2, Measurement 2: -2 < b9 < 2, Measurement 3: -2 < b9 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b10 < 2, Measurement 2: -2 < b10 < 2, Measurement 3: -2 < b10 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b11 < 2, Measurement 2: -2 < b11 < 2, Measurement 3: -2 < b11 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b12 < 2, Measurement 2: -2 < b12 < 2, Measurement 3: -2 < b12 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b13 < 2, Measurement 2: -2 < b13 < 2, Measurement 3: -2 < b13 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b14 < 2, Measurement 2: -2 < b14 < 2, Measurement 3: -2 < b14 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b15 < 2, Measurement 2: -2 < b15 < 2, Measurement 3: -2 < b15 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b16 < 2, Measurement 2: -2 < b16 < 2, Measurement 3: -2 < b16 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet crosstalk onto the HSR beam line Shall be constrained such that02/09/2026In ProcessFALSE
- 6.06.05.01All non linear multipoles < 10 (uT) within30(mm) of HSR axis02/09/2026In ProcessFALSE
- 6.06.05.01the Linear multipoles are < 10(gauss) on the HSR axis02/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet shall be designed to meet the following external fringe field constraints02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no radial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no axial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at 1.3(bar). The sub-atmospheric side of the heat exchanger will operate at 1.92(K) and the corresponding saturated vapor pressure of 25.4(mbar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at 1.3(bar) and 4.5(K).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be capable of removing a maximum total heat load of TBD (W) while maintaining nominal operating conditions under 1.3(bar) and 1.92(K).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads cooling shall be capable of removing a maximum total heat load of TBD(W) at the cold end while maintaining nominal operating conditions under 1.3(bar) and 4.5(K), and vapor cooling flow of TBD(g/s) from 4.5(K) to 300(K)02/09/2026In ProcessFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to02/09/2026In ProcessFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.03(bar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to be warmed up from its operational temperature to 300K within 5days.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026In ProcessFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026In ProcessFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, in instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026In ProcessFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 1.9 K.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: 60 thermal cycles, 180 quenches 30000 power cycles.02/09/2026In ProcessFALSE
- 6.06.05.01Over its planned life of 30(yrs) the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-ESR-Q1ER : IR Magnet Q1ER (WBS 6.06.02.01.01)
- 6.06.05.01The magnet shall have a single function normal Quadrupole field.02/09/2026In ProcessFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 1.8(m). The magnet design needs to comply with all the geometery constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The beam tube inner bore radius when warm, shall be greater than or equal to 41.75(mm). The inner radius of the coil must incorporate appropriate allowances for all the structure required between the coil inner radius and the beam tube inner radius (To include the beam tube wall thickness, Coil inner support tube, ground plane insulation, additional coil windings appropriate build tolerances etc.) The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet and its cryostat (designated RC-1) shall be designed to fit within a cylindrical volume having an Outside diameter less than 1.067(m) Length less than 2.073(m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: dx=+/-0.15 dy=+/-0.15 dz=+/-0.1502/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: About X=+/- 0.3 About Y=+/- 0.3 About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The maximum integrated Quadrupole field required is 25.3(Tm), the magnet design shall include an additional 10% tuning margin giving a required field of 27.83 (Tm).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position dx=+/-0.15 dy=+/-0.15 dz=+/-0.1502/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/- 0.3 About Y=+/- 0.3 About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The harmonic reference radius Rr shall be 30(mm), centered at (x=0,y=0) mm with respect to the beam axis.02/09/2026In ProcessFALSE
- 6.06.05.01The measurements at the reference radius Bref shall be made at the design field for the 4 following energisation levels, Measurement 1: Design field for 5GeV Measurement 2: Design field for 10GeV Measurement 3: Design field for 18GeV02/09/2026In ProcessFALSE
- 6.06.05.01The magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components.02/09/2026In ProcessFALSE
- 6.06.05.01-02/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: b2= 10000, -1 < a2 < 1 Measurement 2: b2= 10000, -1 < a2 < 1 Measurement 3: b2= 10000, -1 < a2 < 102/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -1 < b3 < 1, -1 < a3 < 1 Measurement 2: -1 < b3 < 1, -1 < a3 < 1 Measurement 3: -1 < b3 < 1, -1 < a3 < 102/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -1 < b4 < 1, -1 < a4 < 1 Measurement 2: -1 < b4 < 1, -1 < a4 < 1 Measurement 3: -1 < b4 < 1, -1 < a4 < 102/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -1 < b5 < 1, -1 < a5 < 1 Measurement 2: -1 < b5 < 1, -1 < a5 < 1 Measurement 3: -1 < b5 < 1, -1 < a5 < 102/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -1 < b6 < 1, -1 < a6 < 1 Measurement 2: -1 < b6 < 1, -1 < a6 < 1 Measurement 3: -1 < b6 < 1, -1 < a6 < 102/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -1 < b7 < 1, -1 < a7 < 1 Measurement 2: -1 < b7 < 1, -1 < a7 < 1 Measurement 3: -1 < b7 < 1, -1 < a7 < 102/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -1 < b8 < 1, -1 < a8 < 1 Measurement 2: -1 < b8 < 1, -1 < a8 < 1 Measurement 3: -1 < b8 < 1, -1 < a8 < 102/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -1 < b9 < 1, -1 < a9 < 1 Measurement 2: -1 < b9 < 1, -1 < a9 < 1 Measurement 3: -1 < b9 < 1, -1 < a9 < 102/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -1 < b10 < 1, -1 < a10 < 1 Measurement 2: -1 < b10 < 1, -1 < a10 < 1 Measurement 3: -1 < b10 < 1, -1 < a10 < 102/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -1 < b11 < 1, -1 < a11 < 1 Measurement 2: -1 < b11 < 1, -1 < a11 < 1 Measurement 3: -1 < b11 < 1, -1 < a11 < 102/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -1 < b12 < 1, -1 < a12 < 1 Measurement 2: -1 < b12 < 1, -1 < a12 < 1 Measurement 3: -1 < b12 < 1, -1 < a12 < 102/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -1 < b13 < 1, -1 < a13 < 1 Measurement 2: -1 < b13 < 1, -1 < a13 < 1 Measurement 3: -1 < b13 < 1, -1 < a13 < 102/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -1 < b14 < 1, -1 < a14 < 1 Measurement 2: -1 < b14 < 1, -1 < a14 < 1 Measurement 3: -1 < b14 < 1,-1 < a14 < 102/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -1 < b15 < 1, -1 < a15 < 1 Measurement 2: -1 < b15 < 1, -1 < a15 < 1 Measurement 3: -1 < b15 < 1, -1 < a15 < 102/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -1 < b16 < 1, -1 < a16 < 1 Measurement 2: -1 < b16 < 1, -1 < a16 < 1 Measurement 3: -1 < b16 < 1, -1 < a16 < 102/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet crosstalk onto the HSR beam line Shall be constrained such that02/09/2026In ProcessFALSE
- 6.06.05.01All non linear multipoles < 200 (uT) within 18(mm) of HSR axis02/09/2026In ProcessFALSE
- 6.06.05.01there are no linear cross talk requirements02/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet shall be designed to meet the following external fringe field constraints02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no radial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no axial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions in a saturated bath at 4.55K (1.35bar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions using vapor from the saturated bath at 4.55K (1.35bar)02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be capable of removing the maximum total heat load of TBD (W) while maintaining nominal operating conditions in the saturated bath at 4.55K ( 1.35bar)02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads cooling shall be capable of removing a maximum total heat load each of TBD 1(W) at the cold end while maintaining nominal operating conditions in the saturated bath at 4.55K (1.35bar) Assuming 100(A) leads, and lead cooling flows required are as follows: For currents below 10(A) The cooling flow is 0.028(g/s) For currents up to 10 (A), The cooling flow increases by 0.000031 (g/s)/(A) up to the peak current ~100(A). Maximum flow of ~ 0.031(g/s) Maximum flow of ~ 0.028(g/s)02/09/2026In ProcessFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be 18.8(bar).02/09/2026In ProcessFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.01325(bar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil with supercritical forced flow helium for all operational modes.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to be warmed up from its operational temperature to 300K within 5 days using warm gas flow.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026In ProcessFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026In ProcessFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, in instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026In ProcessFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 (nΩ) at 4.55 (K).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: 60 thermal cycles, 180 quenches 30000 power cycles.02/09/2026In ProcessFALSE
- 6.06.05.01Over its planned life of 30(yrs), the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-ESR-Q2ER : IR Magnet Q2ER (WBS 6.06.02.01.01)
- 6.06.05.01The magnet shall have a single function normal Quadrupole field02/09/2026ApprovedFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 1.6 (m). The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number [EIC-SEG-RSI-103].02/09/2026ApprovedFALSE
- 6.06.05.01The inner beam tube bore radius, when warm, shall be greater than or equal to 47.5(mm). The inner radius of the coil must incorporate appropriate allowances for all the structure required between the coil inner radius and the beam tube inner radius (To include the beam tube wall thickness, Coil inner support tube, ground plane insulation, additional coil windings appropriate build tolerances etc.) The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number [EIC-SEG-RSI-103].02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet and its cryostat (designated RC-2) should be designed to fit within a cylindrical volume having an Outside diameter less than 1.37 (m) Length less than 1.65 (m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: dx=+/-0.15 mm dy=+/-0.15 mm dz=+/-0.15 mm02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: About X=+/-0.3 mrad About Y=+/-0.3 mrad About Z=+/-0.2 mrad02/09/2026ApprovedFALSE
- 6.06.05.01The integrated Quadrupole field required is 20(T), the magnet design shall include an additional 10% tuning margin giving a maximum required field of 22 (T).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet has no operational ramp rate requirement.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet is in a common coldmass and cryostat with the Q1bpR magnets it utilizes the position and alignment requirements presented there [7.8].02/09/2026ApprovedFALSE
- 6.06.05.01See the Q1bPR magnet cryostat position requirments02/09/2026ApprovedFALSE
- 6.06.05.01See the Q1bPR magnet cryostat alignment requirments02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The harmonic reference radius Rr shall be 32(mm), centered at (x=0,y=0) mm with respect to the beam axis.02/09/2026ApprovedFALSE
- 6.06.05.01The measurements at the reference radius Bref shall be made at the design field for the 4 following energisation levels, Measurement 1: Design field for 5GeV Measurement 2: Design field for 10GeV Measurement 3: Design field for 18GeV02/09/2026ApprovedFALSE
- 6.06.05.01The magnet bore field SHALL have the following multipole content. Notes: The units are specified in parts of 10-4 of the main components..02/09/2026ApprovedFALSE
- 6.06.05.01na02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: b2= 10000, -1 < a2 < 1 Measurement 2: b2= 10000, -1 < a2 < 1 Measurement 3: b2= 10000, -1 < a2 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1 < b3 < 1, -1 < a3 < 1 Measurement 2: -1 < b3 < 1, -1 < a3 < 1 Measurement 3: -1 < b3 < 1, -1 < a3 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1 < b4 < 1, -1 < a4 < 1 Measurement 2: -1 < b4 < 1, -1 < a4 < 1 Measurement 3: -1 < b4 < 1, -1 < a4 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1 < b5 < 1, -1 < a5 < 1 Measurement 2: -1 < b5 < 1, -1 < a5 < 1 Measurement 3: -1 < b5 < 1, -1 < a5 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1 < b6 < 1, -1 < a6 < 1 Measurement 2: -1 < b6 < 1, -1 < a6 < 1 Measurement 3: -1 < b6 < 1, -1 < a6 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1 < b7 < 1, -1 < a7 < 1 Measurement 2: -1 < b7 < 1, -1 < a7 < 1 Measurement 3: -1 < b7 < 1, -1 < a7 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1 < b8 < 1, -1 < a8 < 1 Measurement 2: -1 < b8 < 1, -1 < a8 < 1 Measurement 3: -1 < b8 < 1, -1 < a8 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1 < b9 < 1, -1 < a9 < 1 Measurement 2: -1 < b9 < 1, -1 < a9 < 1 Measurement 3: -1 < b9 < 1, -1 < a9 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1 < b10 < 1, -1 < a10 < 1 Measurement 2: -1 < b10 < 1, -1 < a10 < 1 Measurement 3: -1 < b10 < 1, -1 < a10 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1 < b11 < 1, -1 < a11 < 1 Measurement 2: -1 < b11 < 1, -1 < a11 < 1 Measurement 3: -1 < b11 < 1, -1 < a11 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1 < b12 < 1, -1 < a12 < 1 Measurement 2: -1 < b12 < 1, -1 < a12 < 1 Measurement 3: -1 < b12 < 1, -1 < a12 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1 < b13 < 1, -1 < a13 < 1 Measurement 2: -1 < b13 < 1, -1 < a13 < 1 Measurement 3: -1 < b13 < 1, -1 < a13 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1 < b14 < 1, -1 < a14 < 1 Measurement 2: -1 < b14 < 1, -1 < a14 < 1 Measurement 3: -1 < b14 < 1, -1 < a14 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1 < b15 < 1, -1 < a15 < 1 Measurement 2: -1 < b15 < 1, -1 < a15 < 1 Measurement 3: -1 < b15 < 1, -1 < a15 < 102/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -1 < b16 < 1, -1 < a16 < 1 Measurement 2: -1 < b16 < 1, -1 < a16 < 1 Measurement 3: -1 < b16 < 1, -1 < a16 < 102/09/2026ApprovedFALSE
- 6.06.05.01The magnet cross-talk shall be constrained within a radius of 21(mm) of the HSR axis such that all nonlinear harmonic multipoles are less than <200(µT)02/09/2026ApprovedFALSE
- 6.06.05.01There are no linear cross-talk multipole requirements. The associated correctors shall have sufficient capacity to correct for these as needed.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to meet the following external fringe field constraints02/09/2026ApprovedFALSE
- 6.06.05.01Currently the magnet has no radial stray field requirements.02/09/2026ApprovedFALSE
- 6.06.05.01Currently the magnet has no axial stray field requirements.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions by forced flow of supercritical helium, at a flowrate greater than 100 (g/s), and pressure between 3.5(bar) and 4(bar), and at a temperature below 4.7(K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions using supercritical helium between 3.5(bar) and 4(bar), and at a temperature of less than 4.7(K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be capable of removing a maximum total heat load of 1TBD(W) while maintaining nominal operating conditions with supercritical helium between 3.5(bar) and 4(bar), and at a temperature of less than 4.7(K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet current leads cooling shall be capable of removing a maximum total heat load each of 1(W) at the cold end while maintaining nominal operating conditions between 3.5(bar) and 4(bar) and below 4.7(K), and lead cooling flow of: Assuming 1(kA) leads, and lead cooling flows required are as follows: For currents below 50(A) · The cooling flow is 0.014 (g/s) For currents up to 50 A, · The cooling flow increases by 0.000031 (g/s)/(A) · Up to the peak current ~500(A). Maximum flow of ~ 0.028(g/s)02/09/2026ApprovedFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be 18.8 (bar).02/09/2026ApprovedFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.01325(bar).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil with supercritical forced flow helium for all operational modes.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to be warmed up from its operational temperature to 300K within 5 days using warm gas flow.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026ApprovedFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026ApprovedFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 (nΩ) at 4.7 (K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: · 60 thermal cycles, · 180 quenches. 30000 power cycles.02/09/2026ApprovedFALSE
- 6.06.05.01Over its planned life of 30(yrs), the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team02/09/2026ApprovedFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-ESR-LSR : IR Magnet LONG_S (WBS 6.06.02.02)
- 6.06.05.01The magnet shall be a single function solenoid with the solenoid field direction aligned along the beam axis.02/09/2026ApprovedFALSE
- 6.06.05.01The physical length of the magnet cryostat shall be less than or equal to 6.2 (m).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet inner beam stay clear radius shall be greater than or equal to TBD (mm).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cryostat shall be designed to fit within a cylindrical volume having an outside diameter less than 1.2 (m) and length less than 6.2 (m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026ApprovedFALSE
- 6.06.06.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)09/25/2025In ProcessFALSE
- 6.06.06.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position +/-TBD in X +/-TBD in Y Not Applicable in Z09/25/2025In ProcessFALSE
- 6.06.06.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis +/-TBD around X +/-TBD around Y Rotational about Z is not applicable09/25/2025In ProcessFALSE
- 6.06.05.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position +/-TBD in X +/-TBD in Y Not Applicable in Z02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis +/-TBD around X +/-TBD around Y Rotational about Z is not applicable02/09/2026In ProcessFALSE
- 6.06.05.01The magnets maximum integrated field required is 46.70 (Tm), the magnet design shall include an additional 0.1% tuning margin giving a design field of (46.75) (Tm).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat with can locate the field within the following tolerance limits:02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: +/-TBD in X +/-TBD in Y Not Applicable in Z02/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: +/-TBD around x +/-TBD around y Rotational about Z is not applicable02/09/2026In ProcessFALSE
- 6.06.05.01The magnet needs to have a switchable polarity allowing it to deliver a solenoid field in either direction.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field homogenity shall be measured within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The integral field shall be measured within a cylindrical volume centered on the magnet axis having a radius of Rr of 33(mm), a length of TBD(m).02/09/2026In ProcessFALSE
- 6.06.05.01The field (Bref) shall be measured at the magnets nominal field value.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field variability |dB|/|B| within the measured volume shall not exceed TBD%02/09/2026In ProcessFALSE
- 6.06.06.01The Solenoid field shall be straight to within +/-TBD(Units=TBD)09/25/2025In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cross-talk shall be constrained within a radius of 50(mm) of the HSR axis such that all harmonic multipoles average less than 100(µT).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be desuigned to meet the following external fringe field constraints02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall have a stray field of no more than 10 gauss at a radial distance of 1 (m) from the solenoid axis.02/09/2026In ProcessFALSE
- 6.06.05.01The stray field from the magnet of shall not exceed TBD gauss for axial distances greater than .55(m) from the end plane of the magnet cryostat.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at 1.3(bar). The sub-atmospheric side of the heat exchanger will operate at 1.92(K) and the corresponding saturated vapor pressure of 25.4(mbar).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at 1.3(bar) and 4.5(K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be capable of removing a maximum total heat load of 7 (W) while maintaining nominal operating conditions under 1.3(bar) and 1.92(K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet 2kA current leads pair cooling shall be capable of removing a maximum total heat load of 4.8 (W) at the cold end while maintaining nominal operating conditions under 1.3(bar) and 4.5(K), and vapor cooling flow of less than 0.24(g/s) from 4.5(K) to 300(K)02/09/2026ApprovedFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be 18.6(bar).02/09/2026ApprovedFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.03 (bar).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026ApprovedFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026ApprovedFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026ApprovedFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, ininstrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 1.9 K.02/09/2026ApprovedFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-ESR-SSR : IR Magnet SHORT_S (WBS 6.06.02.02)
- 6.06.05.01The magnet shall be a single function solenoid with the solenoid field direction aligned along the beam axis.02/09/2026ApprovedFALSE
- 6.06.05.01The physical length of the magnet cryostat shall be less than or equal to 2.5 (m).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet inner beam stay clear radius shall be greater than or equal to TBD (mm).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cryostat shall be designed to fit within a cylindrical volume having an outside diameter less than 1.2 (m) and length less than 2.5 (m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026ApprovedFALSE
- 6.06.02.02The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)05/16/2025In ProcessFALSE
- 6.06.02.02The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position +/-TBD in X +/-TBD in Y Not Applicable in Z05/16/2025In ProcessFALSE
- 6.06.02.02The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis +/-TBD around X +/-TBD around Y Rotational about Z is not applicable05/16/2025In ProcessFALSE
- 6.06.05.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position +/-TBD in X +/-TBD in Y Not Applicable in Z02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis +/-TBD around X +/-TBD around Y Rotational about Z is not applicable02/09/2026In ProcessFALSE
- 6.06.05.01The magnets maximum integrated field required is 14.84 (Tm), the magnet design shall include an additional 4% tuning margin giving a design field of 15.43 (Tm).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat with can locate the field within the following tolerance limits:02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: +/-TBD in X +/-TBD in Y Not Applicable in Z02/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: +/-TBD around x +/-TBD around y Rotational about Z is not applicable02/09/2026In ProcessFALSE
- 6.06.02.02The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat with can locate the field within the following tolerance limits:05/16/2025In ProcessFALSE
- 6.06.02.02The magnetic field axis displacement tolerances: +/-TBD in X +/-TBD in Y Not Applicable in Z05/16/2025In ProcessFALSE
- 6.06.02.02The magnetic field rotational alignment tolerances: +/-TBD around x +/-TBD around y Rotational about Z is not applicable05/16/2025In ProcessFALSE
- 6.06.05.01The magnet needs to have a switchable polarity allowing it to deliver a solenoid field in either direction.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field homogenity shall be measured within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The integral field shall be measured within a cylindrical volume centered on the magnet axis having a radius of Rr of 33(mm), a length of TBD(m).02/09/2026In ProcessFALSE
- 6.06.05.01The field (Bref) shall be measured at the magnets nominal field value.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field variability |dB|/|B| within the measured volume shall not exceed TBD%02/09/2026In ProcessFALSE
- 6.06.02.02The Solenoid field shall be straight to within +/-TBD(Units=TBD)05/16/2025In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cross-talk shall be constrained within a radius of 50(mm) of the HSR axis such that all harmonic multipoles average less than 100(µT).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be desuigned to meet the following external fringe field constraints02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall have a stray field of no more than 10 gauss at a radial distance of 1 (m) from the solenoid axis.02/09/2026In ProcessFALSE
- 6.06.05.01The stray field from the magnet of shall not exceed TBD gauss for axial distances greater than .55(m) from the end plane of the magnet cryostat.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system which meets the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at 1.3(bar). The sub-atmospheric side of the heat exchanger will operate at 1.92(K) and the corresponding saturated vapor pressure of 25.4(mbar).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at 1.3(bar) and 4.5(K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be capable of removing a maximum total heat load of 7 (W) while maintaining nominal operating conditions under 1.3(bar) and 1.92(K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet 2kA current leads pair cooling shall be capable of removing a maximum total heat load of 4.8 (W) at the cold end while maintaining nominal operating conditions under 1.3(bar) and 4.5(K), and vapor cooling flow of less than 0.24(g/s) from 4.5(K) to 300(K)02/09/2026ApprovedFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be 18.6(bar).02/09/2026ApprovedFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.03 (bar).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026ApprovedFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026ApprovedFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026ApprovedFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, ininstrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 1.9 K.02/09/2026ApprovedFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-ESR-B2ER_VC
- 6.06.05.01The magnet shall have a single function vertical corrector with a horizontal dipole field.02/09/2026ApprovedFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 4.5(m). The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026ApprovedFALSE
- 6.06.05.01The beam tube inner clear bore radius when warm, shall be greater than or equal to 47.5(mm). The inner radius of the coil must incorporate appropriate allowances for all the structure required between the coil inner radius and the beam tube inner radius(To include the beam tube wall thickness, Coil inner support tube, ground plane insulation, additional coil windings appropriate build tolerances etc.) The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet and its cryostat (designated RC-3) should be designed to fit within a cylindrical volume having an Outside diameter less than 1.68(m) Length less than 5.06(m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: dx=+/-na mm dy=+/-na mm dz=+/-na mm02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: About X=+/-na mrad About Y=+/-na mrad About Z=+/-1 mrad02/09/2026ApprovedFALSE
- 6.06.05.01The maximum integrated Dipole field required is 0.05(Tm), the magnet design shall include an additional 20% tuning margin giving a required field of 0.06 (Tm).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet is in a common coldmass and cryostat with the Q2pR magnets it utilizes the position and alignment requirements presented there [7.8].02/09/2026ApprovedFALSE
- 6.06.05.01See the Q2pR magnet cryostat position requirments02/09/2026ApprovedFALSE
- 6.06.05.01See the Q2pR magnet cryostat alignment requirments02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The harmonic reference radius Rr shall be 35(mm), centered at (x=0,y=0) mm with respect to the beam axis.02/09/2026ApprovedFALSE
- 6.06.05.01The measurements at the reference radius Bref shall be made at the design field for the 4 following energization levels, Measurement 1: Design field for 5GeV Measurement 2: Design field for 10GeV Measurement 3: Design field for 18GeV02/09/2026ApprovedFALSE
- 6.06.05.01The magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components.02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -10 < b1 < 10, a1= 10000 Measurement 2: -10 < b1 < 10, a1= 10000 Measurement 3: -10 < b1 < 10, a1= 1000002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -10 < b2 < 10, -10 < a2 < 10, Measurement 2: -10 < b2 < 10, -10 < a2 < 10 Measurement 3: -10 < b2 < 10, -10 < a2 < 1002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -10 < b3 < 10, -10 < a3 < 10 Measurement 2: -10 < b3 < 10, -10 < a3 < 10 Measurement 3: -10 < b3 < 10, -10 < a3 < 1002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -10 < b4 < 10, -10 < a4 < 10 Measurement 2: -10 < b4 < 10, -10 < a4 < 10 Measurement 3: -10 < b4 < 10, -10 < a4 < 1002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -10 < b5 < 10, -10 < a5 < 10 Measurement 2: -10 < b5 < 10, -10 < a5 < 10 Measurement 3: -10 < b5 < 10, -10 < a5 < 1002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -10 < b6 < 10, -10 < a6 < 10 Measurement 2: -10 < b6 < 10, -10 < a6 < 10 Measurement 3: -10 < b6 < 10, -10 < a6 < 1002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -10 < b7 < 10, -10 < a7 < 10 Measurement 2: -10 < b7 < 10, -10 < a7 < 10 Measurement 3: -10 < b7 < 10, -10 < a7 < 1002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -10 < b8 < 10, -10 < a8 < 10 Measurement 2: -10 < b8 < 10, -10 < a8 < 10 Measurement 3: -10 < b8 < 10, -10 < a8 < 1002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -10 < b9 < 10, -10 < a9 < 10 Measurement 2: -10 < b9 < 10, -10 < a9 < 10 Measurement 3: -10 < b9 < 10, -10 < a9 < 1002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -10 < b10 < 10, -10 < a10 < 10 Measurement 2: -10 < b10 < 10, -10 < a10 < 10 Measurement 3: -10 < b10 < 10, -10 < a10 < 1002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -10 < b11 < 10, -10 < a11 < 10 Measurement 2: -10 < b11 < 10, -10 < a11 < 10 Measurement 3: -10 < b11 < 10, -10 < a11 < 1002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -10 < b12 < 10, -10 < a12 < 10 Measurement 2: -10 < b12 < 10, -10 < a12 < 10 Measurement 3: -10 < b12 < 10, -10 < a12 < 1002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -10 < b13 < 10, -10 < a13 < 10 Measurement 2: -10 < b13 < 10, -10 < a13 < 10 Measurement 3: -10 < b13 < 10, -10 < a13 < 1002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -10 < b14 < 10, -10 < a14 < 10 Measurement 2: -10 < b14 < 10, -10 < a14 < 10 Measurement 3: -10 < b14 < 10, -10 < a14 < 1002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -10 < b15 < 10, -10 < a15 < 10 Measurement 2: -10 < b15 < 10, -10 < a15 < 10 Measurement 3: -10 < b15 < 10, -10 < a15 < 1002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -10 < b16 < 10, -10 < a16 < 10 Measurement 2: -10 < b16 < 10, -10 < a16 < 10 Measurement 3: -10 < b16 < 10, -10 < a16 < 1002/09/2026ApprovedFALSE
- 6.06.05.01The magnet crosstalk onto the HSR beam line Shall be constrained such that02/09/2026ApprovedFALSE
- 6.06.05.01The magnet currently has no non linear multiple crosstalk requirements.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet currently has no linear multipole crosstalk requirements.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to meet the following external fringe field constraints02/09/2026ApprovedFALSE
- 6.06.05.01The magnet has no radial fringe field requirements.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet has no axial fringe field requirements.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions in a saturated bath at 4.55K (1.35bar).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions using vapor from the saturated bath at 4.55K (1.35bar)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be capable of removing the maximum total heat load of TBD 1(W) while maintaining nominal operating conditions in the saturated bath at 4.55K ( 1.35bar) .02/09/2026ApprovedFALSE
- 6.06.05.01The magnet current leads cooling shall be capable of removing a maximum total heat load each of TBD 1(W) at the cold end while maintaining nominal operating conditions in the saturated bath at 4.55K (1.35bar) Assuming 100(A) leads, and lead cooling flows required are as follows: For currents below 10(A) The cooling flow is 0.028(g/s) For currents up to 10 (A), The cooling flow increases by 0.000031 (g/s)/(A) up to the peak current ~100(A). Maximum flow of ~ 0.031(g/s)02/09/2026ApprovedFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be 18.8(bar).02/09/2026ApprovedFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.01325(bar).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil with supercritical forced flow helium for all operational modes.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to warm up from its operational temperature to 300K within 5days. Using warm gas flow.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026ApprovedFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026ApprovedFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, in instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 (nΩ) at 4.55 (K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: · 60 thermal cycles, · 180 quenches. 30000 power cycles.02/09/2026ApprovedFALSE
- 6.06.05.01Over its planned life of 30(yrs), the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see in operation will need further analysis and will need to be confirmed by the EIC radiation physics team02/09/2026ApprovedFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-ESR-DETSOL : ESR Detector Selinoid
IR-MAG-ESR-Q0EF_HC
- TBDThe magnet shall have a single function horizontal corrector with a vertical dipole field10/30/2025In ProcessFALSE
- TBDThe physical length of the magnet cold mass insert shall be less than or equal to 1.27(m). The magnet design needs to comply with all the geometery constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].10/30/2025In ProcessFALSE
- TBDThe beam tube inner bore radius when warm, shall be greater than or equal to 28.5(mm). The inner radius of the coil must incorporate appropriate allowances for all the structure required between the coil inner radius and the beam tube inner radius (To include the beam tube wall thickness, Coil inner support tube, ground plane insulation, additional coil windings appropriate build tolerances etc.) The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].10/30/2025In ProcessFALSE
- TBDThe magnet shall be designed to fit within the following constraints:10/30/2025In ProcessFALSE
- TBDThe magnet and its cryostat (designated B0PF) shall be designed to fit within a cylindrical volume having an Outside diameter less than 1.829(m) Length less than 1.684(m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.10/30/2025In ProcessFALSE
- TBDThe magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)10/30/2025In ProcessFALSE
- TBDThe magnetic field axis displacement tolerances: dx=+/-na dy=+/-na dz=+/-na10/30/2025In ProcessFALSE
- TBDThe magnetic field rotational alignment tolerances: About X=+/- na About Y=+/- na About Z=+/- 0.210/30/2025In ProcessFALSE
- TBDThe maximum integrated Quadrupole field required is TBD (Tm), the magnet design shall include an additional 20% tuning margin giving a required field of TBD (Tm).10/30/2025In ProcessFALSE
- TBDThe magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)10/30/2025In ProcessFALSE
- TBDThe magnet cold install center displacement shall be aligned with respect to the specified lattice field center position dx=+/- 2 dy=+/- 2 dz=+/- 210/30/2025In ProcessFALSE
- TBDThe magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/- 0.2 About Y=+/- 0.2 About Z=+/- 0.210/30/2025In ProcessFALSE
- TBDThe magnet field homogeneity shall be measured within the following constraints:10/30/2025In ProcessFALSE
- TBDThe harmonic reference radius Rr shall be 18(mm), centered at (x=0,y=0) mm with respect to the beam axis.10/30/2025In ProcessFALSE
- TBDThe measurements at the reference radius Bref shall be made at the design field for the 4 following energisation levels, Measurement 1: Design field for 5GeV Measurement 2: Design field for 10GeV Measurement 3: Design field for 18GeV10/30/2025In ProcessFALSE
- TBDThe magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components. All undefined harmonics are assumed to be less than +/-0.5 units.10/30/2025In ProcessFALSE
- TBDMeasurement 1: b1= 10000, Measurement 2: b1= 10000, Measurement 3: b1= 1000010/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -100 < b2 < +100, Measurement 2: -100 < b2 < +100, Measurement 3: -100 < b2 < +10010/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -100 < b3 < +100, Measurement 2: -100 < b3 < +100, Measurement 3: -100 < b3 < +10010/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -100 < b4 < +100, Measurement 2: -100 < b4 < +100, Measurement 3: -100 < b4 < +100,10/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -100 < b5 < +100, Measurement 2: -100 < b5 < +100, Measurement 3: -100 < b5 < +10010/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -100 < b6 < +100, Measurement 2: -100 < b6 < +100, Measurement 3: -100 < b6 < +10010/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -100 < b7 < +100, Measurement 2: -100 < b7 < +100, Measurement 3: -100 < b7 < +10010/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -100 < b8 < +100, Measurement 2: -100 < b8 < +100, Measurement 3: -100 < b8 < +10010/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -100 < b9 < +100, Measurement 2: -100 < b9 < +100, Measurement 3: -100 < b9 < +10010/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -100 < b10 < +100, Measurement 2: -100 < b10 < +100, Measurement 3: -100 < b10 < +10010/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -100 < b11 < +100, Measurement 2: -100 < b11 < +100, Measurement 3: -100 < b11 < +10010/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -100 < b12 < +100, Measurement 2: -100 < b12 < +100, Measurement 3: -100 < b12 < +10010/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -100 < b13 < +100, Measurement 2: -100 < b13 < +100, Measurement 3: -100 < b13 < +10010/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -100 < b14 < +100, Measurement 2: -100 < b14 < +100, Measurement 3: -100 < b14 < +10010/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -100 < b15 < +100, Measurement 2: -100 < b15 < +100, Measurement 3: -100 < b15 < +10010/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -100 < b16 < +100, Measurement 2: -100 < b16 < +100, Measurement 3: -100 < b16 < +10010/30/2025Not ApplicableFALSE
- TBDThe magnet crosstalk onto the HSR beam line Shall be constrained such that10/30/2025In ProcessFALSE
- TBDThe harmonic multipoles from residual field in the HSR beam pipe shall be constrained such that B1 and B2 no requirements B3 to B16 < +/- 3(Gauss.m)10/30/2025In ProcessFALSE
- TBDThere are no constraints on the residual field in the HSR beam pipe from the B1 component10/30/2025Not ApplicableFALSE
- TBDThe magnet shall be designed to meet the following external fringe field constraints10/30/2025In ProcessFALSE
- TBDThe magnet has no radial fringe field requirments.10/30/2025In ProcessFALSE
- TBDThe magnet has no axial fringe field requirments.10/30/2025In ProcessFALSE
- TBDThe magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:10/30/2025In ProcessFALSE
- TBDThe magnet shall be designed to be cooled and sustain operations at nominal operating conditions by forced flow of supercritical helium, at a flowrate greater than 100 (g/s), and pressure between 3.5(bar) and 4(bar), and at a temperature below 4.7(K).10/30/2025In ProcessFALSE
- TBDThe magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions using supercritical helium between 3.5 (bar) and 4 (bar), and at a temperature of less than 4.7(K). .10/30/2025In ProcessFALSE
- TBDThe magnet shall be capable of removing a maximum total heat load of TBD(W) while maintaining nominal operating conditions with supercritical helium between 3.5(bar) and 4(bar), and at a temperature of less than 4.7(K).10/30/2025In ProcessFALSE
- TBDThe magnet current leads cooling shall be capable of removing a maximum total heat load each of TBD(W) at the cold end while maintaining nominal operating conditions between 3.5(bar) and 4(bar) and below 4.7(K). Assuming 1(kA) leads, and lead cooling flows required are as follows: For currents below 50(A) The cooling flow is 0.014 (g/s) For currents up to 50 (A), The cooling flow increases by 0.000031(g/s)/(A) Upto the peak current ~500(A). Maximum flow of ~ 0.028(g/s)10/30/2025In ProcessFALSE
- TBDThe maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be 18.8(bar).10/30/2025In ProcessFALSE
- TBDThe maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.01325(bar).10/30/2025In ProcessFALSE
- TBDThe magnet shall be designed to remove the heat from the coil with supercritical forced flow helium for all operational modes.10/30/2025In ProcessFALSE
- TBDThe magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.10/30/2025In ProcessFALSE
- The magnet shall be able to be warmed up from its operational temperature to 300K within 5days.10/30/2025In ProcessFALSE
- TBDThe magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:10/30/2025In ProcessFALSE
- TBDThe magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.10/30/2025In ProcessFALSE
- TBDAfter a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.10/30/2025In ProcessFALSE
- TBDThe magnet shall be designed to attain the design field with no more than 20 training quenches.10/30/2025In ProcessFALSE
- TBDAll electrical connection to the magnet for the main current leads, in instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:10/30/2025In ProcessFALSE
- TBDThe magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).10/30/2025In ProcessFALSE
- TBDThe magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.10/30/2025In ProcessFALSE
- TBDAll SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 1.9 K.10/30/2025In ProcessFALSE
- TBDThe magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: 60 thermal cycles, 180 quenches 30000 power cycles.11/05/2025In ProcessFALSE
- TBDOver its planned life of 30(yrs) the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team10/30/2025In ProcessFALSE
IR-MAG-ESR-Q1EF_SKQ
- 6.06.05.01The magnet shall have a single function corrector with a skew quadrupole field02/09/2026In ProcessFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 3.8(m). The magnet design needs to comply with all the geometery constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The beam tube inner bore radius when warm, shall be greater than or equal to 63(mm). The inner radius of the coil must incorporate appropriate allowances for all the structure required between the coil inner radius and the beam tube inner radius (To include the beam tube wall thickness, Coil inner support tube, ground plane insulation, additional coil windings appropriate build tolerances etc.) The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet and its cryostat (designated FC-2) shall be designed to fit within a cylindrical volume having an Outside diameter less than 1.822(m) Length less than 3.865(m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: dx=+/-0.15 dy=+/-0.15 dz=+/-0.1502/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: About X=+/- 0.3 About Y=+/- 0.3 About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The maximum integrated Quadrupole field required is 1.6(T), the magnet design shall include an additional 20% tuning margin giving a required field of 1.92 (T).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to ramp to field within na. Aditionally all HSR magnets must be able to follow the RHIC ramp profile [reference to appropriate RHIC ramp profile document to be added here]02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position dx=+/-0.15 dy=+/-0.15 dz=+/-0.1502/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/- 0.3 About Y=+/- 0.3 About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The harmonic reference radius Rr shall be 43(mm), centered at (x=0,y=0) mm with respect to the beam axis.02/09/2026In ProcessFALSE
- 6.06.05.01The measurements at the reference radius Bref shall be made at the design field for the 4 following energisation levels, Measurement 1: Design field for 5GeV Measurement 2: Design field for 10GeV Measurement 3: Design field for 18GeV02/09/2026In ProcessFALSE
- 6.06.05.01The magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components. All undefined harmonics are assumed to be less than +/-0.5 units.02/09/2026In ProcessFALSE
- 6.06.05.01Measurement 1: -10 < b1 < 10, a1= 10 Measurement 2: -10 < b1 < 10, a1= 10 Measurement 3: -10 < b1 < 10. a1= 1002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -10 < b2 < 10, a2 = 10000 Measurement 2: -10 < b2 < 10, a2 = 10000 Measurement 3: -10 < b2 < 10, a2 = 1000002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -10 < b2 < 10, -10 < a2 < 10 Measurement 2: -10 < b2 < 10, -10 < a2 < 10 Measurement 3: -10 < b2 < 10, -10 < a2 < 1002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -10 < b4 < 10, -10 < a4 < 10 Measurement 2: -10 < b4 < 10, -10 < a4 < 10 Measurement 3: -10 < b4 < 10, -10 < a4 < 1002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -10 < b5 < 10, -10 < a5 < 10 Measurement 2: -10 < b5 < 10, -10 < a5 < 10 Measurement 3: -10 < b5 < 10, -10 < a5 < 1002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -10 < b6 < 10, -10 < a6 < 10 Measurement 2: -10 < b6 < 10, -10 < a6 < 10 Measurement 3: -10 < b6 < 10, -10 < a6 < 1002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -10 < b7 < 10, -10 < a7 < 10 Measurement 2: -10 < b7 < 10, -10 < a7 < 10 Measurement 3: -10 < b7 < 10, -10 < a7 < 1002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -10 < b8 < 10, -10 < a8 < 10 Measurement 2: -10 < b8 < 10, -10 < a8 < 10 Measurement 3: -10 < b8 < 10, -10 < a8 < 1002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -10 < b9 < 10, -10 < a9 < 10 Measurement 2: -10 < b9 < 10, -10 < a9 < 10 Measurement 3: -10 < b9 < 10, -10 < a9 < 1002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -10 < b10 < 10, -10 < a10 < 10 Measurement 2: -10 < b10 < 10, -10 < a10 < 10 Measurement 3: -10 < b10 < 10, -10 < a10 < 1002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -10 < b11 < 10, -10 < a11 < 10 Measurement 2: -10 < b11 < 10, -10 < a11 < 10 Measurement 3: -10 < b11 < 10, -10 < a11 < 1002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -10 < b12 < 10, -10 < a12 < 10 Measurement 2: -10 < b12 < 10, -10 < a12 < 10 Measurement 3: -10 < b12 < 10, -10 < a12 < 1002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -10 < b13 < 10, -10 < a13 < 10 Measurement 2: -10 < b13 < 10, -10 < a13 < 10 Measurement 3: -10 < b13 < 10, -10 < a13 < 1002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -10 < b14 < 10, -10 < a14 < 10 Measurement 2: -10 < b14 < 10, -10 < a14 < 10 Measurement 3: -10 < b14 < 10,-10 < a14 < 1002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -10 < b15 < 10, -10 < a15 < 10 Measurement 2: -10 < b15 < 10, -10 < a15 < 10 Measurement 3: -10 < b15 < 10, -10 < a15 < 1002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -10 < b16 < 10, -10 < a16 < 10 Measurement 2: -10 < b16 < 10, -10 < a16 < 10 Measurement 3: -10 < b16 < 10, -10 < a16 < 1002/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet crosstalk onto the HSR beam line Shall be constrained such that02/09/2026In ProcessFALSE
- 6.06.05.01Non linear multipoles < 200 (uT) within 43(mm) of HSR axis02/09/2026In ProcessFALSE
- 6.06.05.01There are no Linear cross talk requirements onto the HSR.02/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet shall be designed to meet the following external fringe field constraints02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no radial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no axial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at 1.3(bar). The sub-atmospheric side of the heat exchanger will operate at 1.92(K) and the corresponding saturated vapor pressure of 25.4(mbar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at 1.3(bar) and 4.5(K).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be capable of removing a maximum total heat load of TBD (W) while maintaining nominal operating conditions under 1.3(bar) and 1.92(K).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads cooling shall be capable of removing a maximum total heat load of TBD(W) at the cold end while maintaining nominal operating conditions under 1.3(bar) and 4.5(K), and vapor cooling flow of TBD(g/s) from 4.5(K) to 300(K)02/09/2026In ProcessFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be 10(bar).02/09/2026In ProcessFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.03(bar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to be warmed up from its operational temperature to 300K within 5days.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026In ProcessFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026In ProcessFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, in instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026In ProcessFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 1.9 K.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: • 60 thermal cycles, • 180 quenches • 30000 power cycles.02/09/2026In ProcessFALSE
- 6.06.05.01Over its planned life of 30(yrs), the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-ESR-Q1EF_VC
- 6.06.05.01The magnet shall have a single function vertical corrector with a horizontal dipole field02/09/2026In ProcessFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 3.8(m). The magnet design needs to comply with all the geometery constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The beam tube inner bore radius when warm, shall be greater than or equal to 63(mm). The inner radius of the coil must incorporate appropriate allowances for all the structure required between the coil inner radius and the beam tube inner radius (To include the beam tube wall thickness, Coil inner support tube, ground plane insulation, additional coil windings appropriate build tolerances etc.) The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet and its cryostat (designated FC-2) shall be designed to fit within a cylindrical volume having an Outside diameter less than 1.822(m) Length less than 3.865(m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: dx=+/-0.15 dy=+/-0.15 dz=+/-0.1502/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: About X=+/- 0.3 About Y=+/- 0.3 About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The maximum integrated Dipole field required is 0.05(Tm), the magnet design shall include an additional 20% tuning margin giving a required field of 0.06 (Tm).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to ramp to field within na. Aditionally all HSR magnets must be able to follow the RHIC ramp profile [reference to appropriate RHIC ramp profile document to be added here]02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position dx=+/-0.15 dy=+/-0.15 dz=+/-0.1502/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/- 0.3 About Y=+/- 0.3 About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The harmonic reference radius Rr shall be 43(mm), centered at (x=0,y=0) mm with respect to the beam axis.02/09/2026In ProcessFALSE
- 6.06.05.01The measurements at the reference radius Bref shall be made at the design field for the 4 following energisation levels, Measurement 1: Design field for 5GeV Measurement 2: Design field for 10GeV Measurement 3: Design field for 18GeV02/09/2026In ProcessFALSE
- 6.06.05.01The magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components. All undefined harmonics are assumed to be less than +/-0.5 units.02/09/2026In ProcessFALSE
- 6.06.05.01Measurement 1: -2 < b1 < 2, a1= 10000 Measurement 2: -2 < b1 < 2, a1= 10000 Measurement 3: -2 < b1 < 2. a1= 1000002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b2 < 2, -2 < a2 < 2 Measurement 2: -2 < b2 < 2, -2 < a2 < 2 Measurement 3: -2 < b2 < 2, -2 < a2 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b2 < 2, -2 < a2 < 2 Measurement 2: -2 < b2 < 2, -2 < a2 < 2 Measurement 3: -2 < b2 < 2, -2 < a2 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b4 < 2, -2 < a4 < 2 Measurement 2: -2 < b4 < 2, -2 < a4 < 2 Measurement 3: -2 < b4 < 2, -2 < a4 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b5 < 2, -2 < a5 < 2 Measurement 2: -2 < b5 < 2, -2 < a5 < 2 Measurement 3: -2 < b5 < 2, -2 < a5 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b6 < 2, -2 < a6 < 2 Measurement 2: -2 < b6 < 2, -2 < a6 < 2 Measurement 3: -2 < b6 < 2, -2 < a6 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b7 < 2, -2 < a7 < 2 Measurement 2: -2 < b7 < 2, -2 < a7 < 2 Measurement 3: -2 < b7 < 2, -2 < a7 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b8 < 2, -2 < a8 < 2 Measurement 2: -2 < b8 < 2, -2 < a8 < 2 Measurement 3: -2 < b8 < 2, -2 < a8 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b9 < 2, -2 < a9 < 2 Measurement 2: -2 < b9 < 2, -2 < a9 < 2 Measurement 3: -2 < b9 < 2, -2 < a9 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b2 < 2, -2 < a2 < 2 Measurement 2: -2 < b2 < 2, -2 < a2 < 2 Measurement 3: -2 < b2 < 2, -2 < a2 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b11 < 2, -2 < a11 < 2 Measurement 2: -2 < b11 < 2, -2 < a11 < 2 Measurement 3: -2 < b11 < 2, -2 < a11 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b12 < 2, -2 < a12 < 2 Measurement 2: -2 < b12 < 2, -2 < a12 < 2 Measurement 3: -2 < b12 < 2, -2 < a12 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b13 < 2, -2 < a13 < 2 Measurement 2: -2 < b13 < 2, -2 < a13 < 2 Measurement 3: -2 < b13 < 2, -2 < a13 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b14 < 2, -2 < a14 < 2 Measurement 2: -2 < b14 < 2, -2 < a14 < 2 Measurement 3: -2 < b14 < 2,-2 < a14 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b15 < 2, -2 < a15 < 2 Measurement 2: -2 < b15 < 2, -2 < a15 < 2 Measurement 3: -2 < b15 < 2, -2 < a15 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b16 < 2, -2 < a16 < 2 Measurement 2: -2 < b16 < 2, -2 < a16 < 2 Measurement 3: -2 < b16 < 2, -2 < a16 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet crosstalk onto the HSR beam line Shall be constrained such that02/09/2026In ProcessFALSE
- 6.06.05.01Non linear multipoles < 200 (uT) within 43(mm) of HSR axis02/09/2026In ProcessFALSE
- 6.06.05.01There are no Linear cross talk requirements onto the HSR.02/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet shall be designed to meet the following external fringe field constraints02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no radial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no axial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at 1.3(bar). The sub-atmospheric side of the heat exchanger will operate at 1.92(K) and the corresponding saturated vapor pressure of 25.4(mbar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at 1.3(bar) and 4.5(K).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be capable of removing a maximum total heat load of TBD (W) while maintaining nominal operating conditions under 1.3(bar) and 1.92(K).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads cooling shall be capable of removing a maximum total heat load of TBD(W) at the cold end while maintaining nominal operating conditions under 1.3(bar) and 4.5(K), and vapor cooling flow of TBD(g/s) from 4.5(K) to 300(K)02/09/2026In ProcessFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be 10(bar).02/09/2026In ProcessFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.03(bar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to be warmed up from its operational temperature to 300K within 5days.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026In ProcessFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026In ProcessFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, in instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026In ProcessFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 1.9 K.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: • 60 thermal cycles, • 180 quenches • 30000 power cycles.02/09/2026In ProcessFALSE
- 6.06.05.01Over its planned life of 30(yrs), the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-ESR-Q1ER_SKQ
IR-MAG-ESR-Q2ER_SKQ
- 6.06.05.01The magnet shall have a single function Skew Quadrupole field.02/09/2026ApprovedFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 1.6 (m). The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number [EIC-SEG-RSI-103].02/09/2026ApprovedFALSE
- 6.06.05.01The inner beam tube bore radius when warm, shall be greater than or equal to 47.5(mm). The inner radius of the coil must incorporate appropriate allowances for all the structure required between the coil inner radius and the beam tube inner radius (To include the beam tube wall thickness, Coil inner support tube, ground plane insulation, additional coil windings appropriate build tolerances etc.) The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number [EIC-SEG-RSI-103].02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet and its cryostat (designated RC-2) shall be designed to fit within a cylindrical volume having an Outside diameter less than 1.37 (m) Length less than 1.65 (m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: dx=+/-0.15 mm dy=+/-0.15 mm dz=+/-0.15 mm02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: About X=+/-0.3 mrad About Y=+/-0.3 mard About Z=+/-0.2 mrad02/09/2026ApprovedFALSE
- 6.06.05.01The integrated Quadrupole field required is 1.6(T), the magnet design shall include an additional 20% tuning margin giving a maximum operating field of 1.92 (T).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet has no operational a peak ramp rate requirement.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits:(Note: Z is along the beam axis)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position dx=+/- 0.2 mm dy=+/- 0.2 mm dz=+/- 0.2 mm02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/- 0.3 mrad About Y=+/- 0.3 mrad About Z=+/- 0.2 mrad02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The harmonic reference radius Rr shall be 32(mm), centered at (x=0, y=0) mm with respect to the beam axis.02/09/2026ApprovedFALSE
- 6.06.05.01The measurements at the reference radius Bref shall be made at the design field for the 4 following energisation levels, Measurement 1: Design field for 5GeV Measurement 2: Design field for 10GeV Measurement 3: Design field for 18GeV02/09/2026ApprovedFALSE
- 6.06.05.01The magnet bore field SHALL have the following multipole content. Notes: The units are specified in parts of 10-4 of the main components.02/09/2026ApprovedFALSE
- 6.06.05.01-02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -25 < b2 < 25, a2= 10000, Measurement 2: -25 < b2 < 25, a2= 10000, Measurement 3: -25 < b2 < 25, a2= 10000,02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -25 < b3 < 25, -25 < a3 < 25, Measurement 2: -25 < b3 < 25, -25 < a3 < 25, Measurement 3: -25 < b3 < 25, -25 < a3 < 2502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -25 < b4 < 25, -25 < a4 < 25, Measurement 2: -25 < b4 < 25, -25 < a4 < 25, Measurement 3: -25 < b4 < 25, -25 < a4 < 2502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -25 < b5 < 25, -25 < a5 < 25, Measurement 2: -25 < b5 < 25, -25 < a5 < 25, Measurement 3: -25 < b5 < 25, -25 < a5 < 2502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -25 < b6 < 25, -25 < a6 < 25, Measurement 2: -25 < b6 < 25, -25 < a6 < 25, Measurement 3: -25 < b6 < 25, -25 < a6 < 2502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -25 < b7 < 25, -25 < a7 < 25, Measurement 2: -25 < b7 < 25, -25 < a7 < 25, Measurement 3: -25 < b7 < 25, -25 < a7 < 25,02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -25 < b8 < 25, -25 < a8 < 25 Measurement 2: -25 < b8 < 25, -25 < a8 < 25 Measurement 3: -25 < b8 < 25, -25 < a8 < 2502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -25 < b9 < 25, -25 < a9 < 25 Measurement 2: -25 < b9 < 25, -25 < a9 < 25 Measurement 3: -25 < b9 < 25, -25 < a9 < 2502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -25 < b10 < 25, -25 < a10 < 25 Measurement 2: -25 < b10 < 25, -25 < a10 < 25 Measurement 3: -25 < b10 < 25, -25 < a10 < 2502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -25 < b11 < 25, -25 < a11 < 25 Measurement 2: -25 < b11 < 25, -25 < a11 < 25 Measurement 3: -25 < b11 < 25, -25 < a11 < 2502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -25 < b12 < 25, -25 < a12 < 25 Measurement 2: -25 < b12 < 25, -25 < a12 < 25 Measurement 3: -25 < b12 < 25, -25 < a12 < 2502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -25 < b13 < 25, -25 < a13 < 25 Measurement 2: -25 < b13 < 25, -25 < a13 < 25 Measurement 3: -25 < b13 < 25, -25 < a13 < 2502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -25 < b14 < 25, -25 < a14 < 25 Measurement 2: -25 < b14 < 25, -25 < a14 < 25 Measurement 3: -25 < b14 < 25, -25 < a14 < 2502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -25 < b15 < 25, -25 < a15 < 25 Measurement 2: -25 < b15 < 25, -25 < a15 < 25 Measurement 3: -25 < b15 < 25, -25 < a15 < 2502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -25 < b16 < 25, -25 < a16 < 25 Measurement 2: -25 < b16 < 25, -25 < a16 < 25 Measurement 3: -25 < b16 < 25, -25 < a16 < 2502/09/2026ApprovedFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cross-talk shall be constrained such that all Nonlinear multipoles are < 200(uT) within a 21(mm) radius of HSR axis.02/09/2026ApprovedFALSE
- 6.06.05.01There are no linear multipole cross-talk requirements. The associated correctors shall have sufficient capacity to correct for these as needed.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to meet the following external fringe field constraints02/09/2026ApprovedFALSE
- 6.06.05.01Currently the magnet has no radial stray field requirements.02/09/2026ApprovedFALSE
- 6.06.05.01Currently the magnet has no axial stray field requirements.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions by forced flow of supercritical helium, at a flowrate greater than 100 (g/s), and pressure between 3.5(bar) and 4(ba)r, and at a temperature below 4.7(K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions using supercritical helium between 3.5(bar) and 4(bar), and at a temperature of less than 4.7(K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be capable of removing a maximum total heat load of 1TBD(W) while maintaining nominal operating conditions with supercritical helium between 3.5(bar) and 4(bar), and at a temperature of less than 4.7(K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet current leads cooling shall be capable of removing a maximum total heat load each of 0.5(W) at the cold end while maintaining nominal operating conditions between 3.5(bar) and 4(bar) and below 4.7 (K), and lead cooling flow of: Assuming 100(A) leads, and lead cooling flows required are as follows: For currents below 10(A) · The cooling flow is 0.028 (g/s) For currents up to 10(A), · The cooling flow increases by 0.000031 (g/s)/(A) · Upto the peak current ~100(A). Maximum flow of ~ 0.031(g/s)02/09/2026ApprovedFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be 18.8 (bar).02/09/2026ApprovedFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.01325(bar).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil with supercritical forced flow helium for all operational modes.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50(K) axial gradient.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to be warmed up from its operational temperature to 300K within 5 days.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026ApprovedFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026ApprovedFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 (nΩ)_ at 4.7 (K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: · 60 thermal cycles, · 180 quenches. 30000 power cycles.02/09/2026ApprovedFALSE
- 6.06.05.01Over its planned life of 30(yrs), the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team02/09/2026ApprovedFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-HSR : Interaction Region/Hadron Stroage Ring Magnets
IR-MAG-HSR-B0APF : IR Magnet B0APF (WBS 6.06.02.01.01)
- TBDThe magnet shall have a single function vertical dipole field.10/30/2025In ProcessFALSE
- TBDThe physical length of the magnet cold mass insert shall be less than or equal to 0.6(m). The magnet design needs to comply with all the geometery constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].10/30/2025In ProcessFALSE
- TBDThe beam tube inner bore radius when warm, shall be greater than or equal to 43(mm). The inner radius of the coil must incorporate appropriate allowances for all the structure required between the coil inner radius and the beam tube inner radius (To include the beam tube wall thickness, Coil inner support tube, ground plane insulation, additional coil windings appropriate build tolerances etc.) The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].10/30/2025In ProcessFALSE
- TBDThe magnet shall be designed to fit within the following constraints:10/30/2025In ProcessFALSE
- TBDThe magnet and its cryostat (designated FC-1) shall be designed to fit within a cylindrical volume having an Outside diameter less than 1.822(m) Length less than 4.47(m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.10/30/2025In ProcessFALSE
- TBDThe magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)10/30/2025In ProcessFALSE
- TBDThe magnetic field axis displacement tolerances: dx=+/-na dy=+/-na dz=+/-na10/30/2025In ProcessFALSE
- TBDThe magnetic field rotational alignment tolerances: About X=+/- na About Y=+/- na About Z=+/- 0.210/30/2025In ProcessFALSE
- TBDThe maximum integrated Quadrupole field required is 2(Tm), the magnet design shall include an additional 10% tuning margin giving a required field of 2.2 (Tm).10/30/2025In ProcessFALSE
- TBDThe magnet shall be able to ramp to field within 300 (s). Aditionally all HSR magnets must be able to follow the RHIC ramp profile [reference to appropriate RHIC ramp profile document to be added here]10/30/2025In ProcessFALSE
- TBDThe magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)10/30/2025In ProcessFALSE
- TBDThe magnet cold install center displacement shall be aligned with respect to the specified lattice field center position dx=+/- 2 dy=+/- 2 dz=+/- 210/30/2025In ProcessFALSE
- TBDThe magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/- 0.2 About Y=+/- 0.2 About Z=+/- 0.210/30/2025In ProcessFALSE
- TBDThe magnet field homogeneity shall be measured within the following constraints:10/30/2025In ProcessFALSE
- TBDThe harmonic reference radius Rr shall be 30(mm), centered at (x=0,y=0) mm with respect to the beam axis.10/30/2025In ProcessFALSE
- TBDThe measurements at the reference radius Bref shall be made at the design field for the 4 following energisation levels, Measurement 1: Design field for 23GeV Measurement 2: Design field for 41GeV Measurement 3: Design field for 100GeV Measurement 4: Design field for 275GeV10/30/2025In ProcessFALSE
- TBDThe magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components. All undefined harmonics are assumed to be less than +/-0.5 units.10/30/2025In ProcessFALSE
- TBDMeasurement 1: b1= 10000, Measurement 2: b1= 10000, Measurement 3: b1= 10000, Measurement 4: b1= 1000010/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -2 < b2 < 2, Measurement 2: -2 < b2 < 2, Measurement 3: -2 < b2 < 2, Measurement 4: -2 < b2 < 210/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -2 < b3 < 2, Measurement 2: -2 < b3 < 2, Measurement 3: -2 < b3 < 2, Measurement 4: -2 < b3 < 210/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -2 < b4 < 2, Measurement 2: -2 < b4 < 2, Measurement 3: -2 < b4 < 2, Measurement 4: -2 < b4 < 210/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -2 < b5 < 2, Measurement 2: -2 < b5 < 2, Measurement 3: -2 < b5 < 2, Measurement 4: -2 < b5 < 210/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -2 < b6 < 2, Measurement 2: -2 < b6 < 2, Measurement 3: -2 < b6 < 2, Measurement 4: -2 < b6 < 210/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -2 < b7 < 2, Measurement 2: -2 < b7 < 2, Measurement 3: -2 < b7 < 2, Measurement 4: -2 < b7 < 210/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -2 < b8 < 2, Measurement 2: -2 < b8 < 2, Measurement 3: -2 < b8 < 2, Measurement 4: -2 < b8 < 210/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -2 < b9 < 2, Measurement 2: -2 < b9 < 2, Measurement 3: -2 < b9 < 2, Measurement 4: -2 < b9 < 210/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -2 < b10 < 2, Measurement 2: -2 < b10 < 2, Measurement 3: -2 < b10 < 2, Measurement 4: -2 < b10 < 210/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -2 < b11 < 2, Measurement 2: -2 < b11 < 2, Measurement 3: -2 < b11 < 2, Measurement 4: -2 < b11 < 210/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -2 < b12 < 2, Measurement 2: -2 < b12 < 2, Measurement 3: -2 < b12 < 2, Measurement 4: -2 < b12 < 210/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -2 < b13 < 2, Measurement 2: -2 < b13 < 2, Measurement 3: -2 < b13 < 2, Measurement 4: -2 < b13 < 210/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -2 < b14 < 2, Measurement 2: -2 < b14 < 2, Measurement 3: -2 < b14 < 2, Measurement 4: -2 < b14 < 210/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -2 < b15 < 2, Measurement 2: -2 < b15 < 2, Measurement 3: -2 < b15 < 2, Measurement 4: -2 < b15 < 210/30/2025Not ApplicableFALSE
- TBDMeasurement 1: -2 < b16 < 2, Measurement 2: -2 < b16 < 2, Measurement 3: -2 < b16 < 2, Measurement 4: -2 < b16 < 210/30/2025Not ApplicableFALSE
- TBDThe magnet crosstalk onto the ESR beam line Shall be constrained such that10/30/2025In ProcessFALSE
- TBDNon linear multipoles < 10 (uT) within 42(mm) of ESR axis10/30/2025In ProcessFALSE
- TBDThe Linear multipoles are < 10(gauss) on the ESR axis10/30/2025Not ApplicableFALSE
- TBDThe magnet shall be designed to meet the following external fringe field constraints10/30/2025In ProcessFALSE
- TBDThe magnet has no radial fringe field requirments.10/30/2025In ProcessFALSE
- TBDThe magnet has no axial fringe field requirments.10/30/2025In ProcessFALSE
- TBDThe magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:10/30/2025In ProcessFALSE
- TBDThe magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at 1.3(bar). The sub-atmospheric side of the heat exchanger will operate at 1.92(K) and the corresponding saturated vapor pressure of 25.4(mbar).10/30/2025In ProcessFALSE
- TBDThe magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at 1.3(bar) and 4.5(K).10/30/2025In ProcessFALSE
- TBDThe magnet shall be capable of removing a maximum total heat load of TBD (W) while maintaining nominal operating conditions under 1.3(bar) and 1.92(K).10/30/2025In ProcessFALSE
- TBDThe magnet current leads cooling shall be capable of removing a maximum total heat load of TBD(W) at the cold end while maintaining nominal operating conditions under 1.3(bar) and 4.5(K), and vapor cooling flow of TBD(g/s) from 4.5(K) to 300(K)10/30/2025In ProcessFALSE
- TBDThe maximum differential internal pressure from the helium volume to10/30/2025In ProcessFALSE
- TBDThe maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.03(bar).10/30/2025In ProcessFALSE
- TBDThe magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.10/30/2025In ProcessFALSE
- TBDThe magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.10/30/2025In ProcessFALSE
- The magnet shall be able to be warmed up from its operational temperature to 300K within 5days.10/30/2025In ProcessFALSE
- TBDThe magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:10/30/2025In ProcessFALSE
- TBDThe magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.10/30/2025In ProcessFALSE
- TBDAfter a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.10/30/2025In ProcessFALSE
- TBDThe magnet shall be designed to attain the design field with no more than 20 training quenches.10/30/2025In ProcessFALSE
- TBDAll electrical connection to the magnet for the main current leads, in instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:10/30/2025In ProcessFALSE
- TBDThe magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).10/30/2025In ProcessFALSE
- TBDThe magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.10/30/2025In ProcessFALSE
- TBDAll SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 1.9 K.10/30/2025In ProcessFALSE
- TBDThe magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: 60 thermal cycles, 180 quenches 30000 power cycles.11/05/2025In ProcessFALSE
- TBDOver its planned life of 30(yrs) the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team10/30/2025In ProcessFALSE
IR-MAG-HSR-B0PF : IR Magnet B0PF (WBS 6.06.02.01.01)
- 6.06.05.01The magnet shall have two fields 1. A vertical dipole field centered on the physical coil axis 2. A normal quadrupole field centered on the physical coil axis When both fields are energized there should be a zero integrated field on the electron beam axis.02/09/2026ApprovedFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 1.27 (m).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet bore radius when warm, shall be large enough to accommodate a detector outer radius of 275(mm), centered at x=34(mm) towards the HSR and Y=0(mm), both wrt the ESR axis.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cryostat shall be designed such that The main cylindrical volume has An outside diameter less than 0.9(m) A length less than 1.65(m). All ancillary equipment, support structures and turrets, which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: Displacement in X= 150 (um) Displacement in Y= 150 (um) Displacement in Z= +/-1(mm)02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: Rotational about X= +/-2(mrad) Rotational about Y= +/-2(mrad) Rotational about Z= +/-0.2(mrad)02/09/2026ApprovedFALSE
- 6.06.05.01The fields shall be such that the 275GeV proton beam bends by 1.704 (mrad) away from the ESR. The approximate integrated field seen by the hadron beam is 1.56(Tm), the magnet design should include an additional 10% tuning margin giving a required integrated field of ~1.72(Tm)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall ramp to its maximum value in 300(s).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position Displacement in X= 2(mm) Displacement in Y= 2(mm) Displacement in Z= 2(mm)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis Rotational about X= +/-0.2(mrad) Rotational about Y= +/-0.2(mrad) Rotational about Z= +/-0.2(mrad)02/09/2026ApprovedFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The harmonic reference radius of the cylinder in which the field quality shall be measured is =50(mm), centered at X=160mm, Y=0(mm) wrt the ESR axis to extend along the length of the magnet.02/09/2026ApprovedFALSE
- 6.06.05.01The field measurements shall be made with the magnet energized to the following values. Measurement 1: 275GeV Measurement 2: 100GeV Measurement 3: 41GeV Measurement 4: 23GeV02/09/2026ApprovedFALSE
- 6.06.05.01The magnet bore field SHALL have the following multipole content. (See comments.)02/09/2026ApprovedFALSE
- 6.06.05.01B1 is na02/09/2026ApprovedFALSE
- 6.06.05.01B2 is na02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3xF < b3 <2xF, Measurement 2: -3xF < b3 <2xF, Measurement 3: -3xF < b3 <2xF, Measurement 4: -3xF < b3 <2xF02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3xF < b4 <2xF, Measurement 2: -3xF < b4 <2xF, Measurement 3: -3xF < b4 <2xF, Measurement 4: -3xF < b4 <2xF02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3xF < b5 <2, Measurement 2: -3xF < b5 <2, Measurement 3: -3xF < b5 <2, Measurement 4: -3xF < b5 <202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3xF < b6 <2xF, Measurement 2: -3xF < b6 <2xF, Measurement 3: -3xF < b6 <2xF, Measurement 4: -3xF < b6 <2xF02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3xF < b7 <2xF, Measurement 2: -3xF < b7 <2xF, Measurement 3: -3xF < b7 <2xF, Measurement 4: -3xF < b7 <2xF02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3xF < b8 <2xF, Measurement 2: -3xF < b8 <2xF, Measurement 3: -3xF < b8 <2xF, Measurement 4: -3xF < b8 <2xF02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3xF < b9 <2xF, Measurement 2: -3xF < b9 <2xF, Measurement 3: -3xF < b9 <2xF, Measurement 4: -3xF < b9 <2xF02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3xF < b10 <2, Measurement 2: -3xF < b10 <2, Measurement 3: -3xF < b10 <2, Measurement 4: -3xF < b10 <202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3xF < b11 <2xF, Measurement 2: -3xF < b11 <2xF, Measurement 3: -3xF < b11 <2xF, Measurement 4: -3xF < b11 <2xF02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3xF < b12 <2xF, Measurement 2: -3xF < b12 <2xF, Measurement 3: -3xF < b12 <2xF, Measurement 4: -3xF < b12 <2xF02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3xF < b13 <2xF, Measurement 2: -3xF < b13 <2xF, Measurement 3: -3xF < b13 <2xF, Measurement 4: -3xF < b13 <2xF02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3xF < b14 <2xF, Measurement 2: -3xF < b14 <2xF, Measurement 3: -3xF < b14 <2xF, Measurement 4: -3xF < b14 <2xF02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3xF < b15 <2xF, Measurement 2: -3xF < b15 <2xF, Measurement 3: -3xF < b15 <2xF, Measurement 4: -3xF < b15 <2xF02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -3xF < b16 <2xF, Measurement 2: -3xF < b16 <2xF, Measurement 3: -3xF < b16 <2xF, Measurement 4: -3xF < b16 <2xF02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cross-talk shall be constrained such that all harmonic multipoles within the HSR beampipe are as follows02/09/2026ApprovedFALSE
- 6.06.05.01The field shall be measured within the cylindrical volume which is occupied by the ESR beampipe having a radius of 18(mm) located at x=0(mm), y=0(mm) wrt the ESR beam axis. The length of the cylinder L shall extend along the length of the Q0eF magnet02/09/2026ApprovedFALSE
- 6.06.05.01The field measurements shall be made with B0pF energized to its maximum field. The measurement may be made with Q0eF off or on or not present in the B0pF bore02/09/2026ApprovedFALSE
- 6.06.05.01The multipole crosstalk in the Q0EF magnet bore from the B0PF field SHALL not exceed the following values, The units are (Gauss.m) unless otherwise specified. (see comment for additional notes)02/09/2026ApprovedFALSE
- 6.06.05.01ʃLB1dL<+/-10(Gauss.m) ʃLB12dL<+/-2500(Gauss2 m)02/09/2026ApprovedFALSE
- 6.06.05.01B2 has no requirements02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -0.025< B3 <0.025, Measurement 2: -0.025< B3 <0.025, Measurement 3: -0.025< B3 <0.025, Measurement 4: -0.025< B3 <0.02502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -0.025< B4 <0.025, Measurement 2: -0.025< B4 <0.025, Measurement 3: -0.025< B4 <0.025, Measurement 4: -0.025< B4 <0.02502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -0.025< B5 <0.025, Measurement 2: -0.025< B5 <0.025, Measurement 3: -0.025< B5 <0.025, Measurement 4: -0.025< B5 <0.02502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -0.025< B6 <0.025, Measurement 2: -0.025< B6 <0.025, Measurement 3: -0.025< B6 <0.025, Measurement 4: -0.025< B6 <0.02502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -0.025< B7 <0.025, Measurement 2: -0.025< B7 <0.025, Measurement 3: -0.025< B7 <0.025, Measurement 4: -0.025< B7 <0.02502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -0.025< B8 <0.025, Measurement 2: -0.025< B8 <0.025, Measurement 3: -0.025< B8 <0.025, Measurement 4: -0.025< B8 <0.02502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -0.025< B9 <0.025, Measurement 2: -0.025< B9 <0.025, Measurement 3: -0.025< B9 <0.025, Measurement 4: -0.025< B9 <0.02502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -0.025< B10 <0.025, Measurement 2: -0.025< B10 <0.025, Measurement 3: -0.025< B10 <0.025, Measurement 4: -0.025< B10 <0.02502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -0.025< B11 <0.025, Measurement 2: -0.025< B11 <0.025, Measurement 3: -0.025< B11 <0.025, Measurement 4: -0.025< B11 <0.02502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -0.025< B12 <0.025, Measurement 2: -0.025< B12 <0.025, Measurement 3: -0.025< B12 <0.025, Measurement 4: -0.025< B12 <0.02502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -0.025< B13 <0.025, Measurement 2: -0.025< B13 <0.025, Measurement 3: -0.025< B13 <0.025, Measurement 4: -0.025< B13 <0.02502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -0.025< B14 <0.025, Measurement 2: -0.025< B14 <0.025, Measurement 3: -0.025< B14 <0.025, Measurement 4: -0.025< B14 <0.02502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -0.025< B15 <0.025, Measurement 2: -0.025< B15 <0.025, Measurement 3: -0.025< B15 <0.025, Measurement 4: -0.025< B15 <0.02502/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -0.025< B16 <0.025, Measurement 2: -0.025< B16 <0.025, Measurement 3: -0.025< B16 <0.025, Measurement 4: -0.025< B16 <0.02502/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet system shall be designed to be cooled and sustain operations at nominal operating conditions with a pressurized He-II volume at 1.4 bar and 2.0K. The sub-atmospheric side Bath (of the heat exchanger) will operate at 1.92K and at its saturated pressure.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet HTS current leads’ HTS/Copper-leads heat stationshall be designed to be cooled and sustain operations at nominal operating conditions using supply helium at 3.5 (bar) and 4.7(K)and shall have an exit temperature of 40K or warmer with a heat of load of 465W.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet design shall be capable of removing a maximum total heat load of 3.7(W) while maintaining nominal operating conditions of 1.42(bar) and 2.0. The magnet system shall have a heat exchanger that will remove heat from the pressurized magnet side volume into the sub-atmospheric pumped side volume02/09/2026ApprovedFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be 10.3(bar).02/09/2026ApprovedFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.03(bar).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026ApprovedFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026ApprovedFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026ApprovedFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 1.9 K.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: 60 thermal cycles, 180 quenches 30000 power cycles.02/09/2026ApprovedFALSE
- 6.06.05.01Over its planned life of 30(yrs) the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-HSR-Q1APR : IR Magnet Q1APR (WBS 6.06.02.01.01)
- 6.06.05.01The magnet shall have a single function normal quadrupole field.02/09/2026In ProcessFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 1.8(m). The magnet design needs to comply with all the geometery constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The beam tube inner bore radius when warm, shall be greater than or equal to 23.75(mm). The inner radius of the coil must incorporate appropriate allowances for all the structure required between the coil inner radius and the beam tube inner radius (To include the beam tube wall thickness, Coil inner support tube, ground plane insulation, additional coil windings appropriate build tolerances etc.) The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet and its cryostat (designated RC-1) shall be designed to fit within a cylindrical volume having an Outside diameter less than 1.067(m) Length less than 2.073(m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: dx=+/-0.15 dy=+/-0.15 dz=+/-0.1502/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: About X=+/- 0.3 About Y=+/- 0.3 About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The maximum integrated Quadrupole field required is 137(Tm), the magnet design shall include an additional 10% tuning margin giving a required field of 150.7 (Tm).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to ramp to field within 300 (s). Aditionally all HSR magnets must be able to follow the RHIC ramp profile [reference to appropriate RHIC ramp profile document to be added here]02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position dx=+/-0.15 dy=+/-0.15 dz=+/-0.1502/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/- 0.3 About Y=+/- 0.3 About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The harmonic reference radius Rr shall be 18(mm), centered at (x=0,y=0) mm with respect to the beam axis.02/09/2026In ProcessFALSE
- 6.06.05.01The measurements at the reference radius Bref shall be made at the design field for the 4 following energisation levels, Measurement 1: Design field for 23GeV Measurement 2: Design field for 41GeV Measurement 3: Design field for 100GeV Measurement 4: Design field for 275GeV02/09/2026In ProcessFALSE
- 6.06.05.01The magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components. All undefined harmonics are assumed to be less than +/-0.5 units.02/09/2026In ProcessFALSE
- 6.06.05.01-02/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: b2= 10000, Measurement 2: b2= 10000, Measurement 3: b2= 10000, Measurement 4: b2= 1000002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b3 < 2, Measurement 2: -2 < b3 < 2, Measurement 3: -2 < b3 < 2, Measurement 4: -2 < b3 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b4 < 2, Measurement 2: -2 < b4 < 2, Measurement 3: -2 < b4 < 2, Measurement 4: -2 < b4 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b5 < 2, Measurement 2: -2 < b5 < 2, Measurement 3: -2 < b5 < 2, Measurement 4: -2 < b5 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b6 < 2, Measurement 2: -2 < b6 < 2, Measurement 3: -2 < b6 < 2, Measurement 4: -2 < b6 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b7 < 2, Measurement 2: -2 < b7 < 2, Measurement 3: -2 < b7 < 2, Measurement 4: -2 < b7 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b8 < 2, Measurement 2: -2 < b8 < 2, Measurement 3: -2 < b8 < 2, Measurement 4: -2 < b8 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b9 < 2, Measurement 2: -2 < b9 < 2, Measurement 3: -2 < b9 < 2, Measurement 4: -2 < b9 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b10 < 2, Measurement 2: -2 < b10 < 2, Measurement 3: -2 < b10 < 2, Measurement 4: -2 < b10 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b11 < 2, Measurement 2: -2 < b11 < 2, Measurement 3: -2 < b11 < 2, Measurement 4: -2 < b11 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b12 < 2, Measurement 2: -2 < b12 < 2, Measurement 3: -2 < b12 < 2, Measurement 4: -2 < b12 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b13 < 2, Measurement 2: -2 < b13 < 2, Measurement 3: -2 < b13 < 2, Measurement 4: -2 < b13 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b14 < 2, Measurement 2: -2 < b14 < 2, Measurement 3: -2 < b14 < 2, Measurement 4: -2 < b14 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b15 < 2, Measurement 2: -2 < b15 < 2, Measurement 3: -2 < b15 < 2, Measurement 4: -2 < b15 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b16 < 2, Measurement 2: -2 < b16 < 2, Measurement 3: -2 < b16 < 2, Measurement 4: -2 < b16 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet crosstalk onto the ESR beam line Shall be constrained such that02/09/2026In ProcessFALSE
- 6.06.05.01All non linear multipoles < 10 (uT) within 30(mm) of ESR axis02/09/2026In ProcessFALSE
- 6.06.05.01the Linear multipoles are < 10(gauss) on the ESR axis02/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet shall be designed to meet the following external fringe field constraints02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no radial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no axial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions in a saturated bath at 4.55K (1.35bar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions using vapor from the saturated bath at 4.55K (1.35bar)02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be capable of removing the maximum total heat load of TBD (W) while maintaining nominal operating conditions in the saturated bath at 4.55K ( 1.35bar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads cooling shall be capable of removing a maximum total heat load each of TBD1(W) at the cold end while maintaining nominal operating conditions in the saturated bath at 4.55K (1.35bar) Assuming 1(kA) leads, and lead cooling flows required are as follows: For currents below 50(A) The cooling flow is 0.014 (g/s) For currents up to 50 (A), The cooling flow increases by 0.000031(g/s)/(A) upto the peak current ~500(A). Maximum flow of ~ 0.028(g/s) Maximum flow of ~ 0.028(g/s)02/09/2026In ProcessFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be 18.8(bar).02/09/2026In ProcessFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.01325(bar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil with supercritical forced flow helium for all operational modes.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to be warmed up from its operational temperature to 300K within 5days using warm gas.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026In ProcessFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026In ProcessFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, in instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026In ProcessFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.55 K.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: 60 thermal cycles, 180 quenches 30000 power cycles.02/09/2026In ProcessFALSE
- 6.06.05.01Over its planned life of 30(yrs), the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-HSR-Q1BPR : IR Magnet Q1BPR (WBS 6.06.02.01.01)
- 6.06.05.01The magnet shall have a single function normal Quadrupole field02/09/2026ApprovedFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 1.6 (m). The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026ApprovedFALSE
- 6.06.05.01The inner beam tube bore radius when warm shall be greater than or equal to 30.1(mm). The inner radius of the coil must incorporate appropriate allowances for all the structure required between the coil inner radius and the beam tube inner radius(To include the beam tube wall thickness, Coil inner support tube, ground plane insulation, additional coil windings appropriate build tolerances etc.) The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet and its cryostat (designated RC-2) should be designed to fit within a cylindrical volume having an Outside diameter less than 1.37 (m) Length less than 1.65 (m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: dx=+/- 0.15 mm dy=+/- 0.15 mm dz=+/- 0.15 mm02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: About X=+/- 0.3 mrad About Y=+/- 0.3 mrad About Z=+/- 0.2 mrad02/09/2026ApprovedFALSE
- 6.06.05.01The integrated Quadrupole field required is 107(T), the magnet design shall include an additional 10% tuning margin giving a maximum required field of 117.7 (T).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to ramp within 300(s) from injection field to maximum operating field. All new HSR magnets must be able to follow the RHIC ramp profile [reference to appropriate RHIC ramp profile document to be added here] with a factor 2 safety margin.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits:(Note: Z is along the beam axis)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position dx=+/- 0.20 mm dy=+/- 0.20 mm dz=+/- 0.20 mm02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/- 0.3 mrad About Y=+/- 0.3 mrad About Z=+/- 0.2 mrad02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The harmonic reference radius Rr shall be 21(mm), centered at (x=0,y=0) mm with respect to the beam axis.02/09/2026ApprovedFALSE
- 6.06.05.01The measurements at the reference radius shall be made at the design field for the 4 following energisation levels: Measurement 1 at minimum excitation of 23(GeV) Measurement 2 at mid excitation1 of 41(GeV) Measurement 3 at mid excitation2of 100(GeV) Measurement 4 at maximum excitation 275(GeV)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components.02/09/2026ApprovedFALSE
- 6.06.05.01na02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: b2= 10000, -2 < a2 < 2 Measurement 2: b2= 10000, -2 < a2 < 2 Measurement 3: b2= 10000, -2 < a2 < 2 Measurement 4: b2= 10000, -2 < a2 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b3 < 2, -2 < a3 < 2 Measurement 2: -2 < b3 < 2, -2 < a3 < 2 Measurement 3: -2 < b3 < 2, -2 < a3 < 2 Measurement 4: -2 < b3 < 2, -2 < a3 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b4 < 2, -2 < a4 < 2 Measurement 2: -2 < b4 < 2, -2 < a4 < 2 Measurement 3: -2 < b4 < 2, -2 < a4 < 2 Measurement 4: -2 < b4 < 2 -2 < a4 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b5 < 2, -2 < a5 < 2 Measurement 2: -2 < b5 < 2, -2 < a5 < 2 Measurement 3: -2 < b5 < 2, -2 < a5 < 2 Measurement 4: -2 < b5 < 2, -2 < a5 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b6 < 2, -2 < a6 < 2 Measurement 2: -2 < b6 < 2, -2 < a6 < 2 Measurement 3: -2 < b6 < 2, -2 < a6 < 2 Measurement 4: -2 < b6 < 2, -2 < a6 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b7 < 2, -2 < a7 < 2 Measurement 2: -2 < b7 < 2, -2 < a7 < 2 Measurement 3: -2 < b7 < 2, -2 < a7 < 2 Measurement 4: -2 < b7 < 2, -2 < a7 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b8 < 2, -2 < a8 < 2 Measurement 2: -2 < b8 < 2, -2 < a8 < 2 Measurement 3: -2 < b8 < 2, -2 < a8 < 2 Measurement 4: -2 < b8 < 2, -2 < a8 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b9 < 2, -2 < a9 < 2 Measurement 2: -2 < b9 < 2, -2 < a9 < 2 Measurement 3: -2 < b9 < 2, -2 < a9 < 2 Measurement 4: -2 < b9 < 2, -2 < a9 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b10 < 2, -2 < a10 < 2 Measurement 2: -2 < b10 < 2, -2 < a10 < 2 Measurement 3: -2 < b10 < 2, -2 < a10 < 2 Measurement 4: -2 < b10 < 2, -2 < a10 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b11 < 2, -2 < b11 < 2 Measurement 2: -2 < b11 < 2, -2 < b11 < 2 Measurement 3: -2 < b11 < 2, -2 < b11 < 2 Measurement 4: -2 < b11 < 2, -2 < b11 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b12 < 2, -2 < a12 < 2 Measurement 2: -2 < b12 < 2, -2 < a12 < 2 Measurement 3: -2 < b12 < 2, -2 < a12 < 2 Measurement 4: -2 < b12 < 2, -2 < a12 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b13 < 2, -2 < a13 < 2 Measurement 2: -2 < b13 < 2, -2 < a13 < 2 Measurement 3: -2 < b13 < 2, -2 < a13 < 2 Measurement 4: -2 < b13 < 2, -2 < a13 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b14 < 2, -2 < a14 < 2 Measurement 2: -2 < b14 < 2, -2 < a14 < 2 Measurement 3: -2 < b14 < 2, -2 < a14 < 2 Measurement 4: -2 < b14 < 2, -2 < a14 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b15 < 2, -2 < a15 < 2 Measurement 2: -2 < b15 < 2, -2 < a15 < 2 Measurement 3: -2 < b15 < 2, -2 < a15 < 2 Measurement 4: -2 < b15 < 2, -2 < a15 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b16 < 2, -2 < a16 < 2 Measurement 2: -2 < b16 < 2, -2 < a16 < 2 Measurement 3: -2 < b16 < 2, -2 < a16 < 2 Measurement 4: -2 < b16 < 2, -2 < a16 < 202/09/2026ApprovedFALSE
- 6.06.05.01The magnet cross-talk shall be constrained within a radius of 32(mm) of the ESR axis such that all non linear harmonic multipoles are less than <10(µT)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cross-talk shall be constrained such that the linear harmonic multipoles on the ESR axis shall not exceed 10(Gauss)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to meet the following external fringe field constraints02/09/2026ApprovedFALSE
- 6.06.05.01Currently the magnet has no radial stray field requirements.02/09/2026ApprovedFALSE
- 6.06.05.01Currently the magnet has no axial stray field requirements.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions by forced flow of supercritical helium, at a flowrate greater than 100 g/s, and pressure between 3.5bar and 4 bar, and at a temperature below 4.7K.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions using supercritical helium between 3.5 bar and 4 bar, and at a temperature of less than 4.7K.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be capable of removing a maximum total heat load of 1TBD(W) while maintaining nominal operating conditions with supercritical helium between 3.5 bar and 4 bar, and at a temperature of less than 4.7K.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet current leads cooling shall be capable of removing a maximum total heat load each of 1 (W) at the cold end while maintaining nominal operating conditions between 3.5 bar and 4 bar and below 4.7 (K). Assuming 1(kA) leads, and lead cooling flows required are as follows: For currents below 50(A) · The cooling flow is 0.014 (g/s) For currents up to 50 (A), · The cooling flow increases by 0.000031 (g/s)/(A) · Upto the peak current ~500(A). Maximum flow of ~ 0.028(g/s)02/09/2026ApprovedFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be 18.8 (bar).02/09/2026ApprovedFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.01325(bar).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil with supercritical forced flow helium for all operational modes.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to be warmed up from its operational temperature to 300K within 5 days.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026ApprovedFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026ApprovedFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, ininstrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 (nΩ) at 4.7 (K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: · 60 thermal cycles, · 180 quenches 30000 power cycles.02/09/2026ApprovedFALSE
- 6.06.05.01Over its planned life of 30(yrs), the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team02/09/2026ApprovedFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-HSR-Q2PR : IR Magnet Q2PR (WBS 6.06.02.01.01)
- 6.06.05.01The magnet shall have a single function normal quadrupole field.02/09/2026ApprovedFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 4.5(m). The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number [EIC-SEG-RSI-103].02/09/2026ApprovedFALSE
- 6.06.05.01The beam tube inner bore radius when warm, shall be greater than or equal to 57.3mm). The inner radius of the coil must incorporate appropriate allowances for all the structure required between the coil inner radius and the beam tube inner radius(To include the beam tube wall thickness, Coil inner support tube, ground plane insulation, additional coil windings appropriate build tolerances etc.) The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet and its cryostat (designated RC-3) should be designed to fit within a cylindrical volume having an Outside diameter less than 1.68(m) Length less than 5.06(m) All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: dx=+/-0.15 mm dy=+/-0.15 mm dz=+/-0.15 mm02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: About X=+/-0.3 mrad About Y=+/-0.3mrad About Z=+/-0.2 mrad02/09/2026ApprovedFALSE
- 6.06.05.01The maximum integrated Quadrupole field required is 119(T), the magnet design shall include an additional 10% tuning margin giving a required field of 130.9 (T).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to ramp to field within 300 (s). Additionally all HSR magnets must be able to follow the RHIC ramp profile [reference to appropriate RHIC ramp profile document to be added here]02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits:(Note: Z is along the beam axis)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position dx=+/- 0.15 mm dy=+/- 0.15 mm dz=+/- 0.15 mm02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/- 0.3 mrad About Y=+/- 0.3 mrad About Z=+/- 0.2 mrad02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The harmonic reference radius Rr shall be 35(mm), centered at (x=0,y=0) mm with respect to the beam axis.02/09/2026ApprovedFALSE
- 6.06.05.01The measurements at the reference radius Bref shall be made at the design field for the 4 following energisation levels, Measurement 1: Design field for 23GeV Measurement 2: Design field for 41GeV Measurement 3: Design field for 100GeV Measurement 4: Design field for 275GeV02/09/2026ApprovedFALSE
- 6.06.05.01The magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components.02/09/2026ApprovedFALSE
- 6.06.05.01-02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: b2= 10000, -2 < a2 < 2 Measurement 2: b2= 10000, -2 < a2 < 2 Measurement 3: b2= 10000, -2 < a2 < 2 Measurement 4: b2= 10000, -2 < a2 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b3 < 2, -2 < a3 < 2 Measurement 2: -2 < b3 < 2, -2 < a3 < 2 Measurement 3: -2 < b3 < 2, -2 < a3 < 2 Measurement 4: -2 < b3 < 2, -2 < a3 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b4 < 2, -2 < a4 < 2 Measurement 2: -2 < b4 < 2, -2 < a4 < 2 Measurement 3: -2 < b4 < 2, -2 < a4 < 2 Measurement 4: -2 < b4 < 2 -2 < a4 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b5 < 2, -2 < a5 < 2 Measurement 2: -2 < b5 < 2, -2 < a5 < 2 Measurement 3: -2 < b5 < 2, -2 < a5 < 2 Measurement 4: -2 < b5 < 2, -2 < a5 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b6 < 2, -2 < a6 < 2 Measurement 2: -2 < b6 < 2, -2 < a6 < 2 Measurement 3: -2 < b6 < 2, -2 < a6 < 2 Measurement 4: -2 < b6 < 2, -2 < a6 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b7 < 2, -2 < a7 < 2 Measurement 2: -2 < b7 < 2, -2 < a7 < 2 Measurement 3: -2 < b7 < 2, -2 < a7 < 2 Measurement 4: -2 < b7 < 2, -2 < a7 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b8 < 2, -2 < a8 < 2 Measurement 2: -2 < b8 < 2, -2 < a8 < 2 Measurement 3: -2 < b8 < 2, -2 < a8 < 2 Measurement 4: -2 < b8 < 2, -2 < a8 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b9 < 2, -2 < a9 < 2 Measurement 2: -2 < b9 < 2, -2 < a9 < 2 Measurement 3: -2 < b9 < 2, -2 < a9 < 2 Measurement 4: -2 < b9 < 2, -2 < a9 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b10 < 2, -2 < a10 < 2 Measurement 2: -2 < b10 < 2, -2 < a10 < 2 Measurement 3: -2 < b10 < 2, -2 < a10 < 2 Measurement 4: -2 < b10 < 2, -2 < a10 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b11 < 2, -2 < b11 < 2 Measurement 2: -2 < b11 < 2, -2 < b11 < 2 Measurement 3: -2 < b11 < 2, -2 < b11 < 2 Measurement 4: -2 < b11 < 2, -2 < b11 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b12 < 2, -2 < a12 < 2 Measurement 2: -2 < b12 < 2, -2 < a12 < 2 Measurement 3: -2 < b12 < 2, -2 < a12 < 2 Measurement 4: -2 < b12 < 2, -2 < a12 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b13 < 2, -2 < a13 < 2 Measurement 2: -2 < b13 < 2, -2 < a13 < 2 Measurement 3: -2 < b13 < 2, -2 < a13 < 2 Measurement 4: -2 < b13 < 2, -2 < a13 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b14 < 2, -2 < a14 < 2 Measurement 2: -2 < b14 < 2, -2 < a14 < 2 Measurement 3: -2 < b14 < 2, -2 < a14 < 2 Measurement 4: -2 < b14 < 2, -2 < a14 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b15 < 2, -2 < a15 < 2 Measurement 2: -2 < b15 < 2, -2 < a15 < 2 Measurement 3: -2 < b15 < 2, -2 < a15 < 2 Measurement 4: -2 < b15 < 2, -2 < a15 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b16 < 2, -2 < a16 < 2 Measurement 2: -2 < b16 < 2, -2 < a16 < 2 Measurement 3: -2 < b16 < 2, -2 < a16 < 2 Measurement 4: -2 < b16 < 2, -2 < a16 < 202/09/2026ApprovedFALSE
- 6.06.05.01The magnet crosstalk onto the ESR beam line Shall be constrained such that02/09/2026ApprovedFALSE
- 6.06.05.01All nonlinear multipoles < 10 (uT) within 35(mm) of ESR axis02/09/2026ApprovedFALSE
- 6.06.05.01All linear multipoles are < 10 (gauss) on the ESR axis02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to meet the following external fringe field constraints02/09/2026ApprovedFALSE
- 6.06.05.01The magnet has no radial fringe field requirements.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet has no axial fringe field requirements.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions in a saturated bath at 4.55K (1.35bar).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions using vapor from the saturated bath at 4.55K (1.35bar)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be capable of removing the maximum total heat load of TBD1 (W) while maintaining nominal operating conditions in the saturated bath at 4.55K ( 1.35bar).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet current leads cooling shall be capable of removing a maximum total heat load each of TBD1(W) at the cold end while maintaining nominal operating conditions in the saturated bath at 4.55K (1.35bar) Assuming 1(kA) leads, and lead cooling flows required are as follows: For currents below 50(A) The cooling flow is 0.014 (g/s) For currents up to 50 (A), The cooling flow increases by 0.000031(g/s)/(A) upto the peak current ~500(A). Maximum flow of ~ 0.028(g/s)02/09/2026ApprovedFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be 18.8(bar).02/09/2026ApprovedFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.01325(bar).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil with supercritical forced flow helium for all operational modes.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to be warmed up from its operational temperature to 300K within 5days using warm gas.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026ApprovedFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026ApprovedFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, in instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 (nΩ) at 4.55 (K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: · 60 thermal cycles, · 180 quenches. 30000 power cycles.02/09/2026ApprovedFALSE
- 6.06.05.01Over its planned life of 30(yrs), the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit should be taken as a guide for the design process. The actual upper limit the magnet will see in operation will need further analysis and will need to be confirmed by the EIC radiation physics team02/09/2026ApprovedFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-HSR-B1APF : IR Magnet B1APF (WBS 6.06.02.01.02)
- 6.06.05.01The magnet shall have a single function dipole with a vertical field direction with respect to the beam axis.02/09/2026ApprovedFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 1.5(m).02/09/2026ApprovedFALSE
- 6.06.05.01The inner beam tube bore radius when warm shall be greater than or equal to 168(mm).02/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet shall be designed to fit within the IR Forward main cryostat and comply with all inner IR geometry constraints. Note: The geometry required is contained in the Forward IR Main cryostat Interface requirements. [EIC-SEG-RSI-063: Forward IR main SC magnet cryostat Interface control document]02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall have a clear volume as needed to accommodate the beam pipe.02/09/2026ApprovedFALSE
- 6.06.05.01The final magnet assembly position and alignment values with respect to the nominal beam position and axis shall be within the following limits:02/09/2026ApprovedFALSE
- 6.06.05.01Magnet Cold Mass Center Displacement (with respect to the nominal beam position) Displacement in X= 2(mm) Displacement in Y= 2(mm) Displacement in Z= 2(mm)02/09/2026ApprovedFALSE
- 6.06.05.01Magnet Cold Rotational Alignment (with respect to the nominal beam Axis) Rotational about X= +/-0.2(mrad) Rotational about Y= +/-0.2(mrad) Rotational about Z= +/-0.2(mrad)02/09/2026ApprovedFALSE
- 6.06.05.01The maximum integrated dipole field required is 4.05(Tm), the magnet design shall include an additional 10% tuning margin giving a required field of 4.46(Tm).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall have a peak ramp rate of 0.02(T/s) and be able to follow the RHIC ramp profile [reference to appropriate RHIC ramp profile document, TBD]02/09/2026ApprovedFALSE
- 6.06.05.01The field alignment within the magnet, position and alignment values shall be within the following tolerance limits: Note: Z is along the beam axis02/09/2026In ProcessFALSE
- 6.06.05.01Field Center Displacement (with respect to the physical magnet center) Displacement in X= na Displacement in Y= na Displacement in Z= na02/09/2026ApprovedFALSE
- 6.06.05.01Field Rotational Alignment (with respect to the physical magnets primary axis X,Y,Z) Rotational about X= na Rotational about Y= na Rotational about Z= +/-0.2(mrad)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to meet the following field quality\multipole requirements.02/09/2026ApprovedFALSE
- 6.06.05.01The harmonic Reference radius (Rr) shall be 45(mm), centered at (x=0(mm),y=0(mm)) with respect to the magnet axis.02/09/2026ApprovedFALSE
- 6.06.05.01The Reference field (Bref) for the different measurements shall be: Measurement 1 = 0.34(Tm) Measurement 2= 0.61(Tm) Measurement 3= 1.49(Tm) Measurement 4= 4.46(Tm)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet bore field SHALL have the following multipole content. Notes: The units are in parts of 10-4 of the main components. All undefined harmonics are assumed to be less than +/-0.5 units. A range of -2 to +2 units is a 1st pass. It is assumed all components have a normal distribution of values within this range. More analysis is needed to understand, how to better define the spread in single real magnet and the effect of such a distribution on the beam.02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: b1= 10000, Measurement 2: b1= 10000, Measurement 3: b1= 10000, Measurement 4: b1= 1000002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b2 < 2, Measurement 2: -2 < b2 < 2, Measurement 3: -2 < b2 < 2, Measurement 4: -2 < b2 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b3 < 2, Measurement 2: -2 < b3 < 2, Measurement 3: -2 < b3 < 2, Measurement 4: -2 < b3 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b4 < 2, Measurement 2: -2 < b4 < 2, Measurement 3: -2 < b4 < 2, Measurement 4: -2 < b4 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b5 <2, Measurement 2: -2 < b5 <2, Measurement 3: -2 < b5 <2, Measurement 4: -2 < b5 <202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b6 < 2, Measurement 2: -2 < b6 < 2, Measurement 3: -2 < b6 < 2, Measurement 4: -2 < b6 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b7 < 2, Measurement 2: -2 < b7 < 2, Measurement 3: -2 < b7 < 2, Measurement 4: -2 < b7 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b8 < 2, Measurement 2: -2 < b8 < 2, Measurement 3: -2 < b8 < 2, Measurement 4: -2 < b8 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b9 < 2, Measurement 2: -2 < b9 < 2, Measurement 3: -2 < b9 < 2, Measurement 4: -2 < b9 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b10 <2, Measurement 2: -2 < b10 <2, Measurement 3: -2 < b10 <2, Measurement 4: -2 < b10 <202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b11 < 2, Measurement 2: -2 < b11 < 2, Measurement 3: -2 < b11 < 2, Measurement 4: -2 < b11 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b12 < 2, Measurement 2: -2 < b12 < 2, Measurement 3: -2 < b12 < 2, Measurement 4: -2 < b12 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b13 < 2, Measurement 2: -2 < b13 < 2, Measurement 3: -2 < b13 < 2, Measurement 4: -2 < b13 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b14 < 2, Measurement 2: -2 < b14 < 2, Measurement 3: -2 < b14 < 2, Measurement 4: -2 < b14 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b15 < 2, Measurement 2: -2 < b15 < 2, Measurement 3: -2 < b15 < 2, Measurement 4: -2 < b15 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b16 < 2, Measurement 2: -2 < b16 < 2, Measurement 3: -2 < b16 < 2, Measurement 4: -2 < b16 < 202/09/2026ApprovedFALSE
- 6.06.05.01The magnet cross-talk shall be constrained as follows:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cross-talk shall be constrained within a radius of 50(mm) and have all harmonic multipoles with an average less than 10(µT).02/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet cross-talk shall be constrained such that, at its maximum energy, the magnetic cross talk from B1APF on the center axis of the ESR shall be less than 10(gauss).02/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet shall be designed to meet the following external fringe field constraints02/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet has no radial fringe field requirements.02/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet has no axial fringe field requirements.02/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions of superfluid helium (HeII) bath at 1.3(bar) and 1.92(K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeI) bath at 1.3(bar) and 4.5(K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be capable of removing a maximum total heat load of 5.9 Watts while maintaining nominal operating conditions under 1.3(bar) and 1.92(k).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet current leads cooling shall be capable of removing a maximum total heat load of 36 Watts at the cold end while maintaining nominal operating conditions under 1.3(bar) and 4.5(K), and vapor cooling flow of 1.8(g/s) from 4.5(K) to 300(K).02/09/2026ApprovedFALSE
- 6.06.05.01The maximum internal pressure from the helium volume to the vacuum in the magnet structure shall be 10(bar).02/09/2026ApprovedFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.03(bar).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026ApprovedFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01The magnet design shall have an appropriate quench protection system which also ensures all electromagnetically, thermally and cryogenically connected systems are not damaged in a quench event.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026ApprovedFALSE
- 6.06.05.01After magnet thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall not quench when ramping down within a time interval of 360 seconds from full current.02/09/2026ApprovedFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a hi-pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage + 500 Volts).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead in and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module shall be less than 1.0(nΩ) at 1.9(K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: 60 thermal cycles, 180 quenches 30000 power cycles.02/09/2026ApprovedFALSE
- 6.06.05.01Over its planned life of 30(yrs) the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-HSR-B1PF : IR Magnet B1PF (WBS 6.06.02.01.02)
- 6.06.05.01The magnet shall have a single function vertical dipole field.02/09/2026In ProcessFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 3(m). The magnet design needs to comply with all the geometery constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The beam tube inner bore radius when warm, shall be greater than or equal to 135(mm). The inner radius of the coil must incorporate appropriate allowances for all the structure required between the coil inner radius and the beam tube inner radius (To include the beam tube wall thickness, Coil inner support tube, ground plane insulation, additional coil windings appropriate build tolerances etc.) The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet and its cryostat (designated FC-3) shall be designed to fit within a cylindrical volume having an Outside diameter less than 2.172(m) Length less than 3.248(m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: dx=+/-na dy=+/-na dz=+/-na02/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: About X=+/- na About Y=+/- na About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The maximum integrated Dipole field required is 10.08(Tm), the magnet design shall include an additional 10% tuning margin giving a required field of 11.088 (Tm).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to ramp to field within 300(s). Aditionally all HSR magnets must be able to follow the RHIC ramp profile [reference to appropriate RHIC ramp profile document to be added here]02/09/2026In ProcessFALSE
- 6.06.04.03.01.02The field alignment within the magnet, position and alignment values shall be within the following tolerance limits: Note: Z is along the beam axis09/25/2025In ProcessFALSE
- 6.06.04.03.01.02Field Center Displacement (with respect to the physical magnet center) Displacement in X= na Displacement in Y= na Displacement in Z= na09/25/2025ApprovedFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.04.03.01.02Field Rotational Alignment (with respect to the physical magnets primary axis X,Y,Z) Rotational about X= na Rotational about Y= na Rotational about Z= +/-0.2(mrad)09/25/2025ApprovedFALSE
- 6.06.05.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The harmonic reference radius Rr shall be 45(mm), centered at (x=0,y=0) mm with respect to the beam axis.02/09/2026In ProcessFALSE
- 6.06.05.01The measurements at the reference radius Bref shall be made at the design field for the 4 following energisation levels, Measurement 1: Design field for 23GeV Measurement 2: Design field for 41GeV Measurement 3: Design field for 100GeV Measurement 4: Design field for 275GeV02/09/2026In ProcessFALSE
- 6.06.05.01The magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components. All undefined harmonics are assumed to be less than +/-0.5 units.02/09/2026In ProcessFALSE
- 6.06.05.01Measurement 1: b1= 10000, Measurement 2: b1= 10000, Measurement 3: b1= 10000, Measurement 4: b1= 1000002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b2 < 2, Measurement 2: -2 < b2 < 2, Measurement 3: -2 < b2 < 2, Measurement 4: -2 < b2 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b3 < 2, Measurement 2: -2 < b3 < 2, Measurement 3: -2 < b3 < 2, Measurement 4: -2 < b3 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b4 < 2, Measurement 2: -2 < b4 < 2, Measurement 3: -2 < b4 < 2, Measurement 4: -2 < b4 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b5 < 2, Measurement 2: -2 < b5 < 2, Measurement 3: -2 < b5 < 2, Measurement 4: -2 < b5 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b6 < 2, Measurement 2: -2 < b6 < 2, Measurement 3: -2 < b6 < 2, Measurement 4: -2 < b6 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b7 < 2, Measurement 2: -2 < b7 < 2, Measurement 3: -2 < b7 < 2, Measurement 4: -2 < b7 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b8 < 2, Measurement 2: -2 < b8 < 2, Measurement 3: -2 < b8 < 2, Measurement 4: -2 < b8 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b9 < 2, Measurement 2: -2 < b9 < 2, Measurement 3: -2 < b9 < 2, Measurement 4: -2 < b9 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b10 < 2, Measurement 2: -2 < b10 < 2, Measurement 3: -2 < b10 < 2, Measurement 4: -2 < b10 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b11 < 2, Measurement 2: -2 < b11 < 2, Measurement 3: -2 < b11 < 2, Measurement 4: -2 < b11 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b12 < 2, Measurement 2: -2 < b12 < 2, Measurement 3: -2 < b12 < 2, Measurement 4: -2 < b12 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b13 < 2, Measurement 2: -2 < b13 < 2, Measurement 3: -2 < b13 < 2, Measurement 4: -2 < b13 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b14 < 2, Measurement 2: -2 < b14 < 2, Measurement 3: -2 < b14 < 2, Measurement 4: -2 < b14 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b15 < 2, Measurement 2: -2 < b15 < 2, Measurement 3: -2 < b15 < 2, Measurement 4: -2 < b15 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b16 < 2, Measurement 2: -2 < b16 < 2, Measurement 3: -2 < b16 < 2, Measurement 4: -2 < b16 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet crosstalk onto the ESR beam line Shall be constrained such that02/09/2026In ProcessFALSE
- 6.06.05.01Non linear multipoles < 10 (uT) within 50mm of ESR axis02/09/2026In ProcessFALSE
- 6.06.05.01The Linear multipoles are < 10(gauss) on the ESR axis02/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet shall be designed to meet the following external fringe field constraints02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no radial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no axial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at 1.3(bar). The sub-atmospheric side of the heat exchanger will operate at 1.92(K) and the corresponding saturated vapor pressure of 25.4(mbar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at 1.3(bar) and 4.5(K).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be capable of removing a maximum total heat load of TBD (W) while maintaining nominal operating conditions under 1.3(bar) and 1.92(K).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads cooling shall be capable of removing a maximum total heat load of TBD(W) at the cold end while maintaining nominal operating conditions under 1.3(bar) and 4.5(K), and vapor cooling flow of TBD(g/s) from 4.5(K) to 300(K)02/09/2026In ProcessFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to02/09/2026In ProcessFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.03(bar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026In ProcessFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026In ProcessFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, in instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026In ProcessFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 1.9 K.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: 60 thermal cycles, 180 quenches 30000 power cycles.02/09/2026In ProcessFALSE
- 6.06.05.01Over its planned life of 30(yrs) the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-HSR-B1PR : IR Magnet B1PR (WBS 6.06.02.01.02)
IR-MAG-HSR-B2PR : IR Magnet B2PR (WBS 6.06.02.01.02)
IR-MAG-HSR-Q1APF : IR Magnet Q1APF (WBS 6.06.02.01.02)
- 6.06.05.01The magnet shall have a single function normal quadrupole field.02/09/2026In ProcessFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 1.46(m). The magnet design needs to comply with all the geometery constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The beam tube inner bore radius when warm, shall be greater than or equal to 56(mm). The inner radius of the coil must incorporate appropriate allowances for all the structure required between the coil inner radius and the beam tube inner radius (To include the beam tube wall thickness, Coil inner support tube, ground plane insulation, additional coil windings appropriate build tolerances etc.) The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet and its cryostat (designated FC-1) shall be designed to fit within a cylindrical volume having an Outside diameter less than 1.822(m) Length less than 4.47(m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: dx=+/-0.15 dy=+/-0.15 dz=+/-0.1502/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: About X=+/- 0.2 About Y=+/- 0.2 About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The maximum integrated Quadrupole field required is 122(Tm), the magnet design shall include an additional 10% tuning margin giving a required field of 134.2 (Tm).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to ramp to field within 300 (s). Aditionally all HSR magnets must be able to follow the RHIC ramp profile [reference to appropriate RHIC ramp profile document to be added here]02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position dx=+/- 2 dy=+/- 2 dz=+/- 202/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/- 0.2 About Y=+/- 0.2 About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The harmonic reference radius Rr shall be 50(mm), centered at (x=0,y=0) mm with respect to the beam axis.02/09/2026In ProcessFALSE
- 6.06.05.01The measurements at the reference radius Bref shall be made at the design field for the 4 following energisation levels, Measurement 1: Design field for 23GeV Measurement 2: Design field for 41GeV Measurement 3: Design field for 100GeV Measurement 4: Design field for 275GeV02/09/2026In ProcessFALSE
- 6.06.05.01The magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components. All undefined harmonics are assumed to be less than +/-0.5 units.02/09/2026In ProcessFALSE
- 6.06.05.01-02/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: b2= 10000, Measurement 2: b2= 10000, Measurement 3: b2= 10000, Measurement 4: b2= 1000002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b3 < 2, Measurement 2: -2 < b3 < 2, Measurement 3: -2 < b3 < 2, Measurement 4: -2 < b3 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b4 < 2, Measurement 2: -2 < b4 < 2, Measurement 3: -2 < b4 < 2, Measurement 4: -2 < b4 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b5 < 2, Measurement 2: -2 < b5 < 2, Measurement 3: -2 < b5 < 2, Measurement 4: -2 < b5 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b6 < 2, Measurement 2: -2 < b6 < 2, Measurement 3: -2 < b6 < 2, Measurement 4: -2 < b6 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b7 < 2, Measurement 2: -2 < b7 < 2, Measurement 3: -2 < b7 < 2, Measurement 4: -2 < b7 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b8 < 2, Measurement 2: -2 < b8 < 2, Measurement 3: -2 < b8 < 2, Measurement 4: -2 < b8 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b9 < 2, Measurement 2: -2 < b9 < 2, Measurement 3: -2 < b9 < 2, Measurement 4: -2 < b9 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b10 < 2, Measurement 2: -2 < b10 < 2, Measurement 3: -2 < b10 < 2, Measurement 4: -2 < b10 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b11 < 2, Measurement 2: -2 < b11 < 2, Measurement 3: -2 < b11 < 2, Measurement 4: -2 < b11 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b12 < 2, Measurement 2: -2 < b12 < 2, Measurement 3: -2 < b12 < 2, Measurement 4: -2 < b12 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b13 < 2, Measurement 2: -2 < b13 < 2, Measurement 3: -2 < b13 < 2, Measurement 4: -2 < b13 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b14 < 2, Measurement 2: -2 < b14 < 2, Measurement 3: -2 < b14 < 2, Measurement 4: -2 < b14 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b15 < 2, Measurement 2: -2 < b15 < 2, Measurement 3: -2 < b15 < 2, Measurement 4: -2 < b15 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b16 < 2, Measurement 2: -2 < b16 < 2, Measurement 3: -2 < b16 < 2, Measurement 4: -2 < b16 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet crosstalk onto the ESR beam line Shall be constrained such that02/09/2026In ProcessFALSE
- 6.06.05.01Non linear multipoles < 10 (uT) within 42(mm) of ESR axis02/09/2026In ProcessFALSE
- 6.06.05.01The Linear multipoles are < 10(gauss) on the ESR axis02/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet shall be designed to meet the following external fringe field constraints02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no radial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no axial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at 1.3(bar). The sub-atmospheric side of the heat exchanger will operate at 1.92(K) and the corresponding saturated vapor pressure of 25.4(mbar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at 1.3(bar) and 4.5(K).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be capable of removing a maximum total heat load of TBD (W) while maintaining nominal operating conditions under 1.3(bar) and 1.92(K).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads cooling shall be capable of removing a maximum total heat load of TBD(W) at the cold end while maintaining nominal operating conditions under 1.3(bar) and 4.5(K), and vapor cooling flow of TBD(g/s) from 4.5(K) to 300(K)02/09/2026In ProcessFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to02/09/2026In ProcessFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.03(bar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to be warmed up from its operational temperature to 300K within 5days.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026In ProcessFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026In ProcessFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, in instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026In ProcessFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 1.9 K.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: 60 thermal cycles, 180 quenches 30000 power cycles.02/09/2026In ProcessFALSE
- 6.06.05.01Over its planned life of 30(yrs) the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-HSR-Q1BPF : IR Magnet Q1BPF (WBS 6.06.02.01.02)
- 6.06.04.01.01.02.03The magnet shall have a single function normal Quadrupole field09/30/2025In ProcessFALSE
- 6.06.05.01The magnet shall have a single function normal quadrupole field.02/09/2026In ProcessFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 1.61(m). The magnet design needs to comply with all the geometery constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The beam tube inner bore radius when warm, shall be greater than or equal to 78(mm). The inner radius of the coil must incorporate appropriate allowances for all the structure required between the coil inner radius and the beam tube inner radius (To include the beam tube wall thickness, Coil inner support tube, ground plane insulation, additional coil windings appropriate build tolerances etc.) The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet and its cryostat (designated FC-1) shall be designed to fit within a cylindrical volume having an Outside diameter less than 1.822(m) Length less than 4.47(m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: dx=+/-0.15 dy=+/-0.15 dz=+/-0.1502/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: About X=+/- 0.2 About Y=+/- 0.2 About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The maximum integrated Quadrupole field required is 78(Tm), the magnet design shall include an additional 10% tuning margin giving a required field of 85.8 (Tm).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to ramp to field within 300 (s). Aditionally all HSR magnets must be able to follow the RHIC ramp profile [reference to appropriate RHIC ramp profile document to be added here]02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position dx=+/- 2 dy=+/- 2 dz=+/- 202/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/- 0.2 About Y=+/- 0.2 About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The harmonic reference radius Rr shall be 50(mm), centered at (x=0,y=0) mm with respect to the beam axis.02/09/2026In ProcessFALSE
- 6.06.05.01The measurements at the reference radius Bref shall be made at the design field for the 4 following energisation levels, Measurement 1: Design field for 23GeV Measurement 2: Design field for 41GeV Measurement 3: Design field for 100GeV Measurement 4: Design field for 275GeV02/09/2026In ProcessFALSE
- 6.06.05.01The magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components. All undefined harmonics are assumed to be less than +/-0.5 units.02/09/2026In ProcessFALSE
- 6.06.05.01-02/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: b2= 10000, Measurement 2: b2= 10000, Measurement 3: b2= 10000, Measurement 4: b2= 1000002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b3 < 2, Measurement 2: -2 < b3 < 2, Measurement 3: -2 < b3 < 2, Measurement 4: -2 < b3 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b4 < 2, Measurement 2: -2 < b4 < 2, Measurement 3: -2 < b4 < 2, Measurement 4: -2 < b4 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b5 < 2, Measurement 2: -2 < b5 < 2, Measurement 3: -2 < b5 < 2, Measurement 4: -2 < b5 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b6 < 2, Measurement 2: -2 < b6 < 2, Measurement 3: -2 < b6 < 2, Measurement 4: -2 < b6 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b7 < 2, Measurement 2: -2 < b7 < 2, Measurement 3: -2 < b7 < 2, Measurement 4: -2 < b7 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b8 < 2, Measurement 2: -2 < b8 < 2, Measurement 3: -2 < b8 < 2, Measurement 4: -2 < b8 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b9 < 2, Measurement 2: -2 < b9 < 2, Measurement 3: -2 < b9 < 2, Measurement 4: -2 < b9 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b10 < 2, Measurement 2: -2 < b10 < 2, Measurement 3: -2 < b10 < 2, Measurement 4: -2 < b10 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b11 < 2, Measurement 2: -2 < b11 < 2, Measurement 3: -2 < b11 < 2, Measurement 4: -2 < b11 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b12 < 2, Measurement 2: -2 < b12 < 2, Measurement 3: -2 < b12 < 2, Measurement 4: -2 < b12 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b13 < 2, Measurement 2: -2 < b13 < 2, Measurement 3: -2 < b13 < 2, Measurement 4: -2 < b13 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b14 < 2, Measurement 2: -2 < b14 < 2, Measurement 3: -2 < b14 < 2, Measurement 4: -2 < b14 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b15 < 2, Measurement 2: -2 < b15 < 2, Measurement 3: -2 < b15 < 2, Measurement 4: -2 < b15 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -2 < b16 < 2, Measurement 2: -2 < b16 < 2, Measurement 3: -2 < b16 < 2, Measurement 4: -2 < b16 < 202/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet crosstalk onto the ESR beam line Shall be constrained such that02/09/2026In ProcessFALSE
- 6.06.05.01Non linear multipoles < 10 (uT) within 42(mm) of ESR axis02/09/2026In ProcessFALSE
- 6.06.05.01The Linear multipoles are < 10(gauss) on the ESR axis02/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet shall be designed to meet the following external fringe field constraints02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no radial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no axial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at 1.3(bar). The sub-atmospheric side of the heat exchanger will operate at 1.92(K) and the corresponding saturated vapor pressure of 25.4(mbar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at 1.3(bar) and 4.5(K).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be capable of removing a maximum total heat load of TBD (W) while maintaining nominal operating conditions under 1.3(bar) and 1.92(K).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads cooling shall be capable of removing a maximum total heat load of TBD(W) at the cold end while maintaining nominal operating conditions under 1.3(bar) and 4.5(K), and vapor cooling flow of TBD(g/s) from 4.5(K) to 300(K)02/09/2026In ProcessFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to02/09/2026In ProcessFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.03(bar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to be warmed up from its operational temperature to 300K within 5days.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026In ProcessFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026In ProcessFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, in instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026In ProcessFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 1.9 K.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: 60 thermal cycles, 180 quenches 30000 power cycles.02/09/2026In ProcessFALSE
- 6.06.05.01Over its planned life of 30(yrs) the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-HSR-Q2PF : IR Magnet Q2PF (WBS 6.06.02.01.02)
- 6.06.05.01The magnet shall have a single function normal Quadrupole field.02/09/2026ApprovedFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 3.8(m).02/09/2026ApprovedFALSE
- 6.06.05.01The inner beam tube bore radius when warm, shall be greater than or equal to 131(mm).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to fit within the following envelope. The magnet cold mass must comply with the geometry restrictions defined by the IR layout and fit within the Forward IR Cryostat FC2.02/09/2026ApprovedFALSE
- 6.06.05.01The final magnet assembly position and alignment values with respect to the nominal beam position and axis shall be within the following limits: Notes: The geometry required is defined in the Forward IR Main cryostats Interface requirements [EIC-SEG-RSI-063 Forward IR main cryostats Interface Control Document].02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: Displacement in X= +/-150 (um) Displacement in Y= +/-150 (um) Displacement in Z= +/-150 (um)02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: Rotational about X= +/-0.2 (mrad) Rotational about Y= +/-0.2 (mrad) Rotational about Z= +/-0.2 (mrad)02/09/2026ApprovedFALSE
- 6.06.05.01The maximum integrated Quadrupole field required is 132 (T), the magnet design shall include an additional 10% tuning margin giving a required field of 145.2 (T).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall have a peak ramp rate of 0.968 (T/s) and all HSR magnets must be able to follow the RHIC ramp profile [reference to appropriate RHIC ramp profile document to be added here]02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position Displacement in X= 0.5 (mm) Displacement in Y= 0.5 (mm) Displacement in Z= 2 (mm)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis Rotational about X= +/-0.2 (mrad) Rotational about Y= +/-0.2 (mrad) Rotational about Z= +/-0.2 (mrad)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field homogenity shall be measured within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The harmonic reference radius at which the field quality shall be measured is R=43(mm), centered at (x=0,y=0) mm with respect to the beam axis.02/09/2026ApprovedFALSE
- 6.06.05.01The field at the reference radius Gref shall be, G(at 23GeV)=TBD(T) ~12.14T G(at 41GeV)=TBD(T) ~21.65T G(at100GeV)=TBD(T) ~52.8T G(at 275GeV)=TBD(T). ~145.2T02/09/2026In ProcessFALSE
- 6.06.05.01The magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components. All undefined harmonics are assumed to be less than +/-0.5 units.02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: b2= 10000, Measurement 2: b2= 10000, Measurement 3: b2= 10000, Measurement 4: b2= 1000002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b3 < 2, Measurement 2: -2 < b3 < 2, Measurement 3: -2 < b3 < 2, Measurement 4: -2 < b3 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b4 < 2, Measurement 2: -2 < b4 < 2, Measurement 3: -2 < b4 < 2, Measurement 4: -2 < b4 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b5 <2, Measurement 2: -2 < b5 <2, Measurement 3: -2 < b5 <2, Measurement 4: -2 < b5 <202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b6 < 2, Measurement 2: -2 < b6 < 2, Measurement 3: -2 < b6 < 2, Measurement 4: -2 < b6 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b7 < 2, Measurement 2: -2 < b7 < 2, Measurement 3: -2 < b7 < 2, Measurement 4: -2 < b7 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b8 < 2, Measurement 2: -2 < b8 < 2, Measurement 3: -2 < b8 < 2, Measurement 4: -2 < b8 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b9 < 2, Measurement 2: -2 < b9 < 2, Measurement 3: -2 < b9 < 2, Measurement 4: -2 < b9 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b10 <2, Measurement 2: -2 < b10 <2, Measurement 3: -2 < b10 <2, Measurement 4: -2 < b10 <202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b11 < 2, Measurement 2: -2 < b11 < 2, Measurement 3: -2 < b11 < 2, Measurement 4: -2 < b11 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b12 < 2, Measurement 2: -2 < b12 < 2, Measurement 3: -2 < b12 < 2, Measurement 4: -2 < b12 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b13 < 2, Measurement 2: -2 < b13 < 2, Measurement 3: -2 < b13 < 2, Measurement 4: -2 < b13 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b14 < 2, Measurement 2: -2 < b14 < 2, Measurement 3: -2 < b14 < 2, Measurement 4: -2 < b14 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b15 < 2, Measurement 2: -2 < b15 < 2, Measurement 3: -2 < b15 < 2, Measurement 4: -2 < b15 < 202/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -2 < b16 < 2, Measurement 2: -2 < b16 < 2, Measurement 3: -2 < b16 < 2, Measurement 4: -2 < b16 < 202/09/2026ApprovedFALSE
- 6.06.05.01The magnet cross-talk shall be constrained within a radius of 50(mm) of the ESR axis such that all harmonic multipoles average less than 10(µT).02/09/2026ApprovedFALSE
- 6.06.04.02.01.02The magnet cross-talk shall be constrained such that, at its maximum energy, the magnetic cross-talk from Q2PF on the center axis of the ESR shall be less than 10(gauss).09/25/2025ReviewedFALSE
- 6.06.05.01The magnet cross-talk shall be constrained within a radius of 50 (mm) of the ESR axis such that all harmonic multipoles average less than 10 (µT).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cross-talk shall be constrained such that, at its maximum energy, the magnetic cross-talk from Q2pF on the center axis of the ESR shall be less than 10 (gauss).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at 1.3(bar). The sub-atmospheric side of the heat exchanger will operate at 1.92(K) and the corresponding saturated vapor pressure of 25.4(mbar).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at 1.3(bar) and 4.5(K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be capable of removing a maximum total heat load of TBD (W) while maintaining nominal operating conditions under 1.3(bar) and 1.92(K).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads cooling shall be capable of removing a maximum total heat load of 24 (W) at the cold end while maintaining nominal operating conditions under 1.3 (bar) and 4.5 (K), and vapor cooling flow of 1.2 (g/s) from 4.5 (K) to 300 (K).02/09/2026ApprovedFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be 10(bar).02/09/2026ApprovedFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.03(bar).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026ApprovedFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026ApprovedFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026ApprovedFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, ininstrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 1.9 K.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: 60 thermal cycles, 180 quenches 30000 power cycles.02/09/2026ApprovedFALSE
- 6.06.05.01Over its planned life of 30(yrs) the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-HSR-B2PF : IR Magnet B2PF (WBS 6.06.02.06)
- 6.06.06.03The magnet shall have a single function dipole with a vertical field direction along the beam axis.08/29/2025ApprovedFALSE
- 6.06.06.03The physical length of the magnet cold mass insert shall be less than or equal to 3.1 (m).08/29/2025ApprovedFALSE
- 6.06.06.03The inner beam tube bore radius when warm, shall be greater than or equal to 60(mm).08/29/2025ApprovedFALSE
- 6.06.06.03The magnet shall be designed to fit within the following constraints:08/29/2025ApprovedFALSE
- 6.06.06.03The magnet and its cryostat (designated B2PF) shall be designed to fit within a cylindrical volume having an Outside diameter less than 1.2(m) Length less than 4.4(m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.10/30/2025ApprovedFALSE
- 6.06.06.03The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)08/29/2025ApprovedFALSE
- 6.06.06.03The magnetic field axis displacement tolerances: Displacement in X= na Displacement in Y= na Displacement in Z= na08/29/2025ApprovedFALSE
- 6.06.06.03The magnetic field rotational alignment tolerances: Rotational about X= na Rotational about Y= na Rotational about Z= +/-0.2(mrad)08/29/2025ApprovedFALSE
- 6.06.06.03The maximum integrated Dipole field required is 15.4 (Tm), the magnet design shall include an additional 10% tuning margin giving a required field of 16.94 (Tm).08/29/2025ApprovedFALSE
- 6.06.06.03The magnet shall have a peak ramp rate of 0.04 T/s and all HSR magnets must be able to follow the RHIC ramp profile [reference to appropriate RHIC ramp profile document to be added here]08/29/2025ApprovedFALSE
- 6.06.06.03The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)08/29/2025ApprovedFALSE
- 6.06.06.03The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position Displacement in X= 2(mm) Displacement in Y= 2(mm) Displacement in Z= 2(mm)08/29/2025ApprovedFALSE
- 6.06.06.03The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis Rotational about X= +/-0.2(mrad) Rotational about Y= +/-0.2(mrad) Rotational about Z= +/-0.2(mrad)08/29/2025ApprovedFALSE
- 6.06.06.03The magnet field homogenity shall be measured within the following constraints:08/29/2025ApprovedFALSE
- 6.06.06.03The harmonic reference radius Rr shall be 50(mm), centered at (x=0,y=0) mm with respect to the beam axis.08/29/2025ApprovedFALSE
- 6.06.06.03The field at the reference radius Bref shall be, B(at 23GeV)~1.42(Tm) B(at 41GeV)~2.53(Tm) B(at100GeV)~6.16(Tm) B(at 275GeV)=16.94(Tm).08/29/2025ApprovedFALSE
- 6.06.06.03The magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components. All undefined harmonics are assumed to be less than +/-0.5 units.08/29/2025ApprovedFALSE
- 6.06.06.03Measurement 1: b1= 10000, Measurement 2: b1= 10000, Measurement 3: b1= 10000, Measurement 4: b1= 1000008/29/2025ApprovedFALSE
- 6.06.06.03Measurement 1: -2 < b2 < 2, Measurement 2: -2 < b2 < 2, Measurement 3: -2 < b2 < 2, Measurement 4: -2 < b2 < 208/29/2025ApprovedFALSE
- 6.06.06.03Measurement 1: -2 < b3 < 2, Measurement 2: -2 < b3 < 2, Measurement 3: -2 < b3 < 2, Measurement 4: -2 < b3 < 208/29/2025ApprovedFALSE
- 6.06.06.03Measurement 1: -2 < b4 < 2, Measurement 2: -2 < b4 < 2, Measurement 3: -2 < b4 < 2, Measurement 4: -2 < b4 < 208/29/2025ApprovedFALSE
- 6.06.06.03Measurement 1: -2 < b5 <2, Measurement 2: -2 < b5 <2, Measurement 3: -2 < b5 <2, Measurement 4: -2 < b5 <208/29/2025ApprovedFALSE
- 6.06.06.03Measurement 1: -2 < b6 < 2, Measurement 2: -2 < b6 < 2, Measurement 3: -2 < b6 < 2, Measurement 4: -2 < b6 < 208/29/2025ApprovedFALSE
- 6.06.06.03Measurement 1: -2 < b7 < 2, Measurement 2: -2 < b7 < 2, Measurement 3: -2 < b7 < 2, Measurement 4: -2 < b7 < 208/29/2025ApprovedFALSE
- 6.06.06.03Measurement 1: -2 < b8 < 2, Measurement 2: -2 < b8 < 2, Measurement 3: -2 < b8 < 2, Measurement 4: -2 < b8 < 208/29/2025ApprovedFALSE
- 6.06.06.03Measurement 1: -2 < b9 < 2, Measurement 2: -2 < b9 < 2, Measurement 3: -2 < b9 < 2, Measurement 4: -2 < b9 < 208/29/2025ApprovedFALSE
- 6.06.06.03Measurement 1: -2 < b10 <2, Measurement 2: -2 < b10 <2, Measurement 3: -2 < b10 <2, Measurement 4: -2 < b10 <208/29/2025ApprovedFALSE
- 6.06.06.03Measurement 1: -2 < b11 < 2, Measurement 2: -2 < b11 < 2, Measurement 3: -2 < b11 < 2, Measurement 4: -2 < b11 < 208/29/2025ApprovedFALSE
- 6.06.06.03Measurement 1: -2 < b12 < 2, Measurement 2: -2 < b12 < 2, Measurement 3: -2 < b12 < 2, Measurement 4: -2 < b12 < 208/29/2025ApprovedFALSE
- 6.06.06.03Measurement 1: -2 < b13 < 2, Measurement 2: -2 < b13 < 2, Measurement 3: -2 < b13 < 2, Measurement 4: -2 < b13 < 208/29/2025ApprovedFALSE
- 6.06.06.03Measurement 1: -2 < b14 < 2, Measurement 2: -2 < b14 < 2, Measurement 3: -2 < b14 < 2, Measurement 4: -2 < b14 < 208/29/2025ApprovedFALSE
- 6.06.06.03Measurement 1: -2 < b15 < 2, Measurement 2: -2 < b15 < 2, Measurement 3: -2 < b15 < 2, Measurement 4: -2 < b15 < 208/29/2025ApprovedFALSE
- 6.06.06.03Measurement 1: -2 < b16 < 2, Measurement 2: -2 < b16 < 2, Measurement 3: -2 < b16 < 2, Measurement 4: -2 < b16 < 208/29/2025ApprovedFALSE
- 6.06.06.03The magnet cross-talk shall be constrained such that the field at the Crab cavity surface does not exceed <700 mG.08/29/2025ApprovedFALSE
- 6.06.06.03The magnet shall be designed to meet the following external fringe field constraints08/29/2025Not ApplicableFALSE
- 6.06.06.03The magnet shall have a stray field of no more than TBD gauss at a radial distance of TBD(m) from the Dipole axis.08/29/2025In ProcessFALSE
- 6.06.06.03The stray field from the magnet of shall not exceed TBD (gauss) for axial distances greater than TBD(m) from the end plane of the magnet cryostat.08/29/2025In ProcessFALSE
- 6.06.06.03The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:08/29/2025ApprovedFALSE
- 6.06.06.03The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at 1.3(bar). The sub-atmospheric side of the heat exchanger will operate at 1.92(K) and the corresponding saturated vapor pressure of 25.4(mbar).08/29/2025ApprovedFALSE
- 6.06.06.03The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeI) bath at 1.3(bar) and 4.5(K).08/29/2025ApprovedFALSE
- 6.06.06.03The current leads shall be sized for 6(W/kA) of current leads dissipating 36(W) for a 15(kA) Lead Pair(W)10/30/2025ApprovedFALSE
- 6.06.06.03The cryogenic system shall be capable of removing a maximum total heat load of 36(W) at the cold end while maintaining nominal operating conditions under 1.3(bar) and 4.5(K), and vapor cooling flow of 1.8 (g/s) for a 15kA current lead pair from 4.5(K) to 300(K)08/29/2025ApprovedFALSE
- 6.06.06.03The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be 10.3(bar).08/29/2025ApprovedFALSE
- 6.06.06.03The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.03(bar).08/29/2025ApprovedFALSE
- 6.06.06.03The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes, except for cooldown from 300K to 4.5K. In this mode the flow shall be supplied directly into the magnet structure volume and exit via a separate cooldown line.08/29/2025ApprovedFALSE
- 6.06.06.03The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.08/29/2025ApprovedFALSE
- 6.06.07.02.18The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:09/30/2025ApprovedFALSE
- 6.06.07.02.18The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.09/30/2025ApprovedFALSE
- 6.06.07.02.18After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.09/30/2025ApprovedFALSE
- 6.06.07.02.18The magnet shall be designed to attain the design field with no more than 20 training quenches.09/30/2025ApprovedFALSE
- 6.06.06.03All electrical connection to the magnet for the main current leads, ininstrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:08/29/2025ApprovedFALSE
- 6.06.06.03The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).08/29/2025ApprovedFALSE
- 6.06.06.03The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.08/29/2025ApprovedFALSE
- 6.06.06.03All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 1.9 K.08/29/2025ApprovedFALSE
- 6.06.06.03The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: 60 thermal cycles, 180 quenches 30000 power cycles.11/05/2025ApprovedFALSE
- TBDOver its planned life of 30(yrs) the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team10/30/2025In ProcessFALSE
IR-MAG-HSR-B0APF_SKQ
- 6.06.05.01The magnet shall have a single function corrector with a skew quadrupole field02/09/2026In ProcessFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 0.6(m). The magnet design needs to comply with all the geometery constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The beam tube inner bore radius when warm, shall be greater than or equal to 43(mm). The inner radius of the coil must incorporate appropriate allowances for all the structure required between the coil inner radius and the beam tube inner radius (To include the beam tube wall thickness, Coil inner support tube, ground plane insulation, additional coil windings appropriate build tolerances etc.) The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet and its cryostat (designated FC-1) shall be designed to fit within a cylindrical volume having an Outside diameter less than 1.822(m) Length less than 4.47(m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: dx=+/-na dy=+/-na dz=+/-na02/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: About X=+/- na About Y=+/- na About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The maximum integrated Quadrupole field required is 3(Tm), the magnet design shall include an additional 20% tuning margin giving a required field of 3.6 (Tm).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to ramp to field within 300 (s). Aditionally all HSR magnets must be able to follow the RHIC ramp profile [reference to appropriate RHIC ramp profile document to be added here]02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position dx=+/- 2 dy=+/- 2 dz=+/- 202/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/- 0.2 About Y=+/- 0.2 About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The harmonic reference radius Rr shall be 30(mm), centered at (x=0,y=0) mm with respect to the beam axis.02/09/2026In ProcessFALSE
- 6.06.05.01The measurements at the reference radius Bref shall be made at the design field for the 4 following energisation levels, Measurement 1: Design field for 23GeV Measurement 2: Design field for 41GeV Measurement 3: Design field for 100GeV Measurement 4: Design field for 275GeV02/09/2026In ProcessFALSE
- 6.06.05.01The magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components. All undefined harmonics are assumed to be less than +/-0.5 units.02/09/2026In ProcessFALSE
- 6.06.05.01-02/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: a2= 10000, Measurement 2: a2= 10000, Measurement 3: a2= 10000, Measurement 4: a2= 1000002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -100 < a3 < +100, Measurement 2: -100 < a3 < +100, Measurement 3: -100 < a3 < +100, Measurement 4: -100 < a3 < +10002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -100 < a4 < +100, Measurement 2: -100 < a4 < +100, Measurement 3: -100 < a4 < +100, Measurement 4: -100 < a4 < +10002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -100 < a5 < +100, Measurement 2: -100 < a5 < +100, Measurement 3: -100 < a5 < +100, Measurement 4: -100 < a5 < +10002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -100 < a6 < +100, Measurement 2: -100 < a6 < +100, Measurement 3: -100 < a6 < +100, Measurement 4: -100 < a6 < +10002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -100 < a7 < +100, Measurement 2: -100 < a7 < +100, Measurement 3: -100 < a7 < +100, Measurement 4: -100 < a7 < +10002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -100 < a8 < +100, Measurement 2: -100 < a8 < +100, Measurement 3: -100 < a8 < +100, Measurement 4: -100 < a8 < +10002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -100 < a9 < +100, Measurement 2: -100 < a9 < +100, Measurement 3: -100 < a9 < +100, Measurement 4: -100 < a9 < +10002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -100 < a10 < +100, Measurement 2: -100 < a10 < +100, Measurement 3: -100 < a10 < +100, Measurement 4: -100 < a10 < +10002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -100 < a11 < +100, Measurement 2: -100 < a11 < +100, Measurement 3: -100 < a11 < +100, Measurement 4: -100 < a11 < +10002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -100 < a12 < +100, Measurement 2: -100 < a12 < +100, Measurement 3: -100 < a12 < +100, Measurement 4: -100 < a12 < +10002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -100 < a13 < +100, Measurement 2: -100 < a13 < +100, Measurement 3: -100 < a13 < +100, Measurement 4: -100 < a13 < +10002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -100 < a14 < +100, Measurement 2: -100 < a14 < +100, Measurement 3: -100 < a14 < +100, Measurement 4: -100 < a14 < +10002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -100 < a15 < +100, Measurement 2: -100 < a15 < +100, Measurement 3: -100 < a15 < +100, Measurement 4: -100 < a15 < +10002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -100 < a16 < +100, Measurement 2: -100 < a16 < +100, Measurement 3: -100 < a16 < +100, Measurement 4: -100 < a16 < +10002/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet crosstalk onto the ESR beam line Shall be constrained such that02/09/2026In ProcessFALSE
- 6.06.05.01Non linear multipoles < 10 (uT) within 42(mm) of ESR axis02/09/2026In ProcessFALSE
- 6.06.05.01The Linear multipoles are < 10(gauss) on the ESR axis02/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet shall be designed to meet the following external fringe field constraints02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no radial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no axial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at 1.3(bar). The sub-atmospheric side of the heat exchanger will operate at 1.92(K) and the corresponding saturated vapor pressure of 25.4(mbar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at 1.3(bar) and 4.5(K).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be capable of removing a maximum total heat load of TBD (W) while maintaining nominal operating conditions under 1.3(bar) and 1.92(K).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads cooling shall be capable of removing a maximum total heat load of TBD(W) at the cold end while maintaining nominal operating conditions under 1.3(bar) and 4.5(K), and vapor cooling flow of TBD(g/s) from 4.5(K) to 300(K)02/09/2026In ProcessFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to02/09/2026In ProcessFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.03(bar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to be warmed up from its operational temperature to 300K within 5days.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026In ProcessFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026In ProcessFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, in instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026In ProcessFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 1.9 K.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: 60 thermal cycles, 180 quenches 30000 power cycles.02/09/2026In ProcessFALSE
- 6.06.05.01Over its planned life of 30(yrs) the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-HSR-B0APF_VC
- 6.06.05.01The magnet shall have a single function vertical corrector with a horizontal dipole field02/09/2026In ProcessFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 0.6(m). The magnet design needs to comply with all the geometery constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The beam tube inner bore radius when warm, shall be greater than or equal to 43(mm). The inner radius of the coil must incorporate appropriate allowances for all the structure required between the coil inner radius and the beam tube inner radius (To include the beam tube wall thickness, Coil inner support tube, ground plane insulation, additional coil windings appropriate build tolerances etc.) The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet and its cryostat (designated FC-1) shall be designed to fit within a cylindrical volume having an Outside diameter less than 1.822(m) Length less than 4.47(m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: dx=+/-na dy=+/-na dz=+/-na02/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: About X=+/- na About Y=+/- na About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The maximum integrated Quadrupole field required is 0.6(Tm), the magnet design shall include an additional 20% tuning margin giving a required field of 0.72 (Tm).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to ramp to field within 300 (s). Aditionally all HSR magnets must be able to follow the RHIC ramp profile [reference to appropriate RHIC ramp profile document to be added here]02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position dx=+/- 2 dy=+/- 2 dz=+/- 202/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/- 0.2 About Y=+/- 0.2 About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The harmonic reference radius Rr shall be 30(mm), centered at (x=0,y=0) mm with respect to the beam axis.02/09/2026In ProcessFALSE
- 6.06.05.01The measurements at the reference radius Bref shall be made at the design field for the 4 following energisation levels, Measurement 1: Design field for 23GeV Measurement 2: Design field for 41GeV Measurement 3: Design field for 100GeV Measurement 4: Design field for 275GeV02/09/2026In ProcessFALSE
- 6.06.05.01The magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components. All undefined harmonics are assumed to be less than +/-0.5 units.02/09/2026In ProcessFALSE
- 6.06.05.01Measurement 1: b1= 10000, Measurement 2: b1= 10000, Measurement 3: b1= 10000, Measurement 4: b1= 1000002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -3 < b2 < +3, Measurement 2: -3 < b2 < +3, Measurement 3: -3 < b2 < +3, Measurement 4: -3 < b2 < +302/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -3 < b3 < +3, Measurement 2: -3 < b3 < +3, Measurement 3: -3 < b3 < +3, Measurement 4: -3 < b3 < +302/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -3 < b4 < +3, Measurement 2: -3 < b4 < +3, Measurement 3: -3 < b4 < +3, Measurement 4: -3 < b4 < +302/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -3 < b5 < +3, Measurement 2: -3 < b5 < +3, Measurement 3: -3 < b5 < +3, Measurement 4: -3 < b5 < +302/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -3 < b6 < +3, Measurement 2: -3 < b6 < +3, Measurement 3: -3 < b6 < +3, Measurement 4: -3 < b6 < +302/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -3 < b7 < +3, Measurement 2: -3 < b7 < +3, Measurement 3: -3 < b7 < +3, Measurement 4: -3 < b7 < +302/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -3 < b8 < +3, Measurement 2: -3 < b8 < +3, Measurement 3: -3 < b8 < +3, Measurement 4: -3 < b8 < +302/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -3 < b9 < +3, Measurement 2: -3 < b9 < +3, Measurement 3: -3 < b9 < +3, Measurement 4: -3 < b9 < +302/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -3 < b10 < +3, Measurement 2: -3 < b10 < +3, Measurement 3: -3 < b10 < +3, Measurement 4: -3 < b10 < +302/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -3 < b11 < +3, Measurement 2: -3 < b11 < +3, Measurement 3: -3 < b11 < +3, Measurement 4: -3 < b11 < +302/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -3 < b12 < +3, Measurement 2: -3 < b12 < +3, Measurement 3: -3 < b12 < +3, Measurement 4: -3 < b12 < +302/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -3 < b13 < +3, Measurement 2: -3 < b13 < +3, Measurement 3: -3 < b13 < +3, Measurement 4: -3 < b13 < +302/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -3 < b14 < +3, Measurement 2: -3 < b14 < +3, Measurement 3: -3 < b14 < +3, Measurement 4: -3 < b14 < +302/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -3 < b15 < +3, Measurement 2: -3 < b15 < +3, Measurement 3: -3 < b15 < +3, Measurement 4: -3 < b15 < +302/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -3 < b16 < +3, Measurement 2: -3 < b16 < +3, Measurement 3: -3 < b16 < +3, Measurement 4: -3 < b16 < +302/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet crosstalk onto the ESR beam line Shall be constrained such that02/09/2026In ProcessFALSE
- 6.06.05.01Non linear multipoles < 10 (uT) within 42(mm) of ESR axis02/09/2026In ProcessFALSE
- 6.06.05.01The Linear multipoles are < 10(gauss) on the ESR axis02/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet shall be designed to meet the following external fringe field constraints02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no radial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no axial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at 1.3(bar). The sub-atmospheric side of the heat exchanger will operate at 1.92(K) and the corresponding saturated vapor pressure of 25.4(mbar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at 1.3(bar) and 4.5(K).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be capable of removing a maximum total heat load of TBD (W) while maintaining nominal operating conditions under 1.3(bar) and 1.92(K).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads cooling shall be capable of removing a maximum total heat load of TBD(W) at the cold end while maintaining nominal operating conditions under 1.3(bar) and 4.5(K), and vapor cooling flow of TBD(g/s) from 4.5(K) to 300(K)02/09/2026In ProcessFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to02/09/2026In ProcessFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.03(bar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to be warmed up from its operational temperature to 300K within 5days.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026In ProcessFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026In ProcessFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, in instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026In ProcessFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 1.9 K.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: 60 thermal cycles, 180 quenches 30000 power cycles.02/09/2026In ProcessFALSE
- 6.06.05.01Over its planned life of 30(yrs) the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-HSR-B1PF_SKQ
- 6.06.05.01The magnet shall have a single function corrector with a skew quadrupole field02/09/2026In ProcessFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 3(m). The magnet design needs to comply with all the geometery constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The beam tube inner bore radius when warm, shall be greater than or equal to 135(mm). The inner radius of the coil must incorporate appropriate allowances for all the structure required between the coil inner radius and the beam tube inner radius (To include the beam tube wall thickness, Coil inner support tube, ground plane insulation, additional coil windings appropriate build tolerances etc.) The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet and its cryostat (designated FC-3) shall be designed to fit within a cylindrical volume having an Outside diameter less than 2.172(m) Length less than 3.248(m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: dx=+/-0.15 dy=+/-0.15 dz=+/-0.1502/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: About X=+/- 0.2 About Y=+/- 0.2 About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The maximum integrated Quadrupole field required is 3(Tm), the magnet design shall include an additional 20% tuning margin giving a required field of 3.6 (Tm).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to ramp to field within 300(s). Aditionally all HSR magnets must be able to follow the RHIC ramp profile [reference to appropriate RHIC ramp profile document to be added here]02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position dx=+/- 2 dy=+/- 2 dz=+/- 202/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/- 0.2 About Y=+/- 0.2 About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The harmonic reference radius Rr shall be 45(mm), centered at (x=0,y=0) mm with respect to the beam axis.02/09/2026In ProcessFALSE
- 6.06.05.01The measurements at the reference radius Bref shall be made at the design field for the 4 following energisation levels, Measurement 1: Design field for 23GeV Measurement 2: Design field for 41GeV Measurement 3: Design field for 100GeV Measurement 4: Design field for 275GeV02/09/2026In ProcessFALSE
- 6.06.05.01The magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components. All undefined harmonics are assumed to be less than +/-0.5 units.02/09/2026In ProcessFALSE
- 6.06.05.01-02/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: a2= 10000, Measurement 2: a2= 10000, Measurement 3: a2= 10000, Measurement 4: a2= 1000002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -200 < a3 < +200, Measurement 2: -200 < a3 < +200, Measurement 3: -200 < a3 < +200, Measurement 4: -200 < a3 < +20002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -200 < a4 < +200, Measurement 2: -200 < a4 < +200, Measurement 3: -200 < a4 < +200, Measurement 4: -200 < a4 < +20002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -200 < a5 < +200, Measurement 2: -200 < a5 < +200, Measurement 3: -200 < a5 < +200, Measurement 4: -200 < a5 < +20002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -200 < a6 < +200, Measurement 2: -200 < a6 < +200, Measurement 3: -200 < a6 < +200, Measurement 4: -200 < a6 < +20002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -200 < a7 < +200, Measurement 2: -200 < a7 < +200, Measurement 3: -200 < a7 < +200, Measurement 4: -200 < a7 < +20002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -200 < a8 < +200, Measurement 2: -200 < a8 < +200, Measurement 3: -200 < a8 < +200, Measurement 4: -200 < a8 < +20002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -200 < a9 < +200, Measurement 2: -200 < a9 < +200, Measurement 3: -200 < a9 < +200, Measurement 4: -200 < a9 < +20002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -200 < a10 < +200, Measurement 2: -200 < a10 < +200, Measurement 3: -200 < a10 < +200, Measurement 4: -200 < a10 < +20002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -200 < a11 < +200, Measurement 2: -200 < a11 < +200, Measurement 3: -200 < a11 < +200, Measurement 4: -200 < a11 < +20002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -200 < a12 < +200, Measurement 2: -200 < a12 < +200, Measurement 3: -200 < a12 < +200, Measurement 4: -200 < a12 < +20002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -200 < a13 < +200, Measurement 2: -200 < a13 < +200, Measurement 3: -200 < a13 < +200, Measurement 4: -200 < a13 < +20002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -200 < a14 < +200, Measurement 2: -200 < a14 < +200, Measurement 3: -200 < a14 < +200, Measurement 4: -200 < a14 < +20002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -200 < a15 < +200, Measurement 2: -200 < a15 < +200, Measurement 3: -200 < a15 < +200, Measurement 4: -200 < a15 < +20002/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -200 < a16 < +200, Measurement 2: -200 < a16 < +200, Measurement 3: -200 < a16 < +200, Measurement 4: -200 < a16 < +20002/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet crosstalk onto the ESR beam line Shall be constrained such that02/09/2026In ProcessFALSE
- 6.06.05.01Non linear multipoles < 10 (uT) within 50mm of ESR axis02/09/2026In ProcessFALSE
- 6.06.05.01The Linear multipoles are < 10(gauss) on the ESR axis02/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet shall be designed to meet the following external fringe field constraints02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no radial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no axial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions with a superfluid helium (HeII) Bath. The Bath will operate with a pressurized magnet volume at 1.3(bar). The sub-atmospheric side of the heat exchanger will operate at 1.92(K) and the corresponding saturated vapor pressure of 25.4(mbar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions of helium (HeII) bath at 1.3(bar) and 4.5(K).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be capable of removing a maximum total heat load of TBD (W) while maintaining nominal operating conditions under 1.3(bar) and 1.92(K).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads cooling shall be capable of removing a maximum total heat load of TBD(W) at the cold end while maintaining nominal operating conditions under 1.3(bar) and 4.5(K), and vapor cooling flow of TBD(g/s) from 4.5(K) to 300(K)02/09/2026In ProcessFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to02/09/2026In ProcessFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.03(bar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil through a pressurized heat exchanger for all operational modes.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to be warmed up from its operational temperature to 300K within 5days.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026In ProcessFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026In ProcessFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, in instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026In ProcessFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 1.9 K.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: 60 thermal cycles, 180 quenches 30000 power cycles.02/09/2026In ProcessFALSE
- 6.06.05.01Over its planned life of 30(yrs) the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-HSR-Q1APR_VC
- 6.06.05.01The magnet shall have a single function vertical corrector with a horizontal dipole field02/09/2026In ProcessFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 1.8(m). The magnet design needs to comply with all the geometery constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The beam tube inner bore radius when warm, shall be greater than or equal to 23.75(mm). The inner radius of the coil must incorporate appropriate allowances for all the structure required between the coil inner radius and the beam tube inner radius (To include the beam tube wall thickness, Coil inner support tube, ground plane insulation, additional coil windings appropriate build tolerances etc.) The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet and its cryostat (designated RC-1) shall be designed to fit within a cylindrical volume having an Outside diameter less than 1.067(m) Length less than 2.073(m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: dx=+/-na dy=+/-na dz=+/-na02/09/2026In ProcessFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: About X=+/- na About Y=+/- na About Z=+/- 102/09/2026In ProcessFALSE
- 6.06.05.01The maximum integrated Quadrupole field required is 0.6(Tm), the magnet design shall include an additional 20% tuning margin giving a required field of 0.72 (Tm).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to ramp to field within 300 (s). Aditionally all HSR magnets must be able to follow the RHIC ramp profile [reference to appropriate RHIC ramp profile document to be added here]02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits: (Note: Z is along the beam axis)02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position dx=+/-0.15 dy=+/-0.15 dz=+/-0.1502/09/2026In ProcessFALSE
- 6.06.05.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/- 0.3 About Y=+/- 0.3 About Z=+/- 0.202/09/2026In ProcessFALSE
- 6.06.05.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The harmonic reference radius Rr shall be 18(mm), centered at (x=0,y=0) mm with respect to the beam axis.02/09/2026In ProcessFALSE
- 6.06.05.01The measurements at the reference radius Bref shall be made at the design field for the 4 following energisation levels, Measurement 1: Design field for 23GeV Measurement 2: Design field for 41GeV Measurement 3: Design field for 100GeV Measurement 4: Design field for 275GeV02/09/2026In ProcessFALSE
- 6.06.05.01The magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components.02/09/2026In ProcessFALSE
- 6.06.05.01Measurement 1: b1= 10000, -4 < a1 < 4 Measurement 2: b1= 10000, -4 < a1 < 4 Measurement 3: b1= 10000, -4 < a1 < 4 Measurement 4: b1= 10000, -4 < a1 < 402/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -4 < b2 < 4, -4 < a2 < 4 Measurement 2: -4 < b2 < 4, -4 < a2 < 4 Measurement 3: -4 < b2 < 4, -4 < a2 < 4 Measurement 4: -4 < b2 < 4, -4 < a2 < 402/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -4 < b3 < 4, -4 < a3 < 4, Measurement 2: -4 < b3 < 4, -4 < a3 < 4, Measurement 3: -4 < b3 < 4, -4 < a3 < 4, Measurement 4: -4 < b3 < 4, -4 < a3 < 402/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -4 < b4 < 4, -4 < a4 < 4, Measurement 2: -4 < b4 < 4, -4 < a4 < 4, Measurement 3: -4 < b4 < 4, -4 < a4 < 4, Measurement 4: -4 < b4 < 4 -4 < a4 < 402/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -4 < b5 < 4, -4 < a5 < 4, Measurement 2: -4 < b5 < 4, -4 < a5 < 4, Measurement 3: -4 < b5 < 4, -4 < a5 < 4, Measurement 4: -4 < b5 < 4, -4 < a5 < 402/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -4 < b6 < 4, -4 < a6 < 4 Measurement 2: -4 < b6 < 4, -4 < a6 < 4 Measurement 3: -4 < b6 < 4, -4 < a6 < 4 Measurement 4: -4 < b6 < 4, -4 < a6 < 402/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -4 < b7 < 4, -4 < a7 < 4 Measurement 2: -4 < b7 < 4, -4 < a7 < 4 Measurement 3: -4 < b7 < 4, -4 < a7 < 4 Measurement 4: -4 < b7 < 4, -4 < a7 < 402/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -4 < b8 < 4, -4 < a8 < 4 Measurement 2: -4 < b8 < 4, -4 < a8 < 4 Measurement 3: -4 < b8 < 4, -4 < a8 < 4 Measurement 4: -4 < b8 < 4, -4 < a8 < 402/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -4 < b9 < 4, -4 < a9 < 4 Measurement 2: -4 < b9 < 4, -4 < a9 < 4 Measurement 3: -4 < b9 < 4, -4 < a9 < 4 Measurement 4: -4 < b9 < 4, -4 < a9 < 4,02/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -4 < b10 < 4, -4 < a10 < 4 Measurement 2: -4 < b10 < 4, -4 < a10 < 4 Measurement 3: -4 < b10 < 4, -4 < a10 < 4 Measurement 4: -4 < b10 < 4, -4 < a10 < 402/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -4 < b11 < 4, -4 < a11 < 4 Measurement 2: -4 < b11 < 4, -4 < a11 < 4 Measurement 3: -4 < b11 < 4, -4 < a11 < 4 Measurement 4: -4 < b11 < 4, -4 < a11 < 402/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -4 < b12 < 4, -4 < a12 < 4 Measurement 2: -4 < b12 < 4, -4 < a12 < 4 Measurement 3: -4 < b12 < 4, -4 < a12 < 4 Measurement 4: -4 < b12 < 4, -4 < a12 < 402/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -4 < b13 < 4, -4 < a13 < 4 Measurement 2: -4 < b13 < 4, -4 < a13 < 4 Measurement 3: -4 < b13 < 4, -4 < a13 < 4 Measurement 4: -4 < b13 < 4, -4 < a13 < 402/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -4 < b14 < 4, -4 < a14 < 4 Measurement 2: -4 < b14 < 4, -4 < a14 < 4 Measurement 3: -4 < b14 < 4, -4 < a14 < 4 Measurement 4: -4 < b14 < 4, -4 < a14 < 402/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -4 < b15 < 4, -4 < a15 < 4 Measurement 2: -4 < b15 < 4, -4 < a15 < 4 Measurement 3: -4 < b15 < 4, -4 < a15 < 4 Measurement 4: -4 < b15 < 4, -4 < a15 < 402/09/2026Not ApplicableFALSE
- 6.06.05.01Measurement 1: -4 < b16 < 4, -4 < a16 < 4 Measurement 2: -4 < b16 < 4, -4 < a16 < 4 Measurement 3: -4 < b16 < 4, -4 < a16 < 4 Measurement 4: -4 < b16 < 4, -4 < a16 < 402/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet crosstalk onto the ESR beam line Shall be constrained such that02/09/2026In ProcessFALSE
- 6.06.05.01All non linear multipoles < 10 (uT) within 30(mm) of ESR axis02/09/2026In ProcessFALSE
- 6.06.05.01the Linear multipoles are < 10(gauss) on the ESR axis02/09/2026Not ApplicableFALSE
- 6.06.05.01The magnet shall be designed to meet the following external fringe field constraints02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no radial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet has no axial fringe field requirments.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions in a saturated bath at 4.55K (1.35bar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions using vapor from the saturated bath at 4.55K (1.35bar)02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be capable of removing the maximum total heat load of TBD (W) while maintaining nominal operating conditions in the saturated bath at 4.55K (1.35bar) .02/09/2026In ProcessFALSE
- 6.06.05.01The magnet current leads cooling shall be capable of removing a maximum total heat load each of TBD (W) at the cold end while maintaining nominal operating conditions in the saturated bath at 4.55K (1.35bar) Assuming 100(A) leads, and lead cooling flows required are as follows: For currents below 10(A) The cooling flow is 0.028(g/s) For currents up to 10 (A), The cooling flow increases by 0.000031 (g/s)/(A) up to the peak current ~100(A). Maximum flow of ~ 0.031(g/s)Maximum flow of ~ 0.031(g/s)02/09/2026In ProcessFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be 18.8(bar).02/09/2026In ProcessFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.01325(bar).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil with supercritical forced flow helium for all operational modes.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to be warmed up from its operational temperature to 300K within 5days using warm gas02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026In ProcessFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026In ProcessFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, in instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026In ProcessFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026In ProcessFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026In ProcessFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 nΩ at 4.55 K.02/09/2026In ProcessFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: 60 thermal cycles, 180 quenches 30000 power cycles.02/09/2026In ProcessFALSE
- 6.06.05.01Over its planned life of 30(yrs), the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-HSR-Q1BPR_SKQ
- 6.06.05.01The magnet shall have a single function Skew Quadrupole field.02/09/2026ApprovedFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 1.6 (m). The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026ApprovedFALSE
- 6.06.05.01The inner beam tube bore radius when warm, shall be greater than or equal to 30.1(mm). The inner radius of the coil must incorporate appropriate allowances for all the structure required between the coil inner radius and the beam tube inner radius(To include the beam tube wall thickness, Coil inner support tube, ground plane insulation, additional coil windings appropriate build tolerances etc.) The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet and its cryostat (designated RC-2) shall be designed to fit within a cylindrical volume having an Outside diameter less than 1.37 (m) Length less than 1.65 (m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: dx=+/-0.15 mm dy=+/-0.15 mm dz=+/-0.15 mm02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: About X=+/- 0.3 mrad About Y=+/- 0.3 mrad About Z=+/- 0.2 mrad02/09/2026ApprovedFALSE
- 6.06.05.01The integrated Quadrupole field required is 3(T), the magnet design shall include a 20% additional tuning margin giving a required maximum operating field of 3.6 (T).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to ramp within 300(s) from injection field to maximum operating field. All new HSR magnets must be able to follow the RHIC ramp profile [reference to appropriate RHIC ramp profile document to be added here] with a factor 2 safety margin.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits:(Note: Z is along the beam axis)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position dx=+/- 0.2 mm dy=+/- 0.2 mm dz=+/- 0.2 mm02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/- 0.3 mrad About Y=+/- 0.3 mrad About Z=+/- 0.2 mrad02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The harmonic reference radius Rr shall be 21(mm), centered at (x=0,y=0) mm with respect to the beam axis.02/09/2026ApprovedFALSE
- 6.06.05.01The measurements at the reference radius shall be made at the design field for the 4 following energisation levels: Measurement 1 at minimum excitation of 23(GeV) Measurement 2 at mid excitation1 of 41(GeV) Measurement 3 at mid excitation2of 100(GeV) Measurement 4 at maximum excitation 275(GeV)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet bore field SHALL have the following multipole content. Notes: The units are specified in parts of 10-4 of the main components.02/09/2026ApprovedFALSE
- 6.06.05.01-02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -50 < b2 < 50, a2= 10000, Measurement 2: -50 < b2 < 50, a2= 10000 Measurement 3: -50 < b2 < 50, a2= 10000 Measurement 4: -50 < b2 < 50, a2= 1000002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -50 < b3 < 50, -50 < a3 < 50 Measurement 2: -50 < b3 < 50, -50 < a3 < 50 Measurement 3: -50 < b3 < 50, -50 < a3 < 50 Measurement 4: -50 < b3 < 50, -50 < a3 < 5002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -50 < b4 < 50, -50 < a4 < 50 Measurement 2: -50 < b4 < 50, -50 < a4 < 50 Measurement 3: -50 < b4 < 50, -50 < a4 < 50 Measurement 4: -50 < b4 < 50 -50 < a4 < 5002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -50 < b5 < 50, -50 < a5 < 50 Measurement 2: -50 < b5 < 50, -50 < a5 < 50 Measurement 3: -50 < b5 < 50, -50 < a5 < 50 Measurement 4: -50 < b5 < 50, -50 < a5 < 5002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -50 < b6 < 50, -50 < a6 < 50 Measurement 2: -50 < b6 < 50, -50 < a6 < 50 Measurement 3: -50 < b6 < 50, -50 < a6 < 50 Measurement 4: -50 < b6 < 50, -50 < a6 < 5002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -50 < b7 < 50, -50 < a7 < 50 Measurement 2: -50 < b7 < 50, -50 < a7 < 50 Measurement 3: -50 < b7 < 50, -50 < a7 < 50 Measurement 4: -50 < b7 < 50, -50 < a7 < 5002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -50 < b8 < 50, -50 < a8 < 50 Measurement 2: -50 < b8 < 50, -50 < a8 < 50 Measurement 3: -50 < b8 < 50, -50 < a8 < 50 Measurement 4: -50 < b8 < 50, -50 < a8 < 5002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -50 < b9 < 50, -50 < a9 < 50 Measurement 2: -50 < b9 < 50, -50 < a9 < 50 Measurement 3: -50 < b9 < 50, -50 < a9 < 50 Measurement 4: -50 < b9 < 50, -50 < a9 < 5002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -50 < b10 < 50, -50 < a10 < 50 Measurement 2: -50 < b10 < 50, -50 < a10 < 50 Measurement 3: -50 < b10 < 50, -50 < a10 < 50 Measurement 4: -50 < b10 < 50, -50 < a10 < 5002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -50 < b11 < 50, -50 < a11 < 50 Measurement 2: -50 < b11 < 50, -50 < a11 < 50 Measurement 3: -50 < b11 < 50, -50 < a11 < 50 Measurement 4: -50 < b11 < 50, -50 < a11 < 5002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -50 < b12 < 50, -50 < a12 < 50 Measurement 2: -50 < b12 < 50, -50 < a12 < 50 Measurement 3: -50 < b12 < 50, -50 < a12 < 50 Measurement 4: -50 < b12 < 50, -50 < a12 < 5002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -50 < b13 < 50, -50 < a13 < 50 Measurement 2: -50 < b13 < 50, -50 < a13 < 50 Measurement 3: -50 < b13 < 50, -50 < a13 < 50 Measurement 4: -50 < b13 < 50, -50 < a13 < 5002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -50 < b14 < 50, -50 < a14 < 50 Measurement 2: -50 < b14 < 50, -50 < a14 < 50 Measurement 3: -50 < b14 < 50, -50 < a14 < 50 Measurement 4: -50 < b14 < 50, -50 < a14 < 5002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -50 < b15 < 50, -50 < a15 < 50 Measurement 2: -50 < b15 < 50, -50 < a15 < 50 Measurement 3: -50 < b15 < 50, -50 < a15 < 50 Measurement 4: -50 < b15 < 50, -50 < a15 < 5002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -50 < b16 < 50, -50 < a16 < 50 Measurement 2: -50 < b16 < 50, -50 < a16 < 50 Measurement 3: -50 < b16 < 50, -50 < a16 < 50 Measurement 4: -50 < b16 < 50, -50 < a16 < 5002/09/2026ApprovedFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01The magnet cross-talk shall be constrained within a radius of 32(mm) of the ESR axis such that all non linear harmonic multipoles are less than <10(µT)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cross-talk shall be constrained such that the linear harmonic multipoles on the ESR axis shall not exceed 10(Gauss)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to meet the following external fringe field constraints02/09/2026ApprovedFALSE
- 6.06.05.01Currently the magnet has no radial stray field requirements.02/09/2026ApprovedFALSE
- 6.06.05.01Currently the magnet has no axial stray field requirements.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions by forced flow of supercritical helium, at a flowrate greater than 100 (g/s), and pressure between 3.5(bar) and 4(bar), and at a temperature below 4.7(K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions using supercritical helium between 3.5 (bar) and 4(bar), and at a temperature of less than 4.7(K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be capable of removing a maximum total heat load of 1TBD(W) while maintaining nominal operating conditions with supercritical helium between 3.5 (bar) and 4 (bar), and at a temperature of less than 4.7(K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet current leads cooling shall be capable of removing a maximum total heat load each of 0.5(W) at the cold end while maintaining nominal operating conditions between 3.5(bar)_ and 4(bar) and below 4.7 (K), and lead cooling flow of: Assuming 100(A) leads, and lead cooling flows required are as follows: For currents below 10(A) · The cooling flow is 0.028 (g/s) For currents up to 10 (A), · The cooling flow increases by 0.000031 (g/s)/(A) · Upto the peak current ~100(A). Maximum flow of ~ 0.031(g/s)02/09/2026ApprovedFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be 18.8 (bar).02/09/2026ApprovedFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.01325(bar).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil with supercritical forced flow helium for all operational modes.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50(K) axial gradient.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to be warmed up from its operational temperature to 300K within 5 days.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026ApprovedFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026ApprovedFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, ininstrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 (nΩ) at 4.7 (K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: · 60 thermal cycles, · 180 quenches 30000 power cycles.02/09/2026ApprovedFALSE
- 6.06.05.01Over its planned life of 30(yrs), the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team02/09/2026ApprovedFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-HSR-Q2PR_HC
- 6.06.05.01The magnet shall have a single function Horizontal corrector with a Vertical dipole field.02/09/2026ApprovedFALSE
- 6.06.05.01The physical length of the magnet cold mass insert shall be less than or equal to 4.5(m). The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026ApprovedFALSE
- 6.06.05.01The beam tube inner bore radius when warm, shall be greater than or equal to 57.3mm). The inner radius of the coil must incorporate appropriate allowances for all the structure required between the coil inner radius and the beam tube inner radius(To include the beam tube wall thickness, Coil inner support tube, ground plane insulation, additional coil windings appropriate build tolerances etc.) The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to fit within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet and its cryostat (designated RC-3) should be designed to fit within a cylindrical volume having an Outside diameter less than 1.68(m) Length less than 5.06(m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field axis displacement and rotational alignment shall be identified using fiducials on the magnet cryostat that can locate the field within the following tolerance limits: (Note: Z is along the beam axis)02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field axis displacement tolerances: dx=+/-0.15 mm dy=+/-0.15 mm dz=+/-0.15 mm02/09/2026ApprovedFALSE
- 6.06.05.01The magnetic field rotational alignment tolerances: About X=+/-0.3 mrad About Y=+/-0.3mrad About Z=+/-0.2 mrad02/09/2026ApprovedFALSE
- 6.06.05.01The maximum integrated Dipole field required is 0.5(Tm), the magnet design shall include an additional 20% tuning margin giving a required field of 0.6(Tm).02/09/2026ApprovedFALSE
- 6.06.05.01There are currently no ramp rate requirements on this magnet02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cryostat installation position and alignment with respect to the nominal beam position defined in the lattice file and axis shall be within the following limits:(Note: Z is along the beam axis)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cold install center displacement shall be aligned with respect to the specified lattice field center position dx=+/- 0.15 mm dy=+/- 0.15 mm dz=+/- 0.15 mm02/09/2026ApprovedFALSE
- 6.06.05.01The magnet cold rotational alignment shall be aligned with respect to the specified lattice beam axis About X=+/- 0.3 mrad About Y=+/- 0.3 mrad About Z=+/- 0.2 mrad02/09/2026ApprovedFALSE
- 6.06.05.01The magnet field homogeneity shall be measured within the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The harmonic reference radius Rr shall be 35(mm), centered at (x=0,y=0) mm with respect to the beam axis.02/09/2026ApprovedFALSE
- 6.06.05.01The measurements at the reference radius Bref shall be made at the design field for the 4 following energisation levels, Measurement 1: Design field for 23GeV Measurement 2: Design field for 41GeV Measurement 3: Design field for 100GeV Measurement 4: Design field for 275GeV02/09/2026ApprovedFALSE
- 6.06.05.01The magnet bore field SHALL have the following multipole content. Notes: The units are specified in parts of 10-4 of the main components.02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: b1= 10000, -20 < a1 < 20 Measurement 2: b1= 10000, -20 < a1 < 20 Measurement 3: b1= 10000, -20 < a1 < 20 Measurement 4: b1= 10000, -20 < a1 < 2002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -20 < b2 < 20, -20 < a2 < 20 Measurement 2: -20 < b2 < 20, -20 < a2 < 20 Measurement 3: -20 < b2 < 20, -20 < a2 < 20 Measurement 4: -20 < b2 < 20, -20 < a2 < 2002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -20 < b3 < 20, -20 < a3 < 20 Measurement 2: -20 < b3 < 20, -20 < a3 < 20 Measurement 3: -20 < b3 < 20, -20 < a3 < 20 Measurement 4: -20 < b3 < 20, -20 < a3 < 2002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -20 < b4 < 20, -20 < a4 < 20 Measurement 2: -20 < b4 < 20, -20 < a4 < 20 Measurement 3: -20 < b4 < 20, -20 < a4 < 20 Measurement 4: -20 < b4 < 20 -20 < a4 < 2002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -20 < b5 < 20, -20 < a5 < 20 Measurement 2: -20 < b5 < 20, -20 < a5 < 20 Measurement 3: -20 < b5 < 20, -20 < a5 < 20 Measurement 4: -20 < b5 < 20, -20 < a5 < 2002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -20 < b6 < 20, -20 < a6 < 20 Measurement 2: -20 < b6 < 20, -20 < a6 < 20 Measurement 3: -20 < b6 < 20, -20 < a6 < 20 Measurement 4: -20 < b6 < 20, -20 < a6 < 2002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -20 < b7 < 20, -20 < a7 < 20 Measurement 2: -20 < b7 < 20, -20 < a7 < 20 Measurement 3: -20 < b7 < 20, -20 < a7 < 20 Measurement 4: -20 < b7 < 20, -20 < a7 < 2002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -20 < b8 < 20, -20 < a8 < 20 Measurement 2: -20 < b8 < 20, -20 < a8 < 20 Measurement 3: -20 < b8 < 20, -20 < a8 < 20 Measurement 4: -20 < b8 < 20, -20 < a8 < 2002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -20 < b9 < 20, -20 < a9 < 20 Measurement 2: -20 < b9 < 20, -20 < a9 < 20 Measurement 3: -20 < b9 < 20, -20 < a9 < 20 Measurement 4: -20 < b9 < 20, -20 < a9 < 20,02/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -20 < b10 < 20, -20 < a10 < 20 Measurement 2: -20 < b10 < 20, -20 < a10 < 20 Measurement 3: -20 < b10 < 20, -20 < a10 < 20 Measurement 4: -20 < b10 < 20, -20 < a10 < 2002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -20 < b11 < 20, -20 < a11 < 20 Measurement 2: -20 < b11 < 20, -20 < a11 < 20 Measurement 3: -20 < b11 < 20, -20 < a11 < 20 Measurement 4: -20 < b11 < 20, -20 < a11 < 2002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -20 < b12 < 20, -20 < a12 < 20 Measurement 2: -20 < b12 < 20, -20 < a12 < 20 Measurement 3: -20 < b12 < 20, -20 < a12 < 20 Measurement 4: -20 < b12 < 20, -20 < a12 < 2002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -20 < b13 < 20, -20 < a13 < 20 Measurement 2: -20 < b13 < 20, -20 < a13 < 20 Measurement 3: -20 < b13 < 20, -20 < a13 < 20 Measurement 4: -20 < b13 < 20, -20 < a13 < 2002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -20 < b14 < 20, -20 < a14 < 20 Measurement 2: -20 < b14 < 20, -20 < a14 < 20 Measurement 3: -20 < b14 < 20, -20 < a14 < 20 Measurement 4: -20 < b14 < 20, -20 < a14 < 2002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -20 < b15 < 20, -20 < a15 < 20 Measurement 2: -20 < b15 < 20, -20 < a15 < 20 Measurement 3: -20 < b15 < 20, -20 < a15 < 20 Measurement 4: -20 < b15 < 20, -20 < a15 < 2002/09/2026ApprovedFALSE
- 6.06.05.01Measurement 1: -20 < b16 < 20, -20 < a16 < 20 Measurement 2: -20 < b16 < 20, -20 < a16 < 20 Measurement 3: -20 < b16 < 20, -20 < a16 < 20 Measurement 4: -20 < b16 < 20, -20 < a16 < 2002/09/2026ApprovedFALSE
- 6.06.05.01The magnet crosstalk onto the ESR beam line Shall be constrained such that02/09/2026ApprovedFALSE
- 6.06.05.01All nonlinear multipoles < 10 (uT) within 35(mm) of ESR axis02/09/2026ApprovedFALSE
- 6.06.05.01All Linear multipoles are < 10 (gauss) on the ESR axis02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to meet the following external fringe field constraints02/09/2026ApprovedFALSE
- 6.06.05.01The magnet has no radial fringe field requirements.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet has no axial fringe field requirements.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustained at its operational temperature utilizing the proposed EIC cryogenic system and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to be cooled and sustain operations at nominal operating conditions in a saturated bath at 4.55K (1.35bar).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet current leads shall be designed to be cooled and sustain operations at nominal operating conditions using vapor from the saturated bath at 4.55K (1.35bar)02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be capable of removing the maximum total heat load of TBD1(W) while maintaining nominal operating conditions in the saturated bath at 4.55K ( 1.35bar) .02/09/2026ApprovedFALSE
- 6.06.05.01The magnet current leads cooling shall be capable of removing a maximum total heat load each of TBD1(W) at the cold end while maintaining nominal operating conditions in the saturated bath at 4.55K (1.35bar) Assuming 100(A) leads, and lead cooling flows required are as follows: For currents below 10(A) The cooling flow is 0.028(g/s) For currents up to 10 (A), The cooling flow increases by 0.000031 (g/s)/(A) up to the peak current ~100(A). Maximum flow of ~ 0.031(g/s)02/09/2026ApprovedFALSE
- 6.06.05.01The maximum differential internal pressure from the helium volume to the vacuum in the magnet structure shall be 18.8(bar).02/09/2026ApprovedFALSE
- 6.06.05.01The maximum atmospheric external pressure from the helium volume to the vacuum in the magnet structure shall be 1.01325(bar).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to remove the heat from the coil with supercritical forced flow helium for all operational modes.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to handle a controlled cooldown with minimum of a 50K axial gradient.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to be warmed up from its operational temperature to 300K within 5days using warm gas02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall have an appropriate quench protection system which ensures all electromagnetic, thermal and cryogenic connected systems are not damaged in a quench event and meets the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be able to survive the thermal dynamics during cooldown and following a quench without degradation in its performance.02/09/2026ApprovedFALSE
- 6.06.05.01After a thermal cycle to room temperature, the magnet SHOULD attain the nominal operating current with no quenches and SHALL attain the nominal operating current with no more than 3 quenches.02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be designed to attain the design field with no more than 20 training quenches.02/09/2026ApprovedFALSE
- 6.06.05.01All electrical connection to the magnet for the main current leads, in instrumentation, Voltage taps, Current taps shall meet the appropriate interface requirements specified for those connections and meet the following constraints:02/09/2026ApprovedFALSE
- 6.06.05.01The magnet coils and quench protection heaters shall pass a Hi-Pot test at nominal operating conditions corresponding to Vtest = (2xPeak Voltage +500 Volts).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet shall be delivered with three redundant (3x2) quench detection voltage taps located on each magnet lead and at the electrical midpoint of the magnet circuit; and two (2) voltage taps for each internal splice. Each voltage tap used for critical quench detection shall have a redundant voltage tap.02/09/2026ApprovedFALSE
- 6.06.05.01All SC magnet Splice resistances within the coil module or to the coil module SHALL be less than 1.0 (nΩ) at 4.55 (K).02/09/2026ApprovedFALSE
- 6.06.05.01The magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: · 60 thermal cycles, · 180 quenches. 30000 power cycles.02/09/2026ApprovedFALSE
- 6.06.05.01Over its planned life of 30(yrs), the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit should be taken as a guide for the design process. The actual upper limit the magnet will see in operation will need further analysis and will need to be confirmed by the EIC radiation physics team02/09/2026ApprovedFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
- 6.06.05.01nan02/09/2026In ProcessFALSE
IR-MAG-HSR-Q2PR_VC
IR-MAG-HST
IR-MAG-HST-Q1APR_SKQ
IR-MAG-RC1
- 6.04.02.06.01The magnet design team shall design the RC1 cold mass to operate at 4.55 K common stainless steel helium vessel which has a cold bore tube.02/09/2026In ProcessFALSE
- 6.04.02.06.01The magnet design team shall design the RC1 cold mass piping and connections including yoke cooling channels to ensure adequate free flow for all operating conditions including quenches.02/09/2026In ProcessFALSE
- 6.04.02.06.01The cryogenics group shall create schematics with the piping and connectors needed to connect the RC1 to the 4.55 K distribution system.02/09/2026In ProcessFALSE
- 6.04.02.06.01The cryogenics group shall provide the piping and accessories necessary to plumb the RC1 to the 4.55 K cryogenic system.02/09/2026In ProcessFALSE
- 6.04.02.06.01The magnet design team shall provide the RC1 design for the cryogenic pipes to connect to the 4.55 K cryogenic distribution system.02/09/2026In ProcessFALSE
- 6.04.02.06.01IR System Installation and Final Integration shall fund and schedule welding the final pipe connections from the RC1 4.55 K system to the 4.55 K cryogenic distribution system.02/09/2026In ProcessFALSE
- 6.04.02.06.01The cryogenics group shall leak check the final pipe connections from the RC1 cryostat 4.55 K system to the 4.55 K cryogenic distribution system.02/09/2026In ProcessFALSE
- 6.04.02.06.01The cryogenics group shall provide schematics with the piping and connectors needed to connect to the RC1 4.55 K pressure relief system to the helium capture system.02/09/2026In ProcessFALSE
- 6.04.02.06.01The cryogenics group shall purchase the piping and accessories necessary to connect to the RC1 4.55 K pressure relief system to the helium capture system.02/09/2026In ProcessFALSE
- 6.04.02.06.01The cryostat design shall provide appropriately sized helium (He) vent to connect to the RC1 4.55 K pressure relief system to the He capture system, if required.02/09/2026In ProcessFALSE
- 6.04.02.06.01IR System Installation and Final Integration shall provide funding and scheduling to install RC1 4.55 K pressure relief connections by the appropriate technical support group which satisfies the cryogenics group design.02/09/2026In ProcessFALSE
- 6.04.02.06.01The cryogenics group shall leak check the final pipe connections from the RC1 cryostat 4.55 K system to the 4.55 K pressure relief system to the Helium capture system.02/09/2026In ProcessFALSE
- 6.04.02.06.01The magnet design team shall provide the RC1 design with appropriately sized He vent for a pressure relief system into the tunnel.02/09/2026In ProcessFALSE
- 6.04.02.06.01The magnet design team group shall provide the RC1 design with lift plates appropriately sized for the insulating vacuum volume of the cryostat for a pressure relief system.02/09/2026In ProcessFALSE
- 6.04.02.06.01The magnet design team and power supply group shall define the current lead design details for system integration of the Q1ApR, Q1ApR_VC and Q1eR magnets.02/09/2026In ProcessFALSE
- 6.04.02.06.01The magnet design team shall provide current leads for the RC1 magnets consistent with the agreed upon power supply group design.02/09/2026In ProcessFALSE
- 6.04.02.06.01The power supply group shall supply the schematics for all cables and connectors needed to power the RC1 magnets and the associated equipments.02/09/2026In ProcessFALSE
- 6.04.02.06.01The power supply group shall provide all necessary cables to connect with the RC1 cryostat.02/09/2026In ProcessFALSE
- 6.04.02.06.01IR System Installation and Final Integration shall fund and schedule the RC1 cryostat current lead connections in the tunnel.02/09/2026In ProcessFALSE
- 6.04.02.06.01The power supply group shall test the RC1 current lead connections in the tunnel.02/09/2026In ProcessFALSE
- 6.04.02.06.01The magnet design team shall provide the RC1 current lead design to the cryogenics group for system integration to meet the operational needs of the magnet and be capable of being cooled with 4.55K cryogenic system with quench protection.02/09/2026In ProcessFALSE
- 6.04.02.06.01IR System Installation and Final Integration shall fund and schedule the RC1 current lead design connections from the cryostat 4.55 K system to the 4.55 K cryogenic distribution system.02/09/2026In ProcessFALSE
- 6.04.02.06.01The cryogenics group shall leak check the final pipe connections from the RC1 4.55 K system to the 4.55 K cryogenic distribution system.02/09/2026In ProcessFALSE
- 6.04.02.06.01The magnet design team shall provide the RC1 quench protection design (dump resistors values, switch details, quench heaters, etc.) to the power supply group for systems integration, such that the final connections can be made in the tunnel. The quench protection design should be validated prior to cryostat construction.02/09/2026In ProcessFALSE
- 6.04.02.06.01The magnet design team shall provide the RC1 quench detection design (voltage, detection time, etc.) to the power supply group for systems integration.02/09/2026In ProcessFALSE
- 6.04.02.06.01The power supply group shall provide all necessary cabling to go from the power supply to any quench protection/detection equipment needed for the RC1 magnets.02/09/2026In ProcessFALSE
- 6.04.02.06.01The power supply group shall provide the quench protection/detection system which satisfies the magnet design teams design for the RC1 magnets.02/09/2026In ProcessFALSE
- 6.04.02.06.01The power supply group shall test the quench protection/detection system for the RC1 magnets.02/09/2026In ProcessFALSE
- 6.04.02.06.01IR System Installation and Final Integration shall provide funding and scheduling to connect the quench protection/detection system to the RC1.02/09/2026In ProcessFALSE
- 6.04.02.06.01The cryogenics group shall create schematics showing all the RC1 instrumentation to connect the cryostat to the 4.55 K cryogenic control system.02/09/2026In ProcessFALSE
- 6.04.02.06.01The magnet design team shall provide instrumentation design details required by the RC1 magnets from the cold mass to the 300K terminals\connectors on the vaccum vessel.02/09/2026In ProcessFALSE
- 6.04.02.06.01The cryogenics group shall purchase the wire and connectors necessary to connect the cryostat to the 4.55 K cryogenic control system.02/09/2026In ProcessFALSE
- 6.04.02.06.01The magnet design team shall perform electrical testing to verify that at room temperature the RC1 instrumentation lead connections are capable of meeting operational needs.02/09/2026In ProcessFALSE
- 6.04.02.06.01The cryogenics group shall install and connect all connections to the cryostat instrumentation, confirm the connections are good and the instrumentation is functioning correctly.02/09/2026In ProcessFALSE
- 6.04.02.06.01The magnet design team shall define position and alignment values which will be used to set the 300 K position and alignments of the Hadron and Electron beam pipe in the RC1 cryostat cold mass.02/09/2026In ProcessFALSE
- 6.04.02.06.01The vacuum group shall provide the Hadron and Electron beam pipes to be inserted into the RC1 cold mass.02/09/2026In ProcessFALSE
- 6.04.02.06.01The magnet design team shall install the Hadron and Electron beam pipe into the RC1 cold mass.02/09/2026In ProcessFALSE
- 6.04.02.06.01The magnet design team shall provide a RC1 cold mass design which limits the cross talk between the Hadron and Electron beamlines.02/09/2026In ProcessFALSE
- 6.04.02.06.01The magnet design team shall perform an independent RC1 cold mass crosstalk test with the magnet(s) powered to their nominal field value to confirm the crosstalk.02/09/2026In ProcessFALSE
- 6.04.02.06.01The magnet design team shall provide a mechanical connections design between RC1 and the RC2 as well as between RC1 and the Detector.02/09/2026In ProcessFALSE
- 6.04.02.06.01The magnet design team shall provide the support structure design to account for the adjustability of the final position and alignment and CAD model to be utilized by the magnet group. They will ensure the design does not interfere with magnet, cables, cryogenic connections to the cryostat.02/09/2026In ProcessFALSE
- 6.04.02.06.01The magnet design team shall provide the RC1 cryostat stand ready to install into the tunnel.02/09/2026In ProcessFALSE
- 6.04.02.06.01IR System Installation and Final Integration shall fund and schedule the installation of the cryostat on the support structure in the tunnel.02/09/2026In ProcessFALSE
- 6.04.02.06.01The magnet design team shall provide the volume within the tunnel to be occupied by the RC1.02/09/2026In ProcessFALSE
- 6.04.02.06.01The magnet design team shall add the fiducial marks positioning for the RC1 allowing the center of the magnet and magnets beamlines to be located. It should identify the location of the RC1 center and its alignment with respect to the HSR and ESR beamline.02/09/2026In ProcessFALSE
- 6.04.02.06.01The magnet design team shall define the transportation details and fixtures necessary to move the RC1 into the tunnel. (Center of Gravity, Mass, Shock Tolerances, etc..)02/09/2026In ProcessFALSE
- 6.04.02.06.01IR System Installation and Final Integration shall provide installation details to ensure the RC1 is aligned in the tunnel.02/09/2026In ProcessFALSE
- 6.04.02.06.01IR System Installation and Final Integration shall provide funding and scheduling to align the RC1 such that the fiducial marks are located with respect to the install locations provided by the survey group to ensure the RC1 is aligned.02/09/2026In ProcessFALSE
- 6.04.02.06.01The physics group shall provide the allocated spatial location based on the lattice for the RC1 cryostat.02/09/2026In ProcessFALSE
IR-MAG-RC2
- 6.04.02.06.02The magnet design team shall design the RC2 cold mass to operate at 4.55 K common stainless steel helium vessel which has a cold bore tube.02/09/2026In ProcessFALSE
- 6.04.02.06.02The magnet design team shall design the RC2 cold mass piping and connections including yoke cooling channels to ensure adequate free flow for all operating conditions including quenches.02/09/2026In ProcessFALSE
- 6.04.02.06.02The cryogenics group shall create schematics with the piping and connectors needed to connect the RC2 to the 4.55 K distribution system.02/09/2026In ProcessFALSE
- 6.04.02.06.02The cryogenics group shall provide the piping and accessories necessary to plumb the RC2 to the 4.55 K cryogenic system.02/09/2026In ProcessFALSE
- 6.04.02.06.02The magnet design team shall provide the RC2 design for the cryogenic pipes to connect to the 4.55 K cryogenic distribution system.02/09/2026In ProcessFALSE
- 6.04.02.06.02IR System Installation and Final Integration shall fund and schedule welding the final pipe connections from the RC2 4.55 K system to the 4.55 K cryogenic distribution system.02/09/2026In ProcessFALSE
- 6.04.02.06.02The cryogenics group shall leak check the final pipe connections from the RC2 cryostat 4.55 K system to the 4.55 K cryogenic distribution system.02/09/2026In ProcessFALSE
- 6.04.02.06.02The cryogenics group shall provide schematics with the piping and connectors needed to connect to the RC2 4.55 K pressure relief system to the helium capture system.02/09/2026In ProcessFALSE
- 6.04.02.06.02The cryogenics group shall purchase the piping and accessories necessary to connect to the RC2 4.55 K pressure relief system to the helium capture system.02/09/2026In ProcessFALSE
- 6.04.02.06.02The cryostat design shall provide appropriately sized helium (He) vent to connect to the RC2 4.55 K pressure relief system to the He capture system, if required.02/09/2026In ProcessFALSE
- 6.04.02.06.02IR System Installation and Final Integration shall provide funding and scheduling to install RC2 4.55 K pressure relief connections by the appropriate technical support group which satisfies the cryogenics group design.02/09/2026In ProcessFALSE
- 6.04.02.06.02The cryogenics group shall leak check the final pipe connections from the RC2 cryostat 4.55 K system to the 4.55 K pressure relief system to the Helium capture system.02/09/2026In ProcessFALSE
- 6.04.02.06.02The magnet design team shall provide the RC2 design with appropriately sized He vent for a pressure relief system into the tunnel.02/09/2026In ProcessFALSE
- 6.04.02.06.02The magnet design team group shall provide the RC2 design with lift plates appropriately sized for the insulating vacuum volume of the cryostat for a pressure relief system.02/09/2026In ProcessFALSE
- 6.04.02.06.02The magnet design team and power supply group shall define the current lead design details for system integration of the Q1BpR, Q1BpR_SKQ, Q2eR, and the Q2eR_SKQ magnets.02/09/2026In ProcessFALSE
- 6.04.02.06.02The magnet design team shall provide current leads for the RC2 magnets consistent with the agreed upon power supply group design.02/09/2026In ProcessFALSE
- 6.04.02.06.02The power supply group shall supply the schematics for all cables and connectors needed to power the RC2 magnets and the associated equipments.02/09/2026In ProcessFALSE
- 6.04.02.06.02The power supply group shall provide all necessary cables to connect with the RC2 cryostat.02/09/2026In ProcessFALSE
- 6.04.02.06.02IR System Installation and Final Integration shall fund and schedule the RC2 cryostat current lead connections in the tunnel.02/09/2026In ProcessFALSE
- 6.04.02.06.02The power supply group shall test the RC2 current lead connections in the tunnel.02/09/2026In ProcessFALSE
- 6.04.02.06.02The magnet design team shall provide the RC2 current lead design to the cryogenics group for system integration to meet the operational needs of the magnet and be capable of being cooled with 4.55K cryogenic system with quench protection.02/09/2026In ProcessFALSE
- 6.04.02.06.02IR System Installation and Final Integration shall fund and schedule the RC2 current lead design connections from the cryostat 4.55 K system to the 4.55 K cryogenic distribution system.02/09/2026In ProcessFALSE
- 6.04.02.06.02The cryogenics group shall leak check the final pipe connections from the RC2 4.55 K system to the 4.55 K cryogenic distribution system.02/09/2026In ProcessFALSE
- 6.04.02.06.02The magnet design team shall provide the RC2 quench protection design (dump resistors values, switch details, quench heaters, etc.) to the power supply group for systems integration, such that the final connections can be made in the tunnel. The quench protection design should be validated prior to cryostat construction.02/09/2026In ProcessFALSE
- 6.04.02.06.02The magnet design team shall provide the RC2 quench detection design (voltage, detection time, etc.) to the power supply group for systems integration.02/09/2026In ProcessFALSE
- 6.04.02.06.02The power supply group shall provide all necessary cabling to go from the power supply to any quench protection/detection equipment needed for the RC2 magnets.02/09/2026In ProcessFALSE
- 6.04.02.06.02The power supply group shall provide the quench protection/detection system which satisfies the magnet design teams design for the RC2 magnets.02/09/2026In ProcessFALSE
- 6.04.02.06.02The power supply group shall test the quench protection/detection system for the RC2 magnets.02/09/2026In ProcessFALSE
- 6.04.02.06.02IR System Installation and Final Integration shall provide funding and scheduling to connect the quench protection/detection system to the RC2.02/09/2026In ProcessFALSE
- 6.04.02.06.02The cryogenics group shall create schematics showing all the RC2 instrumentation to connect the cryostat to the 4.55 K cryogenic control system.02/09/2026In ProcessFALSE
- 6.04.02.06.02The magnet design team shall provide instrumentation design details required by the RC2 magnets from the cold mass to the 300K terminals\connectors on the vaccum vessel.02/09/2026In ProcessFALSE
- 6.04.02.06.02The cryogenics group shall purchase the wire and connectors necessary to connect the cryostat to the 4.55 K cryogenic control system.02/09/2026In ProcessFALSE
- 6.04.02.06.02The magnet design team shall perform electrical testing to verify that at room temperature the RC2 instrumentation lead connections are capable of meeting operational needs.02/09/2026In ProcessFALSE
- 6.04.02.06.02The cryogenics group shall install and connect all connections to the cryostat instrumentation, confirm the connections are good and the instrumentation is functioning correctly.02/09/2026In ProcessFALSE
- 6.04.02.06.02The magnet design team shall define position and alignment values which will be used to set the 300 K position and alignments of the Hadron and Electron beam pipe in the RC2 cryostat cold mass.02/09/2026In ProcessFALSE
- 6.04.02.06.02The vacuum group shall provide the Hadron and Electron beam pipes to be inserted into the RC2 cold mass.02/09/2026In ProcessFALSE
- 6.04.02.06.02The magnet design team shall install the Hadron and Electron beam pipe into the RC2 cold mass.02/09/2026In ProcessFALSE
- 6.04.02.06.02The magnet design team shall provide a RC2 cold mass design which limits the cross talk between the Hadron and Electron beamlines.02/09/2026In ProcessFALSE
- 6.04.02.06.02The magnet design team shall perform an independent RC2 cold mass crosstalk test with the magnet(s) powered to their nominal field value to confirm the crosstalk.02/09/2026In ProcessFALSE
- 6.04.02.06.02The magnet design team shall provide a mechanical connections design between RC2 and the RC1 as well as between RC2 and the RC3.02/09/2026In ProcessFALSE
- 6.04.02.06.02The magnet design team shall provide the support structure design to account for the adjustability of the final position and alignment and CAD model to be utilized by the magnet group. They will ensure the design does not interfere with magnet, cables, cryogenic connections to the cryostat.02/09/2026In ProcessFALSE
- 6.04.02.06.02The magnet design team shall provide the RC2 cryostat stand ready to install into the tunnel.02/09/2026In ProcessFALSE
- 6.04.02.06.02IR System Installation and Final Integration shall fund and schedule the installation of the cryostat on the support structure in the tunnel.02/09/2026In ProcessFALSE
- 6.04.02.06.02The magnet design team shall provide the volume within the tunnel to be occupied by the RC2.02/09/2026In ProcessFALSE
- 6.04.02.06.02The magnet design team shall add the fiducial marks positioning for the RC2 allowing the center of the magnet and magnets beamlines to be located. It should identify the location of the RC2 center and its alignment with respect to the HSR and ESR beamline.02/09/2026In ProcessFALSE
- 6.04.02.06.02The magnet design team shall define the transportation details and fixtures necessary to move the RC2 into the tunnel. (Center of Gravity, Mass, Shock Tolerances, etc..)02/09/2026In ProcessFALSE
- 6.04.02.06.02IR System Installation and Final Integration shall provide installation details to ensure the RC2 is aligned in the tunnel.02/09/2026In ProcessFALSE
- 6.04.02.06.02IR System Installation and Final Integration shall provide funding and scheduling to align the RC2 such that the fiducial marks are located with respect to the install locations provided by the survey group to ensure the RC2 is aligned.02/09/2026In ProcessFALSE
- 6.04.02.06.02The physics group shall provide the allocated spatial location based on the lattice for the RC2 cryostat.02/09/2026In ProcessFALSE
IR-MAG-RC3
- 6.04.02.06.03The magnet design team shall design the RC3 Q2pR, Q2pR_HC and the B2eR_VC cold mass to operate at 4.55 K common stainless steel helium vessel which has a cold bore tube.02/09/2026In ProcessFALSE
- 6.04.02.06.03The magnet design team shall design the RC3 Q2pR, Q2pR_HC and the B2eR_VC cold mass piping and connections including yoke cooling channels to ensure adequate free flow for all operating conditions including quenches.02/09/2026In ProcessFALSE
- 6.04.02.06.03The cryogenics group shall create schematics with the piping and connectors needed to connect the RC3 cryostat to the 4.55 K distribution system.02/09/2026In ProcessFALSE
- 6.04.02.06.03The cryogenics group shall provide the piping and accessories necessary to plumb the RC3 cryostat to the 4.55 K cryogenic system.02/09/2026In ProcessFALSE
- 6.04.02.06.03The magnet design team shall provide the RC3 cryostat design for the cryogenic pipes to connect to the 4.55 K cryogenic distribution system.02/09/2026In ProcessFALSE
- 6.04.02.06.03IR System Installation and Final Integration shall fund and schedule welding the final pipe connections from the RC3 cryostat 4.55 K system to the 4.55 K cryogenic distribution system.02/09/2026In ProcessFALSE
- 6.04.02.06.03The cryogenics group shall leak check the final pipe connections from the RC3 cryostat 4.55 K system to the 4.55 K cryogenic distribution system.02/09/2026In ProcessFALSE
- 6.04.02.06.03The cryogenics group shall provide schematics with the piping and connectors needed to connect to the RC3 4.55 K pressure relief system to the helium capture system.02/09/2026In ProcessFALSE
- 6.04.02.06.03The cryogenics group shall purchase the piping and accessories necessary to connect to the RC3 4.55 K pressure relief system to the helium capture system.02/09/2026In ProcessFALSE
- 6.04.02.06.03The cryostat design shall provide appropriately sized Helium (He) vent to connect to the RC3 4.55 K pressure relief system to the He capture system, if required.02/09/2026In ProcessFALSE
- 6.04.02.06.03IR System Installation and Final Integration shall provide funding and scheduling to install RC3 4.55 K pressure relief connections by the appropriate technical support group which satisfies the cryogenics group design.02/09/2026In ProcessFALSE
- 6.04.02.06.03The cryogenics group shall leak check the final pipe connections from the RC3 cryostat 4.55 K system to the 4.55 K pressure relief system to the Helium capture system.02/09/2026In ProcessFALSE
- 6.04.02.06.03The SMD group shall provide the RC3 cryostat design with appropriately sized Helium vent for a pressure relief system into the tunnel.02/09/2026In ProcessFALSE
- 6.04.02.06.03The SMD group shall provide the RC3 cryostat design with lift plates appropriately sized for the insulating vacuum volume of the cryostat for a pressure relief system.02/09/2026In ProcessFALSE
- 6.04.02.06.03The magnet design team and power supply group shall define the current lead design details for system integration of the Q2pR, Q2pR Horizontal Corrector (HC) and the B2eR Vertical Corrector (VC) magnets.02/09/2026In ProcessFALSE
- 6.04.02.06.03The magnet design team shall provide current leads for the Q2pR, Q2pR_HC and the B2eR_VC magnets consistent with the agreed upon power supply group design.02/09/2026In ProcessFALSE
- 6.04.02.06.03The power supply group shall supply the schematics for all cables and connectors needed to power the Q2pR, Q2pR_HC and the B2eR_VC magnets and associated equipment.02/09/2026In ProcessFALSE
- 6.04.02.06.03The power supply group shall provide all necessary cables to connect with the RC3 cryostat.02/09/2026In ProcessFALSE
- 6.04.02.06.03IR System Installation and Final Integration shall fund and schedule the RC3 cryostat current lead connections in the tunnel.02/09/2026In ProcessFALSE
- 6.04.02.06.03The power supply group shall test the RC3 cryostat current lead connections in the tunnel.02/09/2026In ProcessFALSE
- 6.04.02.06.03The magnet design team shall provide the RC3 cryostat current lead design to the cryogenics group for system integration to meet the operational needs of the magnet and be capable of being cooled with 4.55K cryogenic system with quench protection.02/09/2026In ProcessFALSE
- 6.04.02.06.03IR System Installation and Final Integration shall fund and schedule the RC3 cryostat current lead design connections from the cryostat 4.55 K system to the 4.55 K cryogenic distribution system.02/09/2026In ProcessFALSE
- 6.04.02.06.03The cryogenics group shall leak check the final pipe connections from the RC3 cryostat 4.55 K system to the 4.55 K cryogenic distribution system.02/09/2026In ProcessFALSE
- 6.04.02.06.03The magnet design team shall provide the RC3 cryostat quench protection design to the power supply group for systems integration, such that the final connections can be made in the tunnel. The quench protection design should be validated prior to cryostat construction.02/09/2026In ProcessFALSE
- 6.04.02.06.03The magnet design team shall provide the RC3 cryostat quench detection design to the power supply group for systems integration.02/09/2026In ProcessFALSE
- 6.04.02.06.03The power supply group shall provide all necessary cabling to go from the power supply to any quench protection/detection equipment needed for the RC3 cryostat magnets.02/09/2026In ProcessFALSE
- 6.04.02.06.03The power supply group shall provide the quench protection/detection system which satisfies the magnet design teams design for the RC3 cryostat magnets.02/09/2026In ProcessFALSE
- 6.04.02.06.03The power supply group shall test the quench protection/detection system for the RC3 cryostat magnets.02/09/2026In ProcessFALSE
- 6.04.02.06.03IR System Installation and Final Integration shall provide funding and scheduling to connect the quench protection/detection system to the RC3 cryostat.02/09/2026In ProcessFALSE
- 6.04.02.06.03The cryogenics group shall create schematics showing all the RC3 cryostat instrumentation to connect the cryostat to the 4.55 K cryogenic control system.02/09/2026In ProcessFALSE
- 6.04.02.06.03The magnet design team shall provide instrumentation design details required by the RC3 cryostat magnets from the cold mass to the 300K terminals\connectors on the vac vessel.02/09/2026In ProcessFALSE
- 6.04.02.06.03The cryogenics group shall purchase the wire and connectors necessary to connect the cryostat to the 4.55 K cryogenic control system.02/09/2026In ProcessFALSE
- 6.04.02.06.03The magnet design team shall perform electrical testing to verify that at room temperature the RC3 cryostat instrumentation lead connections are capable of meeting operational needs.02/09/2026In ProcessFALSE
- 6.04.02.06.03The cryogenics group shall install and connect all connections to the cryostat instrumentation, confirm the connections are good and the instrumentation is functioning correctly.02/09/2026In ProcessFALSE
- 6.04.02.06.03The magnet design team shall define position and alignment values which will be used to set the 300 K position and alignments of the Hadron and Electron beam pipe in the RC3 cryostat cold mass.02/09/2026In ProcessFALSE
- 6.04.02.06.03The vacuum group shall provide the Hadron and Electron beam pipe to be inserted into the RC3 cryostat cold mass.02/09/2026In ProcessFALSE
- 6.04.02.06.03The magnet design team shall install the Hadron and Electron beam pipe into the RC3 cryostat cold mass.02/09/2026In ProcessFALSE
- 6.04.02.06.03The magnet design team shall provide a RC3 cold mass design which limits the cross talk between the Hadron and Electron beamlines.02/09/2026In ProcessFALSE
- 6.04.02.06.03The magnet design team shall perform an independent RC3 cold mass crosstalk test with the magnet(s) powered to their nominal field value to confirm the crosstalk.02/09/2026In ProcessFALSE
- 6.04.02.06.03The magnet design team shall provide a mechanical connections design between RC3 cryostat and the RC2 cryostat as well as the beam pipe at the rear side of RC3.02/09/2026In ProcessFALSE
- 6.04.02.06.03The magnet design team shall provide the support structure design to account for the adjustability of the final position and alignment and CAD model to be utilized by the magnet group. They will ensure the design does not interfere with magnet, cables, cryogenic connections to the cryostat.02/09/2026In ProcessFALSE
- 6.04.02.06.03The magnet design team shall provide the RC3 cryostat stand ready to install into the tunnel.02/09/2026In ProcessFALSE
- 6.04.02.06.03IR System Installation and Final Integration shall fund and schedule the installation of the cryostat on the support structure in the tunnel.02/09/2026In ProcessFALSE
- 6.04.02.06.03The magnet design team shall provide the volume within the tunnel to be occupied by the RC3 cryostat.02/09/2026In ProcessFALSE
- 6.04.02.06.03The magnet design team shall add the fiducial marks positioning for the RC3 cryostat allowing the center of the magnet and magnets beamlines to be located. It should identify the location of the RC3 cryostat center and its alignment with respect to the HSR and ESR beamline.02/09/2026In ProcessFALSE
- 6.04.02.06.03The magnet design team shall define the transportation details and fixtures necessary to move the RC3 cryostat into the tunnel. (Center of Gravity, Mass, Shock Tolerances, etc..)02/09/2026In ProcessFALSE
- 6.04.02.06.03The survey group shall provide installation details to ensure the RC3 cryostat is aligned in the tunnel.02/09/2026In ProcessFALSE
- 6.04.02.06.03IR System Installation and Final Integration shall provide funding and scheduling to align the RC3 cryostat such that the fiducial marks are located with respect to the install locations provided by the survey group to ensure the RC3 cryostat is aligned.02/09/2026In ProcessFALSE
- 6.04.02.06.03The physics group shall provide the allocated spatial location based on the lattice for the RC3 cryostat.02/09/2026In ProcessFALSE
IR-VAC : IR Vacuum System (WBS 6.06.02.04)
- 6.06The EIC IR beam pipe aperture shall be minimized but shall not be the limiting aperture in the machine.09/30/2025ApprovedFALSE
- 6.06.02.04Any special aperture requirements or aperture information shall be provided by and\or approved by physics.05/16/2025ApprovedFALSE
- 6.06The EIC IR vacuum systems shall be designed to minimize any direct and backscattered synchrotron radiation at the detector to a level consistent with required detector measurements.09/30/2025ApprovedFALSE
- 6.06The EIC IR central vacuum chamber shall be designed to minimize secondary particle production.09/30/2025ApprovedFALSE
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR ESR Rear vac-2 shall be <5x10-9 Torr05/16/2025ReviewedFALSE
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR ESR Rear vac-1 shall be <5x10-9 Torr05/16/2025ReviewedFALSE
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR common vac shall be <5x10-9 Torr05/16/2025ReviewedFALSE
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR HSR Rear vac-3 shall be <1x10-10 Torr05/16/2025ReviewedFALSE
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR ESR Forward vac-3 shall be <5x10-9 Torr05/16/2025ReviewedFALSE
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR HSR Rear vac-2 shall be <1x10-10 Torr05/16/2025ReviewedFALSE
- 6.06The EIC IR Vacuum chamber impedance shall be small enough to prevent any undesirable beam dynamic issues and adverse heating of vacuum components, for the beam parameters listed in the MPT [EIC-SEG-RSI-005].09/30/2025ApprovedFALSE
- 6.06.02.04The vacuum system global impedance shall be less than the impedance budget as provided by accelerator physics.05/16/2025ApprovedFALSE
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR HSR Rear vac-2 shall be <1x10-10 Torr05/16/2025ReviewedFALSE
- 6.06The EIC IR vacuum pressure from the IP to ends of the final focusing cryostats shall be low enough to ensure the beam gas background for the experiment after the system has been properly conditioned is acceptable for detector operation.09/30/2025ApprovedFALSE
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR ESR Rear vac-2 shall be <5x10-9 Torr05/16/2025ReviewedFALSE
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR ESR Rear vac-1 shall be <5x10-9 Torr05/16/2025ReviewedFALSE
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR common vac shall be <5x10-9 Torr05/16/2025ReviewedFALSE
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR HSR Rear vac-3 shall be <1x10-10 Torr05/16/2025ReviewedFALSE
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR ESR Forward vac-3 shall be <5x10-9 Torr05/16/2025ReviewedFALSE
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR HSR Rear vac-2 shall be <1x10-10 Torr05/16/2025ReviewedFALSE
- 6.06.02.04The magnetic permeability for vacuum equipment shall be approved by beam physics.05/16/2025ApprovedFALSE
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR ESR Rear vac-3 shall be <5x10-9 Torr05/16/2025ReviewedFALSE
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR ESR Forward vac-2 shall be <5x10-9 Torr05/16/2025ReviewedFALSE
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR HSR Rear vac-1 shall be <1x10-10 Torr05/16/2025ReviewedFALSE
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR HSR Forward vac-1 shall be <1x10-10 Torr05/16/2025ReviewedFALSE
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR HSR Forward vac-2 shall be <1x10-10 Torr05/16/2025ReviewedFALSE
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR HSR Forward vac-3 shall be <1x10-10 Torr05/16/2025ReviewedFALSE
- 6.06.02.04The vacuum stability (upper pressure limit) shall be TBD Torr05/16/2025In ProcessFALSE
- 6.06.02.04On 15 m (or one vacuum section) on each side of the SRF cavities shall be processed to class ISO 5.05/16/2025ApprovedFALSE
- 6.06.02.04Beam current is an input for the interlock system. The threshold level shall be identified and adjusted during the system commissioning.05/16/2025ReviewedFALSE
- 6.06.02.04The central beam pipe temperature limit (warm gas bakeout) shall be +110 C.05/16/2025ApprovedFALSE
- 6.06.02.04The inner beam pipe ( +/- 1.5 m around IP) shall have a gold coating of 5 um.05/16/2025ApprovedFALSE
- IR-VAC EXTERNALSRequirements who's parents are in other sub-systems.
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR ESR Forward vac-1 shall be <1x10-10 Torr05/16/2025ReviewedFALSE
IR-INST : IR Instrumentation System (WBS 6.06.02.05)
- 6.06The EIC IR shall have the instrumentation needed to measure the beam position of both electron and hadron beams throughout the IR.09/30/2025ApprovedFALSE
- 6.06The EIC IR shall have the instrumentation needed to measure the beam losses at critical locations in the IR.09/30/2025ApprovedFALSE
- 6.06The EIC IR shall have the instrumentation needed to measure the trigger the fast beam abort system at critical locations in the IR.09/30/2025ApprovedFALSE
IR-INST-ESR_BPM : ESR BPM Pickups in the IR (WBS 6.06.02.05)
- 6.06.02.05The total number of ESR BPM pickups in the IR shall be 2405/16/2025In ProcessFALSE
- 6.06.02.05For the 2nC pilot bunch, BPM pickups shall be designed to provide the required measurement resolution over the range of H=+/-50, V=+/-10 um05/16/2025In ProcessFALSE
- 6.06.02.05For the design bunch, BPM pickups shall be designed to provide the required measurement resolution over the range of H=+/-20, V=+/-5 um05/16/2025In ProcessFALSE
- 6.06.02.05The BPM pickup shall be designed so to ensure the maximim temperatures of the components (due to heating by the beam) are acceptable for reliability and operations05/16/2025In ProcessFALSE
- 6.06.02.05The BPM pickups shall be designed to be baked to 200 C for large number of thermal cycles (list locations where applicable)05/16/2025In ProcessFALSE
- 6.06.02.05The BPM pickup installation misalignment tolerance shall be for warm BPM=50 & cold BPM=500 um05/16/2025In ProcessFALSE
- 6.06.02.05The BPM pickup misalignement variance tolerance (upper limit) due to thermal cycling of the ESR BPMs in the IR shall be 20 um05/16/2025In ProcessFALSE
- 6.06.02.05The ESR shall have slow global orbit correction BPM pickups at the specified locations within +162m to -162m of IP6 ESR_IR_BPM_corrector-10-20-2023.docx05/16/2025In ProcessFALSE
- 6.06.02.05The BPM electronics shall have a turn-by-turn capability Y05/16/2025In ProcessFALSE
- 6.06.02.05For the 2 nC pilot bunches, single turn measurement resolution shall be Hmax=Vmax<100 Hdrift=Vdrift<50 um05/16/2025In ProcessFALSE
- 6.06.02.05For the 2 nC pilot bunches, 1,000 turns average measurement resolution shall be Hmax=Vmax<30 Hdrift=Vdrift<30 um05/16/2025In ProcessFALSE
- 6.06.02.05For stored beam, turn-by-turn low charge, 2 nC bunches, measurement resolution shall be Hmax=Vmax<30 Hdrift=Vdrift<30 um05/16/2025In ProcessFALSE
- 6.06.02.05For stored beam, turn-by-turn high charge, 7-28 nC bunch range, measurement resolution shall be Hmax=Vmax<10 Hdrift=Vdrift<10 um05/16/2025In ProcessFALSE
- 6.06.02.05For stored beam, 1,000 turns average, high charge, 7-28 nC bunch range, measurement resolution shall be Hmax=Vmax<5 Hdrift=Vdrift<5 um05/16/2025In ProcessFALSE
- 6.06.02.05For stored beam, 1 second average, high charge, 7-28 nC bunch range, measurement resolution shall be Hmax=Vmax<1 Hdrift=Vdrift<1 um05/16/2025In ProcessFALSE
IR-INST-ESR_FEEDBACK : ESR Transverse Orbit Feedback near the IR (WBS 6.06.02.05)
- 6.06.02.05The requirements for electron transverse orbit feedback at the IP shall be TBD05/16/2025In ProcessFALSE
- 6.06.02.05The BPMs that shall provide the electron beam position data to the IR feedback system are TBD05/16/2025In ProcessFALSE
- 6.06.02.05The location and quantity of the corrector magnets for the IR transverse orbit feedback shall be TBD05/16/2025In ProcessFALSE
- 6.06.02.05The type of the corrector magnets for the IR transverse orbit feedback shall be (fast) air-core correctors05/16/2025In ProcessFALSE
- 6.06.02.05The bandwidth of corrector system of magnets and their power supplies for the IR transverse orbit feedback shall be >30 Hz05/16/2025In ProcessFALSE
- 6.06.02.05The electron beam position stability provided by the IR feedback system at the IP shall be TBD05/16/2025In ProcessFALSE
IR-INST-ESR_LM : ESR Beam Loss Monitors in the IR (WBS 6.06.02.05)
- 6.06.02.05The Electron beam losses shall be measured at the following locations in the IR TBD05/16/2025In ProcessFALSE
- 6.06.02.05Beam losses at the location of primary collimators shall be measurable bunch-by-bunch05/16/2025In ProcessFALSE
- 6.06.02.05The sensitivity of the BLM detectors shall be 100000 e05/16/2025In ProcessFALSE
- 6.06.02.05The response time from loss detection to abort shall be .01/20 ms05/16/2025In ProcessFALSE
IR-INST-HSR_BPM : HSR BPM Pickups in the IR (WBS 6.06.02.05)
- 6.06.02.05Existing RHIC stripline BPMs that are reused in the IR shall be shielded (sleeved) to avoid overheating the BPMs and their cables in the RHIC cryostats05/16/2025In ProcessFALSE
- 6.06.02.05New hadron cryobutton BPMs shall be placed in available locations as close as possible to the existing RHIC stripline BPMs inside RHIC cryostats which are being reused05/16/2025In ProcessFALSE
- 6.06.02.05New hadron BPMs shall be placed in new, additional locations as required HSR_IR_BPM_cor_location-10-20-2023.xlsx05/16/2025In ProcessFALSE
- 6.06.02.05New hadron cryobutton BPMs shall be able to operate a with minimal load on the cryogenic system at temperatures of 2 K05/16/2025In ProcessFALSE
- 6.06.02.05The new and existing BPMs shall compatibly interface with the new coated sleeves that are being added to the HSR cold vacuum pipe.05/16/2025In ProcessFALSE
- 6.06.02.05Each new cryobutton BPM shall have the same measurement plane(s) as the closest existing RHIC stripline BPM or be upgraded to dual plane05/16/2025In ProcessFALSE
- 6.06.02.05The BPM mechanical centers shall be aligned with nearby quadrupole magnetic center within at least 0.15 mm05/16/2025In ProcessFALSE
- 6.06.02.05The BPMs at the arc focusing quads shall be capable of providing a reliable measurement of the horizontal orbit position of +/-21 mm05/16/2025In ProcessFALSE
- 6.06.02.05The BPMs at the arc defocusing quads shall be capable of providing a reliable measurement of the horizontal orbit position of +/-10 mm05/16/2025In ProcessFALSE
- 6.06.02.05The BPMs at the arc focusing quads for measurements of the orbit position at a bunch charge of 5nC. [5.9] shall be capable to provide reliable measurements in a range of +/ 21 mm05/16/2025In ProcessFALSE
- 6.06.02.05The BPMs at the arc defocusing quads shall be capable to provide reliable measurement of the orbit position in the range +/ 10 mm at a bunch charge of 5nC. [5.9] 10 mm05/16/2025In ProcessFALSE
- 6.06.02.05A number of BPMs shall sighted on either side of IP6 where there is a different (nontraditional) beam pipe aperture. These BPM will not be the standard HSR cryoBPM. The number of non standard BPMs in this region shall be TBD05/16/2025In ProcessFALSE
- 6.06.02.05The nonstandard HSR BPM's in this region shall be compatible with the non standard beam pipe aperture.05/16/2025In ProcessFALSE
- 6.06.02.05The locations of the non standard HSR BPM's in the nonstandard beam pipe aperture shall be. TBD05/16/2025In ProcessFALSE
- 6.06.02.05The non standard HSR BPM's shall have a measurement resolution of TBD units05/16/2025In ProcessFALSE
- 6.06.02.05The expected radial offset at each of the non standard HSR BPMs in the IR, for each of the various HSR running modes shall be 0 mm05/16/2025In ProcessFALSE
- 6.06.02.05There shall be warm HSR button BPM pickups at the following locations TBD05/16/2025In ProcessFALSE
- 6.06.02.05The warm HSR button BPM pickups shall have a measurement resolution of TBD05/16/2025In ProcessFALSE
- 6.06.02.05The warm HSR button BPM pickups at the following locations Dimensions and performance requirements are TBD05/16/2025In ProcessFALSE
- 6.06.02.05A hadron BPM shall be installed between B0pF and B0ApF with the dedicated purpose of measuring the hadron crabbing angle of 12.5 mrad05/16/2025In ProcessFALSE
- 6.06.02.05The BPM electronics for the pickups located in the HSR arcs (defined in this case as from Q5 to Q5) need to be able to provide measurements during the store with an considerably shifted beam radial orbit. The BPMs here shall be able to measure a maximum radial orbit shift range of +\- 21 mm05/16/2025In ProcessFALSE
- 6.06.02.05There shall be no requirement on BPMs to perform individual measurements for each bunch, when more than one bunch is present. One position measurement per turn which includes all bunches combined will be the narrowest (turn-by-turn) mode of sampling.05/16/2025In ProcessFALSE
- 6.06.02.05The BPM RMS resolution for measuring one turn orbit for a 5 nC bunch at injection parameters shall not be larger than 2 mm05/16/2025In ProcessFALSE
- 6.06.02.05TheBPM RMS resolution for a 44 nC bunch at injection parameters for measuring one turn orbit shall not be larger than 0.2 mm05/16/2025In ProcessFALSE
- 6.06.02.05The BPM system shall be capable of delivering an array of consecutive single turn position measurements at a rate of 1 array per second with 1024 turns05/16/2025In ProcessFALSE
- 6.06.02.05The BPM system shall be capable of delivering average orbit measurements at a continuous rate of 1 Hz05/16/2025In ProcessFALSE
- 6.06.02.05The RMS resolution, averaged over a 1 second period, for a 5 nC bunch at injection parameters for measuring the average orbit shall not be larger than 0.2 mm05/16/2025In ProcessFALSE
- 6.06.02.05The RMS resolution , averaged over a 1 second period, for a 44 nC bunch at acceleration ramp parameters for measuring the average orbit shall not be larger than 20 um05/16/2025In ProcessFALSE
- 6.06.02.05The resolution, averaged over a 1 second period, at highest average current parameters for measuring the average orbit shall not be larger than 20 um05/16/2025In ProcessFALSE
- 6.06.02.05The BPM system shall require a subset of BPMs that operate the fast orbit feedback having a bandwidth of at least 1 kHz05/16/2025In ProcessFALSE
- 6.06.02.05The BPM system shall be able to provide average orbit measurements to an orbit feedback system having a bandwidth of at least 1 Hz05/16/2025In ProcessFALSE
- 6.06.02.05The electronics associated with the hadron BPM pickup installed between B0pF and B0ApF, used for measuring the hadron crabbing angle, shall have the necessary bandwidth and characteristics to measure a crabbing angle of 12.5 mrad05/16/2025In ProcessFALSE
IR-INST-HSR_FEEDBACK : HSR Transverse Orbit Feedback near the IR (WBS 6.06.02.05)
- 6.06.02.05The requirements for hadron transverse orbit feedback at the IP shall be TBD -05/16/2025In ProcessFALSE
- 6.06.02.05The BPMs that will provide hadron beam position data to the IR feedback system shall be TBD05/16/2025In ProcessFALSE
- 6.06.02.05The location and quantity of the corrector magnets for the IR transverse orbit feedback shall be TBD05/16/2025In ProcessFALSE
- 6.06.02.05The type of the corrector magnets for the IR transverse orbit feedback shall be TBD05/16/2025In ProcessFALSE
- 6.06.02.05The bandwidth of corrector system of magnets and their power supplies for the IR transverse orbit feedback shall be >10 Hz05/16/2025In ProcessFALSE
- 6.06.02.05The hadron beam position stability provided by the IR feedback system at the IP shall be TBD mm05/16/2025In ProcessFALSE
IR-INST-HSR_LM : HSR Beam Loss Monitors in the IR (WBS 6.06.02.05)
- 6.06.02.05Hadron beam losses shall be measured at the following locations in the IR TBD05/16/2025In ProcessFALSE
- 6.06.02.05Beam losses at the location of primary collimators shall be measurable bunch-by-bunch05/16/2025In ProcessFALSE
- 6.06.02.05The type of hadron BLM detectors shall be ion chambers (RHIC style)05/16/2025In ProcessFALSE
- 6.06.02.05The sensitivity of the BLM detectors shall be 0.1 rad05/16/2025In ProcessFALSE
- 6.06.02.05The response time from loss detection to abort shall be .01/20 ms05/16/2025In ProcessFALSE
IR-PROT : IR Machine Protection System (WBS 6.06.03)
IR-CONT : IR Controls System (WBS 6.07.02)
- 6.06The EIC global control system shall have provisions to accommodate any IR control requirements needed.09/30/2025ApprovedFALSE
- 6.07.02The Provide mechanism to visualize crab alignment signals shall be tbd tbd05/16/2025In ProcessFALSE
- 6.07.02The Crab data update rate shall be 1 Hz05/16/2025In ProcessFALSE
- 6.07.02The Crab correction update rate shall be 1 Hz05/16/2025In ProcessFALSE
- 6.07.02The Fast Orbit Feedback correction output rate shall be 100 Hz05/16/2025In ProcessFALSE
- 6.07.02The Fast Orbit Feedback per BPM sampling rate shall be 10 kHz05/16/2025In ProcessFALSE
- 6.07.02The IR Orbit average orbit data sample update rate shall be 1 Hz05/16/2025In ProcessFALSE
IR-CONT-ALGNMNT : IR Controls Crab Alignment (WBS 6.07.02)
- IR-CONT-ALGNMNT EXTERNALSRequirements who's parents are in other sub-systems.
- 6.07.02The Provide mechanism to visualize crab alignment signals shall be tbd tbd05/16/2025In ProcessFALSE
- 6.07.02The Crab data update rate shall be 1 Hz05/16/2025In ProcessFALSE
- 6.07.02The Crab correction update rate shall be 1 Hz05/16/2025In ProcessFALSE
IR-CONT-FEEDBACK : IR Controls Fast Orbit Feedback (WBS 6.07.02)
- IR-CONT-FEEDBACK EXTERNALSRequirements who's parents are in other sub-systems.
- 6.07.02The Fast Orbit Feedback per BPM sampling rate shall be 10 kHz05/16/2025In ProcessFALSE
- 6.07.02The Fast Orbit Feedback correction output rate shall be 100 Hz05/16/2025In ProcessFALSE
IR-CONT-ORBIT : IR Controls Transverse IR Orbit Optimization (WBS 6.07.02)
- 6.07.02The IR Orbit average orbit correction update rate shall be 1 Hz05/16/2025In ProcessFALSE
- IR-CONT-ORBIT EXTERNALSRequirements who's parents are in other sub-systems.
- 6.07.02The IR Orbit average orbit data sample update rate shall be 1 Hz05/16/2025In ProcessFALSE
IR-RF : IR RF System (WBS 6.08)
- 6.06The EIC IR shall compensate for the crossing angle by using crab cavities in both the electron and hadron beams.09/30/2025ApprovedFALSE
- 6.07.02The Crab data update rate shall be 1 Hz05/16/2025In ProcessFALSE
- 6.07.02The Provide mechanism to visualize crab alignment signals shall be tbd tbd05/16/2025In ProcessFALSE
- 6.07.02The Crab correction update rate shall be 1 Hz05/16/2025In ProcessFALSE
IR-RF-CRAB_HSR : IR HSR CRAB RF System (WBS 6.08.02.01)
IR-RF-CRAB_HSR-2ND_HARMONIC_MODE : IR HSR CRAB RF 2nd Harmonic Mode (WBS 6.08.02.01)
IR-RF-CRAB_HSR-FUNDAMENTAL_MODE : IR HSR CRAB RF Fundamental Mode (WBS 6.08.02.01)
IR-RF-CRAB_HSR_SRFCM : IR HSR CRAB RF Super Conducting Cryogenic Module (SCFCM) (WBS 6.08.04.04)
IR-RF-CRAB_HSR_SRFCM-FUNDAMENTAL_MODE : IR HSR CRAB RF SCFCM Fundamental Mode (WBS 6.08.04.04)
IR-RF-CRAB_ESR : IR ESR CRAB RF System (WBS 6.08.04.05)
IR-RF-CRAB_ESR-FUNDAMENTAL_MODE : IR ESR CRAB RF Fundamental Mode (WBS 6.08.02.01)
IR-RF-CRAB_ESR_SRFCM : IR ESR CRAB RF Super Conducting Cryogenic Module (SCFCM) (WBS 6.08.04.05)
IR-RF-CRAB_ESR_SRFCM-FUNDAMENTAL_MODE : IR ESR CRAB RF SCFCM Fundamental Mode (WBS 6.08.04.05)
IR-RF-CCAV:197
- Infrastructure shall provide supply and return headers within the tunnel for Low Conductivity Water (LCW) to be utilized by SRF Systems.01/15/2026In ProcessFALSE
- Infrastructure shall provide Low Conductivity Water (LCW) to/from the common supply/return header(s) to be utilized by SRF Systems.01/15/2026In ProcessFALSE
- RF Pre-Installation shall provide all distribution design, materials, and installation of the piping (or hoses) for Low Conductivity Water (LCW) from the tunnel header to the Cryomodules to be utilized by SRF Systems.01/15/2026In ProcessFALSE
- SRF Systems shall provide Low Conductivity Water (LCW) supply/return receptacles at the Cryomodule to facilitate installation by RF Pre-Installation.01/15/2026In ProcessFALSE
- nan02/09/2026In ProcessFALSE
- nan02/09/2026In ProcessFALSE
- SRF Systems shall provide instrument air receptables to be utilized by TBD.01/15/2026In ProcessFALSE
- TBD shall provide an instrument air supply system for the required SRF Systems Cryomodule components in the tunnel.01/15/2026In ProcessFALSE
- TBD shall provide all routing design, installation, and control logic to the instrument air receptacles on the SRF Systems Cryomodule.01/15/2026In ProcessFALSE
- nan02/09/2026In ProcessFALSE
- nan02/09/2026In ProcessFALSE
- RF Pre-Installation shall provide the helium blowdown system design, materials (including helium gas), and installation labor to any water circuit required on the SRF cryomodule inside the tunnel.01/15/2026In ProcessFALSE
- SRF Systems shall provide a helium blowdown receptacle to be utilized by Pre-Installation.01/15/2026In ProcessFALSE
- The 2K Cryogenics Distribution System shall provide all distribution design, materials, and installation of the helium piping for the 2K helium distribution system inside the tunnel to the Cryomodules and clean beamline components to be utilized by SRF Systems.01/15/2026In ProcessFALSE
- The 2K Cryogenics Distribution System shall provide Supercritical Helium to the supply header(s) to be utilized by SRF Systems.01/15/2026In ProcessFALSE
- The 2K Cryogenics Distribution System shall return sub-atmospheric Helium from the return header utilized by SRF Systems.01/15/2026In ProcessFALSE
- SRF Systems shall provide Helium supply and return receptacle(s) at the cryomodule and clean beamline components to be utilized by the 2K Cryogenics Distribution System.01/15/2026In ProcessFALSE
- nan02/09/2026In ProcessFALSE
- nan02/09/2026In ProcessFALSE
- nan02/09/2026In ProcessFALSE
- SRF Systems shall provide calculations and analyses necessary for sizing the piping and supply by the 2K Cryogenics Distribution.01/15/2026In ProcessFALSE
- The 2K Cryogenics Distribution System shall provide all distribution design, materials, and installation of the helium piping for the helium relief system inside the tunnel to the cryomodule and clean beamline components to be utilized by SRF Systems.01/15/2026In ProcessFALSE
- SRF Systems shall provide a helium pressure relief valve with common relief header receptacle to be utilized by the 2K Cryogenics Distribution Relief System.01/15/2026In ProcessFALSE
- SRF Systems shall provide calculations and analyses necessary for sizing the relief piping by the 2K Cryogenics Distribution relief header.01/15/2026In ProcessFALSE
- The 2K Cryogenics Distribution System shall provide all distribution design, materials, and installation of the helium piping for the guard vacuum inside the tunnel to the cryomodule to be utilized by SRF Systems.01/15/2026In ProcessFALSE
- SRF Systems shall provide a helium pressure relief valve with common guard vacuum receptacle to be utilized by the 2K Cryogenics Distribution System.01/15/2026In ProcessFALSE
- nan02/09/2026In ProcessFALSE
- nan02/09/2026In ProcessFALSE
- nan02/09/2026In ProcessFALSE
- Cryogenics Controls shall provide all cabling, routing design, installation, and control logic to the cryomodule control receptacles at the SRF Systems Cryomodules.01/15/2026In ProcessFALSE
- SRF Systems shall provide helium liquid level monitor receptacles to be utilized by Cryogenics Controls.01/15/2026In ProcessFALSE
- SRF Systems shall provide pressure monitor receptacles to be utilized by Cryogenics Controls.01/15/2026In ProcessFALSE
- SRF Systems shall provide temperature monitors receptacles to be utilized by Cryogenics Controls.01/15/2026In ProcessFALSE
- SRF Systems shall provide heater control receptacles to be utilized by Cryogenics Controls.01/15/2026In ProcessFALSE
- SRF Systems shall provide cryogenic control valve receptacles to be utilized by Cryogenics Controls.01/15/2026In ProcessFALSE
- nan02/09/2026In ProcessFALSE
- SRF Systems shall provide Beamline All Metal Gate Valve receptacles to be utilized by HSR Instrument Air.01/15/2026In ProcessFALSE
- SRF Systems shall provide Beamline Ion pump receptacles to be utilized by HSR Vacuum System.01/15/2026In ProcessFALSE
- SRF Systems shall provide Vacuum pressure receptacles to be utilized by HSR Vacuum System.01/15/2026In ProcessFALSE
- TBD shall provide all cabling, routing design, installation, and control logic to the cryomodule vacuum control receptacles at the Cryomodules to be utilized by SRF Systems.01/15/2026In ProcessFALSE
- nan02/09/2026In ProcessFALSE
- SRF Systems shall provide RF feedback and control receptacles to be utilized by RF Controls.01/15/2026In ProcessFALSE
- SRF Systems shall provide temperature monitors receptacles to be utilized by RF Controls.01/15/2026In ProcessFALSE
- SRF Systems shall provide tuner control receptacles to be utilized by RF Controls.01/15/2026In ProcessFALSE
- RF Controls shall provide all cabling, routing design, installation, and control logic to the cryomodule RF control receptacles at the Cryomodules to be utilized by SRF Systems.01/15/2026In ProcessFALSE
- nan02/09/2026In ProcessFALSE
- High Power RF shall design and provide a coaxial line to be utilized by SRF Systems.01/15/2026In ProcessFALSE
- SRF Systems shall provide a receptacle for the High Power RF coaxial line to be utilized by High Power RF.01/15/2026In ProcessFALSE
- Accelerator Installation shall provide the schedule and funding for the coaxial line installation to the SRF Cryomodule.01/15/2026In ProcessFALSE
- nan02/09/2026In ProcessFALSE
- nan02/09/2026In ProcessFALSE
- nan02/09/2026In ProcessFALSE
- Beamline Components shall provide conditioned FPC to be utilized by SRF Systems.01/15/2026In ProcessFALSE
- SRF Systems shall provide fiducialization points on the Cryomodule relating back to the electromagnetic center of the beamline to be utilized by Accelerator Installation.01/15/2026In ProcessFALSE
- RF Pre-Installation shall arrange the installation location/area to be utilized by SRF Systems.01/15/2026In ProcessFALSE
- Accelerator Installation shall provide the schedule and funding for the SRF Cryomodule installation and app technician support (lag bolts/rough alignment/pedestal/etc...).01/15/2026In ProcessFALSE
- The Mechanical Design Group shall model the tunnel to define the required spatial locations to be utilized by SRF Systems.01/15/2026In ProcessFALSE
- SRF Systems shall provide beamline components to be installed on the beamline between SRF cryomodules01/15/2026In ProcessFALSE
- SRF Systems shall provide a receptacle for the beamline connection on either end of the SRF beamline space, to be utilized by RF System01/15/2026In ProcessFALSE
- SRF Systems shall provide beamline components to be installed on the beamline between the SRF beamline space and other magnets01/15/2026In ProcessFALSE
- HSR Vacuum System shall provide installation labor of the SRF Systems Cryomodule to the beamline.01/15/2026In ProcessFALSE
- RF System shall ensure that during installation the SRF Systems Cryomodule cleanliness does not degrade.01/15/2026In ProcessFALSE
- RF System shall ensure that the beamline components surrounding the SRF Systems Cryomodule does not degrade the performance of the SRF Systems Cryomodule during its lifetime.01/15/2026In ProcessFALSE
- Cryomodule Verification shall ensure TJNAF has a bunker that can high power test the SRF Systems Cryomodule.01/15/2026In ProcessFALSE
- RF Pre-Installation shall ensure BNL has a bunker that can high power test the SRF Systems Cryomodule.01/15/2026In ProcessFALSE
- TBD shall provide a vacuum system for the insulating vacuum of the SRF Systems Cryomodule in the tunnel to be utilized by SRF Systems01/15/2026In ProcessFALSE
- TBD shall provide all cabling, routing design, installation, and control logic to the insulating vacuum control receptacles at the SRF Systems Cryomodule.01/15/2026In ProcessFALSE
- TBD shall provide a vacuum system for the beamline vacuum of the SRF Systems Cryomodule in the tunnel to be utilized by SRF Systems01/15/2026In ProcessFALSE
- TBD shall provide all cabling, routing design, installation, and control logic to the beamline vacuum control receptacles at the SRF Systems Cryomodule.01/15/2026In ProcessFALSE
- nan02/09/2026In ProcessFALSE
IR-AS : IR Accelerator Systems
IR-CRYO : Cryogenics Requirements
- 6.06The EIC cryogenic system shall provide enough cooling power to accommodate the operation of the superconducting magnets in IR.09/30/2025ApprovedFALSE
- 6.06The EIC cryogenic system shall provide enough cooling power to accommodate the operation of the superconducting RF crab cavities in IR.09/30/2025ApprovedFALSE
IR-CRYO-IR10
IR-CRYO-IR10-2KDIST
- 6.09.04All distribution system helium valves operating sub-atmospherically shall have a test port with a VCR connection.05/16/2025In ProcessFALSE
- 6.09.04All distribution system helium valves shall be bellows-sealed.05/16/2025In ProcessFALSE
- 6.09.04The Cryodistribution System shall be designed such that the pressure drop of each circuit is no more than 5%.05/16/2025In ProcessFALSE
- 6.09.04The design of the Cryodistribution System shall minimize thermal acoustic oscillations (TAOs) by orienting each dead leg of piping to promote establishment of a static thermal gradient.05/16/2025In ProcessFALSE
- 6.09.04The Cryogenic Distribution System design shall minimize cavity vibrations.05/16/2025In ProcessFALSE
- 6.09.04The Cryodistribution System design shall not condense moisture from the atmosphere in the tunnel where drainage to a safe location is not accessible.05/16/2025In ProcessFALSE
- 6.09.04The design of the Cryodistribution System shall eliminate the possibility of vapor locks in piping distributing any 2-phase fluids.05/16/2025In ProcessFALSE
- 6.09.04To decouple commissioning schedules, the Cryodistribution System design shall allow cooldown to nominal operating conditions regardless of the number of CMs attached.05/16/2025In ProcessFALSE
- 6.09.04The Cryodistribution System shall support continuous 4.5K refrigeration of the entire group of nominally 2K loads during times of cold compressor maintenance.05/16/2025In ProcessFALSE
- 6.09.04The cryodistribution system Shield Return line from the cryomodules to the satellite refrigerator shall maintain a temperature of 80K and a pressure of 1.8 bar.05/16/2025In ProcessFALSE
- 6.09.04The cryodistribution system sub-atmospheric line from the cryomodules to the satellite refrigerator shall maintain a temperature of 4K and a pressure of 30 mbar.05/16/2025In ProcessFALSE
- 6.09.04The cryodistribution system shall provide piping to run the following lines from the satellite refrigerator to the exsisting lines in the tunnel: H-line: 80 K, 15.9 bar U-line: 10 K, 1.3 bar05/16/2025In ProcessFALSE
- 6.09.04The new 2K cryodistribution H-line shall maintain a temperature of 80 K and a pressure of 15.7 bar when connecting to the existing tunnel H-line.05/16/2025In ProcessFALSE
- 6.09.04The new 2K cryodistribution U-line shall maintain a temperature of 10 K and a pressure of 1.5 bar when connecting to the existing tunnel U-line.05/16/2025In ProcessFALSE
- 6.09.04The design shall add no additional margin to the heat leak for the 2 K sub atmospheric return line.05/16/2025In ProcessFALSE
- 6.09.04A recooler with an outlet temperature of 4.55 K is required on the S-line.05/16/2025In ProcessFALSE
- 6.09.04The recooler baths shall be supplied by the S-Line which will supply helium at a maximum pressure and temperature of 3.5 bar and 6 K The recooler baths supplied by the S-Line shall have a maximum supply pressure and temperature of 3.5 bar and 6 K05/16/2025In ProcessFALSE
- 6.09.04The LHe supply line shall have a maximum velocity of TBD05/16/2025In ProcessFALSE
- 6.09.04The Cryodistribution System design shall allow CMs to be added and removed without compromising the Cryodistribution System insulating vacuum.05/16/2025In ProcessFALSE
- 6.09.04Each segment of the insulating vacuum space shall have valves and ports as required for maintenance of the insulating vacuum.05/16/2025In ProcessFALSE
- 6.09.04All valves and piping joints shall where possible shall be in accessible indoor locations for manual actuation, leak checking, and maintenance work. If the valves are to be sited in conditions other than this their location shall be approved by the EIC CRYO group.05/16/2025In ProcessFALSE
- 6.09.04During a pressure relief event due to rupture of the internal process piping, the pressure at any point within the insulating vacuum space shall not exceed 15 psi.05/16/2025In ProcessFALSE
- 6.09.04The design of the ambient-temperature flanged connections on any sub atmospheric process piping shall prevent any air ingress or contamination in the case of an O-ring failure.05/16/2025In ProcessFALSE
- 6.09.04A guard vacuum is required for all subatmospheric relief valves and other applicable locations.05/16/2025In ProcessFALSE
- 6.09.04The distribution shall have pressure and temperature sensors located as shown on P&ID _____05/16/2025In ProcessFALSE
- 6.09.04The distribution shall have a liquid level sensor on the recooler05/16/2025In ProcessFALSE
- 6.09.04The distribution system shall have a heater at the R-line interface to the SA-line for commissioning the satellite plants. The heater shall be 620 W.05/16/2025In ProcessFALSE
- 6.09.04The recooler shall have a heater (2kW at IR02 and 1kW at IR06 and IR10).05/16/2025In ProcessFALSE
- 6.09.04The distribution system shall have an equal percentage control valve on the S-line and on/off valves for other distribution system circuits.05/16/2025In ProcessFALSE
- 6.09.04Bayonet connections for the 5 interface lines (listed below): Bayonets/piping connection location tolerances - in general, U-tubes are 90% fabricated prior to determining final locations of CMs. Once locations are finalized, bayonet positions are measured, allowing final u-tube dimensions to fit the critical tolerances required for smooth insertion/extraction.05/16/2025In ProcessFALSE
- 6.09.04The cryogenic system shall have the capacity to handle cooling requirements for both the low temperature thermal intercepts and high temperature thermal radiation shield05/16/2025In ProcessFALSE
- 6.09.04The cryomodules shall be cooled down and filled with LHe at the beginning of each run.05/16/2025In ProcessFALSE
- 6.09.04The cryomodules shall be warmed up to ambient temperature (300K) at the end of each run.05/16/2025In ProcessFALSE
- 6.09.04The cryomodules shall be cooled down and kept at their operating temperature for the duration of each run.05/16/2025In ProcessFALSE
- 6.09.04All physical connections to cryomodules shall be made when the system is at room temperature.05/16/2025In ProcessFALSE
- 6.09.04The cryomodule/cryodistribution system interface components shall be designed to accommodate a warmup to at least 300K at least one time per year05/16/2025In ProcessFALSE
- 6.09.04The cryodistribution system shall circulate warm clean gas to scrub/cleanout prior to cooldown05/16/2025In ProcessFALSE
- 6.09.04The cryomodules shall circulate warm clean gas to scrub/cleanout prior to cooldown05/16/2025In ProcessFALSE
- 6.09.04During warmup, the cryogenic 2.0 K circuits shall be pressurized to positive pressure, and the cold compressors will be bypassed.05/16/2025In ProcessFALSE
- 6.09.04Heaters shall be used for cryomodule warm up.05/16/2025In ProcessFALSE
- 6.09.04The cryo module design shall be such that it can be warmed up and removed during a run.05/16/2025In ProcessFALSE
- 6.09.04No operation shall be carried out on a cryomodules in a single region at 2K if any other cryomodules are still at 4.5K.05/16/2025In ProcessFALSE
- 6.09.04The cryomodules shall be capable of Independent warmup/cooldown.05/16/2025In ProcessFALSE
- 6.09.04The Cryomodule shall include cross-over valves to provide a means controlling each Cryomodule individually.05/16/2025In ProcessFALSE
- 6.09.04A guard vacuum shall be supplied to the cryomodules at the sub-atmospheric connection and for the reliefs.05/16/2025In ProcessFALSE
- 6.09.04A control valve or orifice on the downstream/exhaust side shall be used to control the flow through the FPCs05/16/2025In ProcessFALSE
- 6.09.04Each cryomodule shall contain a 2K-4K Refrigeration recovery heat exchanger.05/16/2025In ProcessFALSE
- 6.09.04Each Cryomodule shall include a control heater(s).05/16/2025In ProcessFALSE
- 6.09.04The maximum flow required for cryomodule cooldown at IR02 is05/16/2025In ProcessFALSE
- 6.09.04The maximum flow required for cryomodule cooldown at IR06 is05/16/2025In ProcessFALSE
- 6.09.04The maximum flow required for cryomodule cooldown at IR10 is05/16/2025In ProcessFALSE
- 6.09.04The total budget available for cooldown from the central plant via the S header shall be 20 g/s of 4.5K,3 bar He. The central plant supply line via the header shall have a flow rate of 20 g/s.05/16/2025In ProcessFALSE
- 6.09.04The 4.5K central plant supply line via the header shall have a flow rate of 20 g/s.05/16/2025In ProcessFALSE
- 6.09.04The 4.5K central plant supply line via the header shall have a maximum supply pressure of 3 bar.05/16/2025In ProcessFALSE
- 6.09.04The cooldown return flow from the satellite plants shall be processed to be sent back to central plant at 300 K.05/16/2025In ProcessFALSE
- 6.09.04Assuming the 2K flow is loaded to minimum turndown:.e.g.. __ g/s05/16/2025In ProcessFALSE
- 6.09.04The Cryomodule 4.5K supply shall come directly from the S-supply from the central plant05/16/2025In ProcessFALSE
- 6.09.04The Cryomodules shall be designed to accommodate the maximum budgeted heat loads plus an additional margin of05/16/2025In ProcessFALSE
- 6.09.04Each cryomodule at IR10 (even those farthest from the satellite plant) shall have a maximum temperature of 2.0K.05/16/2025In ProcessFALSE
- 6.09.04The temperature stability in the cryomodules circuits shall be05/16/2025In ProcessFALSE
- 6.09.04The temperature stability of the 2K bath shall be05/16/2025In ProcessFALSE
- 6.09.04The saturated vapor pressure in the 2K bath shall be05/16/2025In ProcessFALSE
- 6.09.04IR10: S-Line - Primary Supply: 4.9 K, 3.3 bar. SA-Line: Subatmospheric Return: 30 mbar, 3.7K CR-Line: Shield/FPC Return: 1.8 bar, 80K05/16/2025In ProcessFALSE
- 6.09.04The S-Line Primary Supply at IR10 shall have a maximum supply temperate of 4.9K.05/16/2025In ProcessFALSE
- 6.09.04The S-Line Primary Supply at IR10 shall have a maximum supply pressure of 3.3 bar.05/16/2025In ProcessFALSE
- 6.09.04The SA-Line Subatmospheric Return at IR10 shall have a maximum supply temperate of 3.7K.05/16/2025In ProcessFALSE
- 6.09.04The SA-Line Subatmospheric Return at IR10 shall have a maximum supply pressure of 30 mbar.05/16/2025In ProcessFALSE
- 6.09.04The CR-Line Shield and FPC Return at IR10 shall have a maximum supply temperate of 80K.05/16/2025In ProcessFALSE
- 6.09.04The CR-Line Shield and FPC Return at IR10 shall have a maximum supply pressure of 1.8 bar.05/16/2025In ProcessFALSE
- 6.09.04The S-line Header pressures shall be stable to within ± TBD.X mbar05/16/2025In ProcessFALSE
- 6.09.04The Shield return Header pressures shall be stable to within ± TBD.X mbar05/16/2025In ProcessFALSE
- 6.09.04The FPC/Cooldown Header pressures shall be stable to within ± TBD.X mbar05/16/2025In ProcessFALSE
- 6.09.04The Sub atmospheric line Header pressures shall be stable to within ± TBD.X mbar05/16/2025In ProcessFALSE
- 6.09.04S-line Header pressures shall be stable within ± xx.y mbar Shield return Header pressures shall be stable within ± xx.y mbar FPC/Cooldown Header pressures shall be stable within ± xx.y mbar Sub atmospheric line Header pressures shall be stable within ± xx.y mbar05/16/2025In ProcessFALSE
- 6.09.04The pressure in the FPC/Shield Return shall be greater than or equal to TBD05/16/2025In ProcessFALSE
- 6.09.04The Power Coupler Return shall be combined with the Shield Return and they will return to the satellite plant in one stream.05/16/2025In ProcessFALSE
- 6.09.04The design shall be capable of "parking" all of the cryomodules at 4.5K05/16/2025In ProcessFALSE
- 6.09.04In 4.5K Mode the Cryomodule return is valved to connect to the 4.5K R-header of HSR distribution system to central plant05/16/2025In ProcessFALSE
- 6.09.04All reliefs in the tunnel shall be connected to a common relief header that will vent to an area outside the tunnel.05/16/2025In ProcessFALSE
- 6.09.04The relief header in the tunnel shall be sized to be large enough to not create backpressure in the cryomodules.05/16/2025In ProcessFALSE
- 6.09.04The cryomodule pressure protection shall include a 4 bara burst disk and 2bara reliefs.05/16/2025In ProcessFALSE
- 6.09.04All Cryomodules shall be installed to within 1/4 inch of the "ideal" locations per appropriate CAD installation drawings.05/16/2025In ProcessFALSE
- 6.09.04Instrumentation Interfaces: Wiring, Junction boxes/panels05/16/2025In ProcessFALSE
- 6.09.04Instrumentation and valves list: Pressure, Temperatures, Levels, switches, Valves, Vacuum, Heaters05/16/2025In ProcessFALSE
- 6.09.04Electrical interfaces: Size, number of pins, etc.05/16/2025In ProcessFALSE
- 6.09.04The Instrumentation required to operate each SC magnet (coil voltage taps, current leads voltage taps, thermal sensors, Liquid sensors etc.) shall be furnished by the EIC SC magnets group in consultation with the EIC cryogenics team and the EIC controls team.05/16/2025In ProcessFALSE
- 6.09.04To minimize remanent fields, no magnetic components, such as flanges and bolts, shall be used in the design of the SC magnet cryogenic systems.05/16/2025In ProcessFALSE
IR-CRYO-IR10-2KSAT
- 6.09.02A standby cooling water tower pump shall be provided.05/16/2025ApprovedFALSE
- 6.09.02The cooling water supply availability shall have an uptime of 100% per year.05/16/2025ApprovedFALSE
- 6.09.02The cooling water cleanliness shall be capable of maintaining a piping longevity of 20 years.05/16/2025ApprovedFALSE
- 6.09.02The cooling water piping material shall be chosen such that no corrosion occurs within 20 years of commissioning.05/16/2025ApprovedFALSE
- 6.09.02The maximum differential cooling water pressure total in the building shall be 45 psi.05/16/2025ApprovedFALSE
- 6.09.02Electricity availability shall be 99.997%.05/16/2025ApprovedFALSE
- 6.09.02The voltage differential in the supply shall be within +/- 10% of the rated voltage.05/16/2025ApprovedFALSE
- 6.09.02The power supply for all satellite plant refrigerator equipment shall be an independent reliable power source.05/16/2025ApprovedFALSE
- 6.09.02The roof of the control room shall have a minimum floor loading of TBD lbs/ft2.05/16/2025ApprovedFALSE
- 6.09.02The design of the building shall accommodate all the material handling accomodations for commissioning and operation as defined on drawing #SK-CRB-IR10 BLDG PLAN - 23OCT24 including, but not limited to, permanent cranes, access for portable cranes, aisle sizes.05/16/2025ApprovedFALSE
- 6.09.02The equipment footprint for the building shall be in accordance with drawing #SK-CRB-IR10 BLDG PLAN - 23OCT24.05/16/2025ApprovedFALSE
- 6.09.02The minimum concrete strength shall be 4000 psi.05/16/2025ApprovedFALSE
- 6.09.02The Infrastructure building design shall include all vehicle access needed to accommodate the filling of gas and liquid storage tanks.05/16/2025ApprovedFALSE
- 6.09.02All internal components of the coldbox shall be easily accessible via an internal ladder while working within the cold box.05/16/2025ApprovedFALSE
- 6.09.02Access to the inside of the cold box shall be via a manway of at least 28 inches in diameter and be accessible from the ground.05/16/2025ApprovedFALSE
- 6.09.02A flanged plate with a minimum diameter of 8 inches shall be provided at the top of the cold box for air ventilation while working within the cold box.05/16/2025ApprovedFALSE
- 6.09.02The access platforms shall be placed on top of the cold box and shall be designed to carry a load of at least 150 lbs. per square foot.05/16/2025ApprovedFALSE
- 6.09.02All vacuum pump ports shall be a minimum size of ISO 250.05/16/2025ApprovedFALSE
- 6.09.02All vacuum valve ports of vessels with multi-layer insulation shall be properly screened to prevent inlet blockages.05/16/2025ApprovedFALSE
- 6.09.02The cold box back-up vacuum valve connection port shall be at least 150 ISO.05/16/2025ApprovedFALSE
- 6.09.02Should there be a failure of any component in the cold box, the cold box vacuum vessel shall be equipped with a relief device sized to handle 125% of the flow from the cold box high pressure supply at the maximum design capacity.05/16/2025ApprovedFALSE
- 6.09.02The cold box shall have Dual carbon beds at 80 K.05/16/2025ApprovedFALSE
- 6.09.02The 80K Dual carbon beds shall have a regeneration period of less than 2 days.05/16/2025ApprovedFALSE
- 6.09.02The 80K Dual carbon beds shall reduce flow impurities in the system to less than 1 ppmV, given an inlet impurity level of 100 ppmv.05/16/2025ApprovedFALSE
- 6.09.02The 80K Dual carbon beds shall have a minimum bed life of 1 month05/16/2025ApprovedFALSE
- 6.09.02The 80K Dual carbon beds pressure drop through the adsorber beds shall not exceed 0.5 atm05/16/2025ApprovedFALSE
- 6.09.02The final filtration stage shall have a residual contamination of oil of less than 1 ppb by volume05/16/2025ApprovedFALSE
- 6.09.02The exit dewpoint of the high pressure helium stream after the dual carbon beds shall be TBD K or better. 80 °C05/16/2025ApprovedFALSE
- 6.09.02The satellite plant shall be designed to meet all applicable standards as defined by ASME BPVC VIII as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA).05/16/2025ApprovedFALSE
- 6.09.02The satellite plant shall be designed to meet all applicable standards as defined by B31.3 Process Piping as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA).05/16/2025ApprovedFALSE
- 6.09.02The satellite plant shall be designed to meet all applicable standards as defined by 10 CFR 851 as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA).05/16/2025ApprovedFALSE
- 6.09.02The satellite plant shall be designed to meet all applicable standards as defined by 10 CFR 1926 as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA).05/16/2025ApprovedFALSE
- 6.09.02The satellite plant shall be designed to meet all applicable standards as defined by 10 CFR 1021 as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA).05/16/2025ApprovedFALSE
- 6.09.02The satellite plant shall be designed to meet all applicable standards as defined by NFPA as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA).05/16/2025ApprovedFALSE
- 6.09.02The satellite plant shall be designed to meet all applicable standards as defined by ASHRAE as directed by the EIC Code of Record and/or all applicable excluded items governed by the EIC Memorandum of Agreements (MOA).05/16/2025ApprovedFALSE
- 6.09.02The cold box expander inlet filters shall be capable of filtering particles of 10 microns or larger.05/16/2025ApprovedFALSE
- 6.09.02The cold box expander bearing gas supply and gas brake circuit filters shall be capable of filtering particles of 10 microns or larger.05/16/2025ApprovedFALSE
- 6.09.02The low pressure inlet of warm compressors shall have a 304SS temporary strainer with 300 mesh 300% O, 1/16" PERF and the screen must be easily removable for cleaning.05/16/2025ApprovedFALSE
- 6.09.02All the cryogenic equipment shall be designed to handle no less than 100 thermal cycles.05/16/2025ApprovedFALSE
- 6.09.02All process equipment joints and interfaces such as flanges, mechanical joints, and valve stem seals shall have a maximum allowable leakage rate of 1x10^-6 atm cc/s.05/16/2025ApprovedFALSE
- 6.09.02All satellite refrigerator process piping shall have a maximum allowable leakage rate of 1x10^-9 atm cc/s.05/16/2025ApprovedFALSE
- 6.09.02All distribution system process piping shall have a maximum allowable leakage rate of 1x10^-9 atm cc/s.05/16/2025ApprovedFALSE
- 6.09.02All process equipment shall have a maximum allowable leakage rate of 1x10^-6 atm cc/s.05/16/2025ApprovedFALSE
- 6.09.02The piping shall be designed so that pooling oil will flow downward toward compressors and away from the cold box at all times05/16/2025ApprovedFALSE
- 6.09.02The Satellite refrigerator design shall mitigate all instances of standing liquid within the system.05/16/2025ApprovedFALSE
- 6.09.02All internal process piping shall be designed with operating and design temperatures in the range of 3.5 to 310 K05/16/2025ApprovedFALSE
- 6.09.02The turbo-expander shall have a performance history in helium service of at least 20000 hrs.05/16/2025ApprovedFALSE
- 6.09.02All satellite refrigerator helium valves shall be bellows-sealed.05/16/2025ApprovedFALSE
- 6.09.02All satellite refrigerator helium valves operating sub-atmospherically shall have a test port with a VCR connection.05/16/2025ApprovedFALSE
- 6.09.02The Coldbox vacuum vessel relief device shall be sized to handle 125% of the flow from the high pressure supply at the maximum design capacity.05/16/2025ApprovedFALSE
- 6.09.02All water-cooled equipment as defined by the EIC Cryogenics group shall not exceed a temperature of 305K.05/16/2025ApprovedFALSE
- 6.09.02All utilities (instrument air, water, electricity, etc.) provided to the cryogenics satellite plant shall be in accordance with the parameters laid out in the latest revision of EIC Infrastructure Utilities Requirements Document, Doc. No. EIC-IFD-RSI-012.05/16/2025ApprovedFALSE
- 6.09.02The cold box vacuum shall be able to be pumped down from atmospheric pressure to its operational pressure of 1e-5 Torr or better within 24 hrs.05/16/2025ApprovedFALSE
- 6.09.02The cold box shall be designed to pumpdown from 4.5K to 2K.05/16/2025ApprovedFALSE
- 6.09.02The cold box shall be designed to complete a half thermal cycle (warm up or cooldown) from 3.5K to 300K or vice versa within 12 hrs.05/16/2025ApprovedFALSE
- 6.09.02The cold compressors shall be capable of a minimum possible turndown mode of 20% below the nominal flowrate.05/16/2025ApprovedFALSE
IR-DRIFT
IR-DRIFT-ESR
IR-DRIFT-ESR-DRIFT(B0APF)
- TBDThe physical length of the drift space in the iron bore shall be less than or equal to 0.6(m). The iron drift bore design needs to comply with all the geometery constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].10/30/2025In ProcessFALSE
- TBDThe drift space shall be designed to accomodate a beam tube inner bore radius when warm, which is greater than or equal to 63(mm). The inner radius of the drift space must incorporate appropriate allowances for any structure required between the beam pipe and the iron bore surface for support. The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].10/30/2025In ProcessFALSE
- TBDThe drift space shall be designed to fit within the following constraints:10/30/2025In ProcessFALSE
- TBDThe drift space, iron coldmass and the associated cryostat (designated FC-1) shall be designed to fit within a cylindrical volume having an Outside diameter less than 1.822(m) Length less than 4.47(m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.10/30/2025In ProcessFALSE
- TBDThe magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components. All undefined harmonics are assumed to be less than +/-0.5 units.10/30/2025Not ApplicableFALSE
- TBDThe magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: 60 thermal cycles, 180 quenches 30000 power cycles.11/05/2025In ProcessFALSE
- TBDOver its planned life of 30(yrs) the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team10/30/2025In ProcessFALSE
IR-DRIFT-ESR-DRIFT(B1APF)
- TBDThe physical length of the drift space in the iron bore shall be less than or equal to 1.5(m). The iron drift bore design needs to comply with all the geometery constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].10/30/2025In ProcessFALSE
- TBDThe drift space shall be designed to accomodate a beam tube inner bore radius when warm, which is greater than or equal to 63(mm). The inner radius of the drift space must incorporate appropriate allowances for any structure required between the beam pipe and the iron bore surface for support. The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].10/30/2025In ProcessFALSE
- TBDThe drift space shall be designed to fit within the following constraints:10/30/2025In ProcessFALSE
- TBDThe drift space, iron coldmass and the associated cryostat (designated FC-4) shall be designed to fit within a cylindrical volume having an Outside diameter less than 2.324(m) Length less than 3.966(m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.10/30/2025In ProcessFALSE
- TBDThe magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components. All undefined harmonics are assumed to be less than +/-0.5 units.10/30/2025Not ApplicableFALSE
- TBDThe magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: 60 thermal cycles, 180 quenches 30000 power cycles.11/05/2025In ProcessFALSE
- TBDOver its planned life of 30(yrs) the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team10/30/2025In ProcessFALSE
IR-DRIFT-ESR-DRIFT(B1PF)
- TBDThe physical length of the drift space in the iron bore shall be less than or equal to 3(m). The iron drift bore design needs to comply with all the geometery constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].10/30/2025In ProcessFALSE
- TBDThe drift space shall be designed to accomodate a beam tube inner bore radius when warm, which is greater than or equal to 63(mm). The inner radius of the drift space must incorporate appropriate allowances for any structure required between the beam pipe and the iron bore surface for support. The magnet design needs to comply with all the geometry constraints set forth in EIC Interaction region constraints Document number[EIC-SEG-RSI-103].10/30/2025In ProcessFALSE
- TBDThe drift space shall be designed to fit within the following constraints:10/30/2025In ProcessFALSE
- TBDThe drift space, iron coldmass and the associated cryostat (designated FC-3) shall be designed to fit within a cylindrical volume having an Outside diameter less than 2.172(m) Length less than 3.248(m). All ancillary equipment and support structures which project outside this volume must be approved by EIC engineering to ensure the design does not impede any other EIC components or block egress.10/30/2025In ProcessFALSE
- TBDThe magnet bore field SHALL has the following multipole content. Notes: The units are specified in parts of 10-4 of the main components. All undefined harmonics are assumed to be less than +/-0.5 units.10/30/2025Not ApplicableFALSE
- TBDThe magnet is expected to sustain 30 years of EIC operation under nominal conditions. During these 30 operational years, the magnet is expected to survive the following: 60 thermal cycles, 180 quenches 30000 power cycles.11/05/2025In ProcessFALSE
- TBDOver its planned life of 30(yrs) the magnet Shall be able to survive a total integrated absorbed radiation dose from 1(MGy) to 20(MGy) without damage. The upper limit is to be taken as a guide for the design process. The actual upper limit the magnet will see will need to be confirmed by the EIC radiation physics team10/30/2025In ProcessFALSE
IR-ESR : Interaction Region ESR
- 6.06The IR lattice elements in the forward and rear final focus cryostats shall have large enough apertures to accommodate a minimum 13.5σ spread in x (horizontal direction) and a 22σ spread in y (vertical direction) with an RMS beam size based on the design emittances as specified in the MPT [EIC-SEG-RSI-005].08/20/2025ApprovedFALSE
- 6.06The IR electron lattice design shall adjust the phase advance between the IP and the arc on each side to support the correction of chromatic effects.08/20/2025ApprovedFALSE
- 6.06The IR electron lattice elements shall provide apertures in the near-IR quadrupoles large enough to transmit the synchrotron radiation created by magnets on the other side of the IP.08/20/2025ApprovedFALSE
- 6.06The IR electron lattice machine elements shall be designed to accommodate a beam divergence of 220µrad vertically and horizontally.08/20/2025ApprovedFALSE
- 6.06The IR electron lattice design shall accommodate a luminosity monitor to detect hard γ-rays downstream of the IP with respect to the electrons (Rear Side).08/20/2025ApprovedFALSE
- 6.06The IR electron lattice shall incorporate a Compton polarimeter between the upstream spin rotator and the upstream crab cavity.08/20/2025ApprovedFALSE
- 6.06The IR electron lattice shall provide space for detectors to tag scattered electrons on the downstream side of the IP (Rear Side).08/20/2025ApprovedFALSE
- 6.06The IR electron lattice shall incorporate a dipole just downstream of the IP to bend the beam away from the HSR line, for the purpose of luminosity monitoring and detection of off-energy electrons.08/20/2025ApprovedFALSE
- 6.06The forward side ESR crab cavity shall not interfere with the ZDC or the HSR lattice elements.08/20/2025ApprovedFALSE
- 6.06The detector background shall be kept below levels consistent with the detector requirements.08/20/2025ApprovedFALSE
- 6.06At the IP of the electron lattice the dispersion, its derivative and alpha shall all be 0, and the beta βx βy be chosen to deliver the colliding beam parameters set forth in the MPT [EIC- SEG-RSI-005].08/20/2025ApprovedFALSE
- 6.06The IR electron lattice design shall create a multiple of 180 deg horizontal phase advance between the two crab cavities.08/20/2025ApprovedFALSE
- 6.06It shall be possible to remove any horizontal/transverse coupling introduced due to the detector solenoid and ESR ring tilt in the IR electron lattice.08/20/2025ApprovedFALSE
- 6.06The IR electron lattice design shall be able to zero the Horizontal dispersion ηx = 0 in the long spin rotator solenoid module at 18 GeV.08/20/2025ApprovedFALSE
- 6.06For spin rotation purposes the IR electron lattice shall use two solenoid modules (“long” and “short”) each consisting of two solenoids with a number of quadrupoles between them. They shall be capable of rotating the electron Spin to the longitudinal direction at the IP, for all beam energies within the required range as set forth in in the MPT [EIC-SEG-RSI-005].08/20/2025ApprovedFALSE
- 6.06The IR electron lattice design shall eliminate any coupling introduced by the spin rotator solenoids.08/20/2025ApprovedFALSE
- 6.06The IR electron lattice design shall remove the dependence of spin on the horizontal amplitude of the particles.08/20/2025ApprovedFALSE
IR-ESR-CONT
- 6.06Place holder if not needed will remove, note have a requirement for the general IR above09/30/2025In ProcessFALSE
IR-ESR-CRYO
- 6.06Place holder if not needed will remove, note have a requirement for the general IR above09/30/2025In ProcessFALSE
IR-ESR-INST
- 6.06The EIC IR shall have the instrumentation needed to measure the bunch crabbing angle between the hadron crab cavities.09/30/2025ApprovedFALSE
IR-ESR-MAG
IR-ESR-MAG-LSR
- 6.06.06.01The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40[20yrs*2cycles] thermal cycles, 120[20yrs*2cycles*3quenchesperthermalcycle] quenches and 20000 [200operationaldays*20yrs*5power cycles per day] power cycles.09/25/2025ApprovedFALSE
- 6.06.06.01All components must withstand a radiation dose of TBD MGy, or shall be approved by EIC for use in a specific location as shown in the “BNL Materials” List TBD09/25/2025In ProcessFALSE
IR-ESR-MAG-SSR
- 6.06.02.02The magnet is expected to sustain 20 years of EIC operation under nominal conditions. During these 20 operational years, the magnet is expected to survive the following: 40[20yrs*2cycles] thermal cycles, 120[20yrs*2cycles*3quenchesperthermalcycle] quenches and 20000 [200operationaldays*20yrs*5power cycles per day] power cycles.05/16/2025ApprovedFALSE
- 6.06.02.02All components must withstand a radiation dose of TBD MGy, or shall be approved by EIC for use in a specific location as shown in the “BNL Materials” List TBD05/16/2025In ProcessFALSE
IR-ESR-PROT
- 6.06Place holder if not needed will remove, note have a requirement for the general IR above09/30/2025In ProcessFALSE
IR-ESR-RF
- 6.06Place holder if not needed will remove, note have a requirement for the general IR above09/30/2025In ProcessFALSE
IR-ESR-VAC
- 6.06Place holder if not needed will remove, note have a requirement for the general IR above09/30/2025In ProcessFALSE
IR-HSR : Interaction Region HSR
- 6.06The hadron beamline lattice elements through the IR shall have a large enough aperture throughout to accommodate 1. A minimum of 10σ spread in x and y of the incoming hadron beam for all store energies and beam emittances set forth in the MPT [EIC-SEG-RSI-005]. 2. A minimum of 7σ spread in x and 6σ spread in y of the incoming hadron beam, with a 2.5um normalized emittance at beam injection energy.08/20/2025ApprovedFALSE
- 6.06The apertures of the downstream, near-IR magnets, within the IR hadron lattice, shall be large enough to transport a 4 mrad cone of neutral particles from the IP without obstruction.08/20/2025ApprovedFALSE
- 6.06The apertures of the forward side near-IR magnets, within the IR hadron lattice, shall be large enough to transport particles having a transverse momentum of up to 1.3 GeV/c with a 275GeV proton beam without obstruction.08/20/2025ApprovedFALSE
- 6.06The apertures of the forward side, near-IR magnets, within the IR hadron lattice, shall accommodate off beam-axis detectors which can detect forward scattered protons with a transverse momentum of 0.2GeV to 1.3GeV at a proton beam energy of 275GeV.08/20/2025ApprovedFALSE
- 6.06The forward side HSR shall not have any magnets which physically interfere with the ZDC or the ESR crab cavities.08/20/2025ApprovedFALSE
- 6.06The first magnet on the forward side of the detector in the IP hadron lattice shall be designed to accommodate all necessary detector components to reconstruct tracks up to 20 mrad off the hadron beam axis.08/20/2025ApprovedFALSE
- 6.06The first magnet on the forward side of the detector in the IP hadron lattice shall be a dipole magnet that is sufficiently strong to act as a spectrometer for detecting interaction products from the hadron beams foreseen in the MPT [EIC-SEG-RSI-005].08/20/2025ApprovedFALSE
- 6.06The IR hadron lattice design shall accommodate the crossing angle required by the hadron beam at the IP to generate 25 mrad crossing angle for the colliding beams.08/20/2025ApprovedFALSE
- 6.06The downstream near-IR magnets of the IR hadron lattice design shall be designed to bend the beam away from the electron line.08/20/2025ApprovedFALSE
- 6.06The IR hadron lattice design shall provide the capability to correct the HSR orbit vertically and horizontally to remove the effect of unwanted kicks imparted to the beam by entering the Detector solenoid off axis.08/20/2025ApprovedFALSE
- 6.06The lattice design must ensure that the dipoles in the downstream near IR region of the IR hadron lattice design shall be such that the beam is restored to the correct trajectory (common to all configurations) as it exits the last near-IR magnet.08/20/2025ApprovedFALSE
- 6.06The design of the IR hadron lattice elements shall prevent any stray field from the hadron magnets affecting the electron beam.08/20/2025ApprovedFALSE
- 6.06At the IP of the hadron lattice the dispersion, its derivative and alpha shall all be 0, and the beta βx βy shall be chosen to deliver the colliding beam parameters set forth in the MPT [EIC-SEG-RSI-005].08/20/2025ApprovedFALSE
- 6.06The Phase advance between the crab cavities shall be as close as feasible to 180 degrees to limit dynamic aperture issues.08/20/2025ApprovedFALSE
- 6.06The IR hadron lattice design shall include a “Siberian Snake” consisting of four helical dipoles on one side of the IP Parallel to the RHIC 7DUMMY in RHIC sector 11.08/20/2025ApprovedFALSE
- 6.06The IR hadron lattice design shall include spin rotators consisting of four helical dipoles on both sides of the IP.08/20/2025ApprovedFALSE
- 6.06The IR hadron lattice shall incorporate a p-C polarimeter between a spin rotator and the IP.08/20/2025ApprovedFALSE
IR-HSR-CONT
- 6.06Place holder if not needed will remove, note have a requirement for the general IR above09/30/2025In ProcessFALSE
IR-HSR-CRYO
- 6.06Place holder if not needed will remove, note have a requirement for the general IR above09/30/2025In ProcessFALSE
IR-HSR-INST
- 6.06The EIC IR hadron bunch crabbing angle will be measured at a location outside of the IR using a special operating mode due to IR space constraints.09/30/2025ApprovedFALSE
IR-HSR-PROT
- 6.06Place holder if not needed will remove, note have a requirement for the general IR above09/30/2025In ProcessFALSE
IR-HSR-RF
- 6.06Place holder if not needed will remove, note have a requirement for the general IR above09/30/2025In ProcessFALSE
IR-HSR-VAC
- 6.06Place holder if not needed will remove, note have a requirement for the general IR above09/30/2025In ProcessFALSE
IR-INF : IR Infrastructure
IR-INT : IR Systems Integration
IR-MPS
IR-MPS-GENERAL
- 6.06All MPS required for the IR shall be included in the ESR and HSR protection and beam abort systems (see ESR&HSR requirement documents [5.9] and [5.10]).10/03/2025ApprovedFALSE
- 6.04.04.03.01.02The diameter shall be 90 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The length shall be 2 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The materials shall be C / Al / Cu02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The energy deposited during abort shall be 320 kJ02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The frequency of thermal cycle shall be 1 hour02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The window thickness shall be tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The window material shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Length shall be 50 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Internal diameter shall be 90 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Temperature sensors shall be yes02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The BPMs shall be 402/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Correctors shall be 402/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Corrector PS shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The power supply accuracy shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Cooling / pumping shall be yes02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The deflection shall be 2 mrad02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The length shall be 1.2 m02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The power supply shall be 1600 A02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The power supply accuracy shall be TBD02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Y-chamber aperture shall be 36 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02May need to add additional window requirements for other leg of Lambertson magnet TBD02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The gradient shall be 17 T/m02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The power supply shall be 1600 A02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The power supply accuracy shall be TBD02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The length shall be 70 cm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The aperture radius shall be 50 mm02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The number of kickers shall be 602/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Rise time shall be 900 ns02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Fall time shall be NA sec02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The flat top time shall be 13 us02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The waveshape shall be trap02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The painting shall be vertical02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The maximum field shall be 0.12 T02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The total deflection shall be 16 mrad02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The maximum current shall be TBD02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The maximum voltage shall be TBD02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The inductance with cable shall be TBD (uH)02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The Max rep rate shall be 100 kV/pC02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The flat top repeatability shall be NA Hz02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The flatness of flat top/pulse form shall be 1 %02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The cooling type shall be w (W,A)02/09/2026In ProcessFALSE
- 6.04.04.03.01.02The beam abort kicker shall be tbd %02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The location (Section) shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The dimension in W shall be tbd (ft)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The dimension in L shall be tbd (ft)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The dimension in H shall be tbd (ft)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The num magnets shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The mag gap shall be tbd (cm)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The rise time shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The fall time shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The flat top time shall be tbd (sq ft)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The waveshape shall be tbd (sq ft)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The flat top repeatability shall be tbd (sec)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The uniformity of the flattop shall be tbd (sec)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The deflecting Angle shall be tbd (sec)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The rep rate spec shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The output voltage Spec shall be tbd (Hz)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The output current spec shall be tbd (Volts)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The inductance with cable shall be tbd (Amps)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The cooling type shall be tbd02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The number of kickers shall be 502/09/2026In ProcessFALSE
- 6.04.04.03.02.02The Rise time shall be 900 ns02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The Fall time shall be NA sec02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The flat top time shall be 13 us02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The waveshape shall be trap02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The painting shall be horizontal02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The maximum field shall be TBD T02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The total deflection shall be TBD mrad02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The maximum current shall be 20 kA02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The maximum voltage shall be 33.3 kV02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The inductance with cable shall be TBD (uH)02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The Max rep rate shall be 1 pulse per minut02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The flat top repeatability shall be +10 / -20 %02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The flatness of flat top/pulse form shall be 0.45 mod02/09/2026In ProcessFALSE
- 6.04.04.03.02.02Beam abort kicker tbd02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The cooling type shall be water02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The dimensions shall be 40 x 10 mm02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The length shall be 0.5 / 2.6 / 2 m02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The materials shall be C-C / Gr/ SS02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The energy deposited during abort shall be 3.5 MJ02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The frequency of thermal cycle shall be 1 hour02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The window thickness shall be tbd mm02/09/2026In ProcessFALSE
- 6.04.04.03.02.02The window material shall be tbd tbd02/09/2026In ProcessFALSE
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR ESR Forward vac-1 shall be <1x10-10 Torr05/16/2025ReviewedFALSE
- 6.06All collimation required for the IR shall be included in the ESR and HSR collimation systems, see the ESR & HSR requirement documents [EIC-SEG-RSI-002] and [EIC-SEG- RSI-003].10/03/2025ApprovedFALSE
- 6.06.02.04The average vacuum level (after conditioning for >1000Ah) in the IR ESR Forward vac-1 shall be <1x10-10 Torr05/16/2025ReviewedFALSE
IR-SC : IR Superconducting Magnets
Detector Systems Requirements
General, functional and performance requirements associated with the Detector Systems of the Electron Ion Collider.
- NameWBSDescriptionUpdatedStatusTBD
DET : Detector System (WBS 6.10)
- 6.10The EIC detector system shall be capable to detect all reaction products, related to the scattered electron, the scattered parton, and the remnant proton/ion, such that the impact of incomplete kinematic coverage on the respective science is minimized.05/16/2025ApprovedFALSE
- 6.10.09The DAQ subsystem shall be designed to operate continuously, independent of the state of the other detector subsystems.05/16/2025ApprovedFALSE
- 6.10.03The tracking system must provide a low detection threshold for pions and kaons.05/16/2025ApprovedFALSE
- 6.10.03The barrel tracking system shall provide a low material budget: < 5% X0.05/16/2025ApprovedFALSE
- 6.10.03The tracking system must provide a minimum pT of 100 MeV π, 130 MeV K.05/16/2025ApprovedFALSE
- 6.10.03The tracking system must provide high hermicity in exclusive and diffractive channels.05/16/2025ApprovedFALSE
- 6.10.03The barrel tracking system shall provide a momentum resolution < 5%.05/16/2025ApprovedFALSE
- 6.10.03The barrel tracking system shall provide a momentum resolution of σp/p ~ 0.05%⨯p+0.5% in the rapidity region between -1 to 1.05/16/2025ApprovedFALSE
- 6.10.03The backward tracking system shall provide coverage in rapidity region between -3.5 to -1.0.05/16/2025ApprovedFALSE
- 6.10.03The backward tracking system shall provide a momentum resolution of σp/p ~ 0.05%⨯p+1.0% in the rapidity region between -2.5 to -1.0.05/16/2025ApprovedFALSE
- 6.10.03The backward tracking system shall provide a momentum resolution of σp/p ~ 0.10%⨯p+2.0% in the rapidity region between -3.5 to -2.5.05/16/2025ApprovedFALSE
- 6.10.03The backward tracking system shall provide a spatial resolution of σxy ∼ 30/pT ⊕ 20 μm in the rapidity region between -2.5 to -1.0.05/16/2025ApprovedFALSE
- 6.10.03The backward tracking system shall provide a spatial resolution of σxy ∼ 30/pT ⊕ 40 μm in the rapidity region between -3.5 to -2.5.05/16/2025ApprovedFALSE
- 6.10.03The forward tracking system shall provide coverage in rapidity region between -1.0 to 3.5.05/16/2025ApprovedFALSE
- 6.10.03The forward tracking system shall provide a momentum resolution of σp/p ~ 0.05%⨯p+1.0% in the rapidity region between 1.0 to 2.5.05/16/2025ApprovedFALSE
- 6.10.03The forward tracking system shall provide a spatial resolution of σxy ∼ 30/pT ⊕ 20 μm in the rapidity region between 1.0 to 2.5.05/16/2025ApprovedFALSE
- 6.10.03The forward tracking system shall provide a momentum resolution of σp/p ~ 0.10%⨯p+2.0% in the rapidity region between 2.5 to 3.5.05/16/2025ApprovedFALSE
- 6.10.03The forward tracking system shall provide a spatial resolution of σxy ∼ 30/pT ⊕ 40 μm in the rapidity region between 2.5 to 3.5.05/16/2025ApprovedFALSE
- 6.10The EIC central detector shall cleanly identify the electron-quark and electron-gluon scattering process to high efficiency by a combination of tracking, particle identification detectors and calorimeters.05/16/2025ApprovedFALSE
- 6.10.05System shall cover pseudo rapidity down to -3.5.05/16/2025ApprovedFALSE
- 6.10.05Energy resolution shall be s(E)/E ~ (2-3)%/sqrt(E) + (1-2)%05/16/2025ApprovedFALSE
- 6.10The electromagnetic calorimeter in the central detector shall be capable of providing a resolution of s(E)/E ~ 10%/sqrt(E) + (1-3)% in the barrel and forward region and s(E)/E ~ 2%/sqrt(E) + (1-3)% in the backward region.05/16/2025ApprovedFALSE
- 6.10The EIC central solenoid magnet combined with tracking detectors shall be capable of providing momentum resolution to a level of spT/pT (%) = 0.05pT + 0.5 in the barrel region and to 0.1pT + 1 in the forward and backward region.05/16/2025ApprovedFALSE
- 6.10The EIC central detector shall allow an electron-hadron separation with efficiency > 90% and a purity > 80%.05/16/2025ApprovedFALSE
- 6.10The EIC central solenoid magnet shall provide the means to momentum-analyze the charged particles associated with the hadrons produced in electron-quark / electron-gluon scattering process.05/16/2025ApprovedFALSE
- 6.10The EIC central solenoid magnet combined with tracking detectors shall be capable of providing momentum resolution to a level of spT/pT (%) = 0.05pT + 0.5 in the barrel region and to 0.1pT + 1 in the forward and backward region.05/16/2025ApprovedFALSE
- 6.10The EIC central detector system shall allow for particle identification of pions, kaons and protons over a wide range of momentum in the barrel, forward endcap and backward endcap regions.05/16/2025ApprovedFALSE
- 6.10The EIC central detector shall allow an electron-hadron separation with efficiency > 90% and a purity > 80%.05/16/2025ApprovedFALSE
- 6.10The EIC central detector system shall have the resolution of 3s separation for particle identification of pions, kaons and protons with momenta up to 10 GeV/c in the barrel region, up to 50 GeV/c in the forward endcap region, and up to 7 GeV/c in the backward endcap region.05/16/2025ApprovedFALSE
- 6.10The EIC central detector shall allow for heavy flavor and other long-living particle measurements through a vertex resolution.05/16/2025ApprovedFALSE
- 6.10The impact parameter resolution for heavy flavor measurements enabled by the vertex tracker shall be capable of providing a vertex resolution sxy of level 10/pT x 5 mm.05/16/2025ApprovedFALSE
- 6.10The EIC central detector shall allow for separation of single-photons from neutral-pion decay into two photons over a wide region in momentum.05/16/2025ApprovedFALSE
- 6.10The EIC central detector shall allow for separation of single-photons from neutral-pion decay into two photons, for momenta up to 10 GeV and to a level of TBD.05/16/2025ApprovedFALSE
- 6.10The EIC far-backward detector shall complement the central detector in the low- Q² electron scattering region below 1 GeV².05/16/2025ApprovedFALSE
- 6.10The acceptance of the far-backward electron detection shall be able to reach 0.0001 GeV < Q² < 0.1 GeV².05/16/2025ApprovedFALSE
- 6.10The hadron acceptance shall be sufficient to identify spectators and proton/ion remnants for electron scattering processes with far-forward particles.05/16/2025ApprovedFALSE
- 6.10.06Must cover pseudo rapidity range up to at least 3.5.05/16/2025ApprovedFALSE
- 6.10.07The EIC detector magnet must be consistent with the cryogenic capability of the supply.05/16/2025ApprovedFALSE
- 6.10The angular acceptance of the far-forward detection shall be capable of providing up to 20 mrad for charged particles and 4.5 mrad for neutrons.05/16/2025ApprovedFALSE
- 6.10The forward hadron detection shall provide sufficent energy resolution to identify the electron-scattering kinematics for those DIS cases where it must be determined from remnant hadron detection.05/16/2025ApprovedFALSE
- 6.10.06Shall have energy resolution s(E)/E ~ 50%/sqrt(E) + a 10 % constant term.05/16/2025ApprovedFALSE
- 6.10The hadronic calorimeter in the central detector shall be capable of providing a resolution of s(E)/E ~ 50%/sqrt(E) + 10% in the forward region.05/16/2025ApprovedFALSE
- 6.10The EIC far-forward detector shall measure proton/ion remnants with momenta up to less than 1% different from the proton/ion beam momentum.05/16/2025ApprovedFALSE
- 6.10The interaction region and detector system shall allow electron-ion collisions over the full energy range (√s = 29 GeV to 141 GeV), polarized beams, and a range of ion beams (√s = 29 GeV to 89 GeV), and allow measurements of luminosity and polarizations. The hadron polarimeters can be located at a different ring location.05/16/2025ApprovedFALSE
- 6.10The EIC detector shall be capable to operate over the full range of Center-Of-Mass energy (√s = 29 GeV to 141 GeV), at full luminosity, and for all ion species.05/16/2025ApprovedFALSE
- 6.10The EIC shall be upgradable with a second interaction region and detector system.05/16/2025ApprovedFALSE
- 6.10The detector shall be installed in one of two available interaction points for the EIC, currently selected as IP-6.05/16/2025ApprovedFALSE
- 6.10The central detector shall consist of a barrel augmented by a forward endcap and a backward endcap region forming the central detector to cover the rapidity range h between -4 and 4 for the measurements of electrons, photons, hadrons and jets.05/16/2025ApprovedFALSE
- 6.10The central detector shall be augmented with detectors in the far backward region to measure scattered electrons at small scattering angles.05/16/2025ApprovedFALSE
- 6.10The central detector shall be augmented with detectors in the far forward region to measure proton and ion remnants at small scattering angles.05/16/2025ApprovedFALSE
- 6.10The polarimetry and luminosity detectors shall measure the electron and proton beam polarization and monitor the instantaneous collision luminosities.05/16/2025ApprovedFALSE
- 6.10.11The luminosity detectors shall be composed of a Pair Spectrometer (PS) with 2 stations (above and below zero degree line) with tracking layers in front, and a direct photon CAL along the zero degree line.05/16/2025ApprovedFALSE
- 6.10.11The PS CAL energy resolution for electrons shall be s(E)/E < 15%/sqrt(E) .05/16/2025ApprovedFALSE
- 6.10.11The PS CALs, direct CAL, and trackers shall all provide timing resolution sufficient to resolve 10ns beam buckets05/16/2025ApprovedFALSE
- 6.10.11The PS CAL dimensions shall be 18 [cm] in X , 18 [cm] in Y, and 18 [cm] in Z05/16/2025ApprovedFALSE
- 6.10.11The PS CAL readout granularity shall be 3 [mm] in X, 3 [mm] in Y, and 3 [mm] in Z05/16/2025ApprovedFALSE
- 6.10.11The PS tracker dimensions shall cover the transverse face of the calorimeter with no acceptance gaps.05/16/2025ApprovedFALSE
- 6.10.11The direct photon CAL dimensions is expected to be similar to the PS CAL05/16/2025ApprovedFALSE
- 6.10.11The direct photon CAL energy resolution for electrons shall be s(E)/E < 15%/sqrt(E).05/16/2025ApprovedFALSE
- 6.10.11The direct photon CAL readout granularity is expecte to be more course grained than the PS CAL05/16/2025ApprovedFALSE
- 6.10.11The PS must measure the energy and position of e+e- pairs from bremsstrahlung conversions. The direct photon CAL must measure the energy of the large bremsstrahlung flux while mitigating the high rates of background synchrotron radiation.05/16/2025ApprovedFALSE
- 6.10.11The PS CAL energy resolution for electrons shall be s(E)/E < 15%/sqrt(E) .05/16/2025ApprovedFALSE
- 6.10.11The PS CALs, direct CAL, and trackers shall all provide timing resolution sufficient to resolve 10ns beam buckets05/16/2025ApprovedFALSE
- 6.10.11The PS CAL dimensions shall be 18 [cm] in X , 18 [cm] in Y, and 18 [cm] in Z05/16/2025ApprovedFALSE
- 6.10.11The PS CAL readout granularity shall be 3 [mm] in X, 3 [mm] in Y, and 3 [mm] in Z05/16/2025ApprovedFALSE
- 6.10.11The PS tracker dimensions shall cover the transverse face of the calorimeter with no acceptance gaps.05/16/2025ApprovedFALSE
- 6.10.11The direct photon CAL dimensions is expected to be similar to the PS CAL05/16/2025ApprovedFALSE
- 6.10.11The direct photon CAL energy resolution for electrons shall be s(E)/E < 15%/sqrt(E).05/16/2025ApprovedFALSE
- 6.10.11The direct photon CAL readout granularity is expecte to be more course grained than the PS CAL05/16/2025ApprovedFALSE
- 6.10The detector and its sub-systems will be functionally integrated with one another, with the interaction region components, and with the facility infrastructure.05/16/2025ApprovedFALSE
- 6.10.11OMD will be integrated into the accelerator vacuum system.08/06/2025ApprovedFALSE
- 6.10.11OFFM tracker shall have granularity of 500um (pixels) with charge-sharing to achieve spatial resolution < 20um per hit.05/16/2025ApprovedFALSE
- 6.10.11OFFM will have 2 layers per station05/16/2025ApprovedFALSE
- 6.10.11OFFM will have 2 stations , separated by 2m05/16/2025ApprovedFALSE
- 6.10.11OFFM system dimensions will be 10[cm] in X and 20 [cm] in Y (to be determined)05/16/2025ApprovedFALSE
- 6.10.11The OMDs need cooling of ~60 Watts per active layer,05/16/2025ApprovedFALSE
- 6.10.11OFFM tracker will have timing resolution X<35ps05/16/2025ApprovedFALSE
- 6.10.11OMD layers should be movable in X and Y and extractable to the home position during the injection with a prediction of … [TBD]08/05/2025ApprovedFALSE
- 6.10The detector and its sub-systems will require adequate infrastructure resources (i.e. power, cooling, cryogens, etc.) to ensure it can function reliably during continous operations.05/16/2025ApprovedFALSE
- 6.10.03The tracking system shall provide power supplies for bias and low voltages.05/16/2025ApprovedFALSE
- 6.10.03The tracking system shall provide cooling (air/liquid) for silicon sensors.05/16/2025ApprovedFALSE
- 6.10.03The tracking system shall provide a gas mixing system for gaseous detectors.05/16/2025ApprovedFALSE
- 6.10The detector and its sub-systems will require adequate infrastructure capabilities (i.e. crane capacity, floor loading, physical space, etc.) to effectively support operations and maintenance.05/16/2025ApprovedFALSE
- 6.10The sub-systems and their support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.03The tracking system shall provide power supplies for bias and low voltages.05/16/2025ApprovedFALSE
- 6.10.03The tracking system shall provide a gas mixing system for gaseous detectors.05/16/2025ApprovedFALSE
- 6.10A gap of at least 10 cm must be provided between the interior face of the Hadron endcap and the adjacent face of the central detector.05/16/2025ApprovedFALSE
- 6.10The EIC central detector shall require a region free of interaction region magnets and other large collider equipment of at least 4.5 m in the backward and 5m in the forward direction around the interaction point.05/16/2025ApprovedFALSE
- 6.10A gap of at least 10 cm must be provided between the interior face of the Lepton endcap and the adjacent face of the central detector.05/16/2025ApprovedFALSE
- 6.10The configuration of the sub-systems within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10A structural support infrastructure must be provided that supports the weight of the detectors and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
- 6.10The detector systems must fit within the available space in the experimental hall, and be consistent with the available infrastructure and resources.05/16/2025ApprovedFALSE
- 6.10The detector and its sub-systems will require adequate infrastructure resources (i.e. power, cooling, cryogens, etc.) to ensure it can function reliably during continous operations.05/16/2025ApprovedFALSE
- 6.10.03The tracking system shall provide power supplies for bias and low voltages.05/16/2025ApprovedFALSE
- 6.10.03The tracking system shall provide cooling (air/liquid) for silicon sensors.05/16/2025ApprovedFALSE
- 6.10.03The tracking system shall provide a gas mixing system for gaseous detectors.05/16/2025ApprovedFALSE
- 6.10The detector and its sub-systems will require adequate infrastructure capabilities (i.e. crane capacity, floor loading, physical space, etc.) to effectively support operations and maintenance.05/16/2025ApprovedFALSE
- 6.10The sub-systems and their support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.03The tracking system shall provide power supplies for bias and low voltages.05/16/2025ApprovedFALSE
- 6.10.03The tracking system shall provide a gas mixing system for gaseous detectors.05/16/2025ApprovedFALSE
- 6.10A gap of at least 10 cm must be provided between the interior face of the Hadron endcap and the adjacent face of the central detector.05/16/2025ApprovedFALSE
- 6.10The EIC central detector shall require a region free of interaction region magnets and other large collider equipment of at least 4.5 m in the backward and 5m in the forward direction around the interaction point.05/16/2025ApprovedFALSE
- 6.10A gap of at least 10 cm must be provided between the interior face of the Lepton endcap and the adjacent face of the central detector.05/16/2025ApprovedFALSE
- 6.10The configuration of the sub-systems within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10A structural support infrastructure must be provided that supports the weight of the detectors and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
DET-TRAK : Tracking Systems (WBS 6.10.03)
- 6.10.03The tracking systems shall provide coordinate measurements of charged particles traversing a magnetic field, and provide a sufficient lever arm to provide measurements of the momenta and angles of the particles.05/16/2025ApprovedFALSE
- 6.10.03The tracking system must provide a low detection threshold for pions and kaons.05/16/2025ApprovedFALSE
- 6.10.03The barrel tracking system shall provide a low material budget: < 5% X0.05/16/2025ApprovedFALSE
- 6.10.03The tracking system must provide a minimum pT of 100 MeV π, 130 MeV K.05/16/2025ApprovedFALSE
- 6.10.03Tracking functionality shall cover the backward, the barrel and the forward region.05/16/2025ApprovedFALSE
- 6.10.03The tracking system must provide high hermicity in exclusive and diffractive channels.05/16/2025ApprovedFALSE
- 6.10.03The barrel tracking system shall provide a momentum resolution < 5%.05/16/2025ApprovedFALSE
- 6.10.03The barrel tracking system shall provide a momentum resolution of σp/p ~ 0.05%⨯p+0.5% in the rapidity region between -1 to 1.05/16/2025ApprovedFALSE
- 6.10.03The backward tracking system shall provide coverage in rapidity region between -3.5 to -1.0.05/16/2025ApprovedFALSE
- 6.10.03The backward tracking system shall provide a momentum resolution of σp/p ~ 0.05%⨯p+1.0% in the rapidity region between -2.5 to -1.0.05/16/2025ApprovedFALSE
- 6.10.03The backward tracking system shall provide a momentum resolution of σp/p ~ 0.10%⨯p+2.0% in the rapidity region between -3.5 to -2.5.05/16/2025ApprovedFALSE
- 6.10.03The backward tracking system shall provide a spatial resolution of σxy ∼ 30/pT ⊕ 20 μm in the rapidity region between -2.5 to -1.0.05/16/2025ApprovedFALSE
- 6.10.03The backward tracking system shall provide a spatial resolution of σxy ∼ 30/pT ⊕ 40 μm in the rapidity region between -3.5 to -2.5.05/16/2025ApprovedFALSE
- 6.10.03The forward tracking system shall provide coverage in rapidity region between -1.0 to 3.5.05/16/2025ApprovedFALSE
- 6.10.03The forward tracking system shall provide a momentum resolution of σp/p ~ 0.05%⨯p+1.0% in the rapidity region between 1.0 to 2.5.05/16/2025ApprovedFALSE
- 6.10.03The forward tracking system shall provide a spatial resolution of σxy ∼ 30/pT ⊕ 20 μm in the rapidity region between 1.0 to 2.5.05/16/2025ApprovedFALSE
- 6.10.03The forward tracking system shall provide a momentum resolution of σp/p ~ 0.10%⨯p+2.0% in the rapidity region between 2.5 to 3.5.05/16/2025ApprovedFALSE
- 6.10.03The forward tracking system shall provide a spatial resolution of σxy ∼ 30/pT ⊕ 40 μm in the rapidity region between 2.5 to 3.5.05/16/2025ApprovedFALSE
- 6.10.03The tracking system shall provide a measurement of the vertex coordinates in the barrel region.05/16/2025ApprovedFALSE
- 6.10.03The tracking system must provide good impact parameter resolution for heavy flavor measurements.05/16/2025ApprovedFALSE
- 6.10.03The barrel tracking system shall provide a spatial resolution of σxy ∼ 20/pT ⊕ 5 μm in the rapidity region between -1 to 1.05/16/2025ApprovedFALSE
- 6.10.03The tracking system will be functionally integrated with the other detectors, with the interaction region components, and with the facility infrastructure.05/16/2025ApprovedFALSE
- 6.10.03The tracking system will require adequate infrastructure resources (i.e. power, cooling, cryogens, etc.) to ensure it can function reliably during continous operations.05/16/2025ApprovedFALSE
- 6.10.03The tracking system shall provide cooling (air/liquid) for silicon sensors.05/16/2025ApprovedFALSE
- 6.10.03The tracking system shall provide power supplies for bias and low voltages.05/16/2025ApprovedFALSE
- 6.10.03The tracking system shall provide a gas mixing system for gaseous detectors.05/16/2025ApprovedFALSE
- 6.10.03The tracking system will require electrical power to support the operation of the detector sub-components and electronics.05/16/2025ApprovedFALSE
- 6.10.03The tracking system will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.03The tracking system will require communications infrastructure to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.03The tracking system and its support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.03The tracking system shall provide cooling (air/liquid) for silicon sensors.05/16/2025ApprovedFALSE
- 6.10.03The tracking system shall provide power supplies for bias and low voltages.05/16/2025ApprovedFALSE
- 6.10.03The tracking system shall provide a gas mixing system for gaseous detectors.05/16/2025ApprovedFALSE
- 6.10.03The tracking system will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.03The tracking system will require communications infrastructure to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.03The tracking system will require electrical power to support the operation of the detector sub-components and electronics.05/16/2025ApprovedFALSE
- 6.10.03The tracking system must fit within the constraints of the surrounding detector sub-systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.03The configuration of the tracking system within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10.03The tracking system must fit within the constraints of the surrounding detector sub-systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.03A structural support infrastructure must be provided that supports the weight of the tracking system and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
- 6.10.03The tracking system will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor.05/16/2025ApprovedFALSE
- 6.10.03The tracking system must fit within the available space in the experimental hall, and be consistent with the available infrastructure and resources.05/16/2025ApprovedFALSE
- 6.10.03The tracking system and its support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.03The tracking system shall provide cooling (air/liquid) for silicon sensors.05/16/2025ApprovedFALSE
- 6.10.03The tracking system shall provide power supplies for bias and low voltages.05/16/2025ApprovedFALSE
- 6.10.03The tracking system shall provide a gas mixing system for gaseous detectors.05/16/2025ApprovedFALSE
- 6.10.03The tracking system will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.03The tracking system will require communications infrastructure to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.03The tracking system will require electrical power to support the operation of the detector sub-components and electronics.05/16/2025ApprovedFALSE
- 6.10.03The tracking system must fit within the constraints of the surrounding detector sub-systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.03The configuration of the tracking system within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10.03The tracking system must fit within the constraints of the surrounding detector sub-systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.03A structural support infrastructure must be provided that supports the weight of the tracking system and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
- 6.10.03The tracking system will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor.05/16/2025ApprovedFALSE
DET-TRAK-BAR : Barrel Tracking Systems
- DET-TRAK-BAR EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.03The barrel tracking system shall provide a momentum resolution < 5%.05/16/2025ApprovedFALSE
- 6.10.03The barrel tracking system shall provide a low material budget: < 5% X0.05/16/2025ApprovedFALSE
- 6.10.03The barrel tracking system shall provide a momentum resolution of σp/p ~ 0.05%⨯p+0.5% in the rapidity region between -1 to 1.05/16/2025ApprovedFALSE
- 6.10.03The barrel tracking system shall provide a spatial resolution of σxy ∼ 20/pT ⊕ 5 μm in the rapidity region between -1 to 1.05/16/2025ApprovedFALSE
DET-TRAK-BCK : Backward Tracking Systems
- DET-TRAK-BCK EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.03The backward tracking system shall provide coverage in rapidity region between -3.5 to -1.0.05/16/2025ApprovedFALSE
- 6.10.03The backward tracking system shall provide a momentum resolution of σp/p ~ 0.05%⨯p+1.0% in the rapidity region between -2.5 to -1.0.05/16/2025ApprovedFALSE
- 6.10.03The backward tracking system shall provide a momentum resolution of σp/p ~ 0.10%⨯p+2.0% in the rapidity region between -3.5 to -2.5.05/16/2025ApprovedFALSE
- 6.10.03The backward tracking system shall provide a spatial resolution of σxy ∼ 30/pT ⊕ 20 μm in the rapidity region between -2.5 to -1.0.05/16/2025ApprovedFALSE
- 6.10.03The backward tracking system shall provide a spatial resolution of σxy ∼ 30/pT ⊕ 40 μm in the rapidity region between -3.5 to -2.5.05/16/2025ApprovedFALSE
DET-TRAK-FWD : Forward Tracking Systems
- DET-TRAK-FWD EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.03The forward tracking system shall provide coverage in rapidity region between -1.0 to 3.5.05/16/2025ApprovedFALSE
- 6.10.03The forward tracking system shall provide a momentum resolution of σp/p ~ 0.05%⨯p+1.0% in the rapidity region between 1.0 to 2.5.05/16/2025ApprovedFALSE
- 6.10.03The forward tracking system shall provide a momentum resolution of σp/p ~ 0.10%⨯p+2.0% in the rapidity region between 2.5 to 3.5.05/16/2025ApprovedFALSE
- 6.10.03The forward tracking system shall provide a spatial resolution of σxy ∼ 30/pT ⊕ 20 μm in the rapidity region between 1.0 to 2.5.05/16/2025ApprovedFALSE
- 6.10.03The forward tracking system shall provide a spatial resolution of σxy ∼ 30/pT ⊕ 40 μm in the rapidity region between 2.5 to 3.5.05/16/2025ApprovedFALSE
DET-PID : Particle Identification Systems (WBS 6.10.04)
- 6.10.04The PID detector systems shall provide a means to separately identify pions, kaons and protons following the electron-ion collision.05/16/2025ApprovedFALSE
- 6.10.04The particle identification systems shall consist of backward, barrel, and forward sub-systems.05/16/2025ApprovedFALSE
- 6.10.04The PID detector system will be functionally integrated with the other detectors, with the interaction region components, and with the facility infrastructure.05/16/2025ApprovedFALSE
- 6.10.04The PID detector system will require adequate infrastructure resources (i.e. power, cooling, cryogens, etc.) to ensure it can function reliably during continous operations.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the barrel region will require appropriate support DC voltage and power for operating detector sensors and associated electronics. HV up to 2000V negative is for 5x72 channels and LV for 4x72 channels.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the barrel region will require cooling and removal of heat generated by detector electronics and digitizers.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the barrel region will require detector signal transmission electronics and lines defined by the DAQ system.05/16/2025ApprovedFALSE
- 6.10.04The DIRC system requires protective dry nitrogen gas flow to the quartz bars and prism.01/15/2026ApprovedFALSE
- 6.10.04Will require DC voltage supply of approximately 11V. There will be 2 lines for each of the 144 connections .05/16/2025ApprovedFALSE
- 6.10.04Will require sensor voltage supply of approximately 200V. There will be 2 lines for each of the 144 connections .05/16/2025ApprovedFALSE
- 6.10.04Will require DAQ fiber optics. Two lines for each of the 144 connections.05/16/2025ApprovedFALSE
- 6.10.04Will require cooling to remove 4kW of heat05/16/2025ApprovedFALSE
- 6.10.04The PID detector in the backward region will require a continuous flow of dry nitrogen to protect the aerogel radiator.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the forward region will require appropriate support DC voltage and power for operating detector sensors and associated electronics. The expected LV are 70V/1mA 312 channels, 4V/5A 312 channels, 3V/5A 312 channels 4V/2A 312 channels.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the forward region will require cooling and removal of heat generated by detector electronics and digitizers. Expect coolant at “room” temperature to remove 2.75kW heat for each of the 6 sectors.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the forward region will require detector signal transmission electronics and lines defined by the DAQ system.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the forward region will require survey marks or hooks for survey tools to determine its physical location in the barrel as a whole and its sub-components.05/16/2025ApprovedFALSE
- 6.10.04The RICH detector will require a continuous recirculating flow of radiator gas. This will require a gas recovery system operating at high pressure outside the detector on the platform. (Design authority required)05/16/2025ApprovedFALSE
- 6.10.04The RICH detector will require a continuous flow of dry nitrogen to protect the aerogel radiator.05/16/2025ApprovedFALSE
- 6.10.04The RICH detector will require sub zero cooling for its photo-sensors at -30deg C. Cooling lines with insulation required.05/16/2025ApprovedFALSE
- 6.10.04Input from tracking with an angular resolution of about 0.Xmrad is required to reach full performance of the dRICH.05/16/2025ApprovedFALSE
- 6.10.04Will require DC voltage supply of approximately 11V. There will be 2 lines for each of the 212 connections .05/16/2025ApprovedFALSE
- 6.10.04Will require sensor voltage supply of approximately 200V. There will be 2 lines for each of the 212 connections .05/16/2025ApprovedFALSE
- 6.10.04Will require DAQ fiber optics. Two lines for each of the 212 connections.05/16/2025ApprovedFALSE
- 6.10.04Will require cooling to remove 13kW of heat05/16/2025ApprovedFALSE
- 6.10.04The PID detectors will require electrical power to support the operation of the detector sub-components and electronics.05/16/2025ApprovedFALSE
- 6.10.04The PID detectors will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.04The PID detectors will require communications infrastructure to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.04The PID detector system and its support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the barrel region will require appropriate support DC voltage and power for operating detector sensors and associated electronics. HV up to 2000V negative is for 5x72 channels and LV for 4x72 channels.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the barrel region will require cooling and removal of heat generated by detector electronics and digitizers.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the barrel region will require detector signal transmission electronics and lines defined by the DAQ system.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the barrel region will require survey marks or hooks for survey tools to determine its physical location in the barrel as a whole and its sub-components.05/16/2025ApprovedFALSE
- 6.10.04The PID detector requires a 0.5mrad tracking resolution as input to reach its peak performance.05/16/2025ApprovedFALSE
- 6.10.04Will require DC voltage supply of approximately 11V. There will be 2 lines for each of the 144 connections .05/16/2025ApprovedFALSE
- 6.10.04Will require sensor voltage supply of approximately 200V. There will be 2 lines for each of the 144 connections .05/16/2025ApprovedFALSE
- 6.10.04Will require DAQ fiber optics. Two lines for each of the 144 connections.05/16/2025ApprovedFALSE
- 6.10.04Will require cooling to remove 4kW of heat05/16/2025ApprovedFALSE
- 6.10.04The PID detector in the backward region will require a continuous flow of dry nitrogen to protect the aerogel radiator.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the forward region will require appropriate support DC voltage and power for operating detector sensors and associated electronics. The expected LV are 70V/1mA 312 channels, 4V/5A 312 channels, 3V/5A 312 channels 4V/2A 312 channels.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the forward region will require cooling and removal of heat generated by detector electronics and digitizers. Expect coolant at “room” temperature to remove 2.75kW heat for each of the 6 sectors.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the forward region will require detector signal transmission electronics and lines defined by the DAQ system.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the forward region will require survey marks or hooks for survey tools to determine its physical location in the barrel as a whole and its sub-components.05/16/2025ApprovedFALSE
- 6.10.04The RICH detector will require a continuous recirculating flow of radiator gas. This will require a gas recovery system operating at high pressure outside the detector on the platform. (Design authority required)05/16/2025ApprovedFALSE
- 6.10.04The RICH detector will require a continuous flow of dry nitrogen to protect the aerogel radiator.05/16/2025ApprovedFALSE
- 6.10.04The RICH detector will require sub zero cooling for its photo-sensors at -30deg C. Cooling lines with insulation required.05/16/2025ApprovedFALSE
- 6.10.04Input from tracking with an angular resolution of about 0.Xmrad is required to reach full performance of the dRICH.05/16/2025ApprovedFALSE
- 6.10.04Will require DC voltage supply of approximately 11V. There will be 2 lines for each of the 212 connections .05/16/2025ApprovedFALSE
- 6.10.04Will require sensor voltage supply of approximately 200V. There will be 2 lines for each of the 212 connections .05/16/2025ApprovedFALSE
- 6.10.04Will require DAQ fiber optics. Two lines for each of the 212 connections.05/16/2025ApprovedFALSE
- 6.10.04Will require cooling to remove 13kW of heat05/16/2025ApprovedFALSE
- 6.10.04The PID detectors will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.04The PID detectors will require communications infrastructure to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.04The PID detectors will require electrical power to support the operation of the detector sub-components and electronics.05/16/2025ApprovedFALSE
- 6.10.04The PID detectors and support system must fit within the constraints of the surrounding detector sub-systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.04The configuration of the PID detector system within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10.04A structural support infrastructure must be provided that supports the weight of the PID detector system and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the barrel region will require appropriate support structure to hold the detector in place as well as all sub-detector systems that reside within its bore.05/16/2025ApprovedFALSE
- 6.10.04TOF will weigh approximately 70 KG, and will require structural support to maintain it's position and stability.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the forward region will require appropriate support structure to hold the detector in place.05/16/2025ApprovedFALSE
- 6.10.04The PID detectors will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the forward region will require appropriate support structure to hold the detector in place.05/16/2025ApprovedFALSE
- 6.10.04The PID detectors and support system must fit within the constraints of the surrounding detector sub-systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.04The PID detector system must fit within the available space in the experimental hall, and be consistent with the available infrastructure and resources.05/16/2025ApprovedFALSE
- 6.10.04The PID detector system and its support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the barrel region will require appropriate support DC voltage and power for operating detector sensors and associated electronics. HV up to 2000V negative is for 5x72 channels and LV for 4x72 channels.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the barrel region will require cooling and removal of heat generated by detector electronics and digitizers.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the barrel region will require detector signal transmission electronics and lines defined by the DAQ system.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the barrel region will require survey marks or hooks for survey tools to determine its physical location in the barrel as a whole and its sub-components.05/16/2025ApprovedFALSE
- 6.10.04The PID detector requires a 0.5mrad tracking resolution as input to reach its peak performance.05/16/2025ApprovedFALSE
- 6.10.04Will require DC voltage supply of approximately 11V. There will be 2 lines for each of the 144 connections .05/16/2025ApprovedFALSE
- 6.10.04Will require sensor voltage supply of approximately 200V. There will be 2 lines for each of the 144 connections .05/16/2025ApprovedFALSE
- 6.10.04Will require DAQ fiber optics. Two lines for each of the 144 connections.05/16/2025ApprovedFALSE
- 6.10.04Will require cooling to remove 4kW of heat05/16/2025ApprovedFALSE
- 6.10.04The PID detector in the backward region will require a continuous flow of dry nitrogen to protect the aerogel radiator.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the forward region will require appropriate support DC voltage and power for operating detector sensors and associated electronics. The expected LV are 70V/1mA 312 channels, 4V/5A 312 channels, 3V/5A 312 channels 4V/2A 312 channels.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the forward region will require cooling and removal of heat generated by detector electronics and digitizers. Expect coolant at “room” temperature to remove 2.75kW heat for each of the 6 sectors.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the forward region will require detector signal transmission electronics and lines defined by the DAQ system.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the forward region will require survey marks or hooks for survey tools to determine its physical location in the barrel as a whole and its sub-components.05/16/2025ApprovedFALSE
- 6.10.04The RICH detector will require a continuous recirculating flow of radiator gas. This will require a gas recovery system operating at high pressure outside the detector on the platform. (Design authority required)05/16/2025ApprovedFALSE
- 6.10.04The RICH detector will require a continuous flow of dry nitrogen to protect the aerogel radiator.05/16/2025ApprovedFALSE
- 6.10.04The RICH detector will require sub zero cooling for its photo-sensors at -30deg C. Cooling lines with insulation required.05/16/2025ApprovedFALSE
- 6.10.04Input from tracking with an angular resolution of about 0.Xmrad is required to reach full performance of the dRICH.05/16/2025ApprovedFALSE
- 6.10.04Will require DC voltage supply of approximately 11V. There will be 2 lines for each of the 212 connections .05/16/2025ApprovedFALSE
- 6.10.04Will require sensor voltage supply of approximately 200V. There will be 2 lines for each of the 212 connections .05/16/2025ApprovedFALSE
- 6.10.04Will require DAQ fiber optics. Two lines for each of the 212 connections.05/16/2025ApprovedFALSE
- 6.10.04Will require cooling to remove 13kW of heat05/16/2025ApprovedFALSE
- 6.10.04The PID detectors will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.04The PID detectors will require communications infrastructure to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.04The PID detectors will require electrical power to support the operation of the detector sub-components and electronics.05/16/2025ApprovedFALSE
- 6.10.04The PID detectors and support system must fit within the constraints of the surrounding detector sub-systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.04The configuration of the PID detector system within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10.04A structural support infrastructure must be provided that supports the weight of the PID detector system and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the barrel region will require appropriate support structure to hold the detector in place as well as all sub-detector systems that reside within its bore.05/16/2025ApprovedFALSE
- 6.10.04TOF will weigh approximately 70 KG, and will require structural support to maintain it's position and stability.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the forward region will require appropriate support structure to hold the detector in place.05/16/2025ApprovedFALSE
- 6.10.04The PID detectors will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the forward region will require appropriate support structure to hold the detector in place.05/16/2025ApprovedFALSE
- 6.10.04The PID detectors and support system must fit within the constraints of the surrounding detector sub-systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
DET-PID-BAR : Barrel Particle ID Systems (WBS 6.10.04)
- 6.10The EIC detector system shall be capable to detect all reaction products, related to the scattered electron, the scattered parton, and the remnant proton/ion, such that the impact of incomplete kinematic coverage on the respective science is minimized.05/16/2025In ProcessFALSE
DET-PID-BAR-DIRC : Barrel DIRC Systems (WBS 6.10.04)
- 6.10.04The barrel DIRC detector is responsible for high momenta particle identification.05/16/2025ApprovedFALSE
- 6.10.04The PID detector in the barrel region shall differentiate between pions, kaons and protons.05/16/2025ApprovedFALSE
- 6.10.04The DIRC system will provide 3 sigma pi/K separation above 1 GeV/c.05/16/2025ApprovedFALSE
- DET-PID-BAR-DIRC EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.04The PID Detector in the barrel region will require appropriate support structure to hold the detector in place as well as all sub-detector systems that reside within its bore.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the barrel region will require appropriate support DC voltage and power for operating detector sensors and associated electronics. HV up to 2000V negative is for 5x72 channels and LV for 4x72 channels.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the barrel region will require cooling and removal of heat generated by detector electronics and digitizers.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the barrel region will require detector signal transmission electronics and lines defined by the DAQ system.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the barrel region will require survey marks or hooks for survey tools to determine its physical location in the barrel as a whole and its sub-components.05/16/2025ApprovedFALSE
- 6.10.04The PID detector requires a 0.5mrad tracking resolution as input to reach its peak performance.05/16/2025ApprovedFALSE
- 6.10.04The DIRC system requires protective dry nitrogen gas flow to the quartz bars and prism.01/15/2026ApprovedFALSE
DET-PID-BAR-TOF : Barrel Time of Flight Systems (WBS 6.10.04)
- 6.10.04The barrel time of flight detector is responsible for low momenta particle identification.05/16/2025ApprovedFALSE
- 6.10.04The time of flight system will provide separation of pions from kaons to mach the high-performance DIRC detector in particle momentum range.05/16/2025ApprovedFALSE
- 6.10.04The time of flight system will provide 3 sigma pi/K separation from 0.2 up to 1.2 GeV/c.05/16/2025ApprovedFALSE
- DET-PID-BAR-TOF EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.04Will require DC voltage supply of approximately 11V. There will be 2 lines for each of the 144 connections .05/16/2025ApprovedFALSE
- 6.10.04Will require sensor voltage supply of approximately 200V. There will be 2 lines for each of the 144 connections .05/16/2025ApprovedFALSE
- 6.10.04Will require DAQ fiber optics. Two lines for each of the 144 connections.05/16/2025ApprovedFALSE
- 6.10.04Will require cooling to remove 4kW of heat05/16/2025ApprovedFALSE
- 6.10.04TOF will weigh approximately 70 KG, and will require structural support to maintain it's position and stability.05/16/2025ApprovedFALSE
DET-PID-BCK : Backward Particle ID Systems (WBS 6.10.04)
- 6.10The PID detector in the backward region shall provide identification of charged hadronic tracks by species of pions, kaons and protons05/16/2025In ProcessFALSE
DET-PID-BCK-RICH : Backward Ring Imaging Cerenkov Counter (WBS 6.10.04)
- 6.10.04The PID detector in the backward region is responsible for particle identification of charged hadrons.05/16/2025ApprovedFALSE
- 6.10.04The PID detector in the backward region shall differentiate between pions, kaons and protons.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the backward region will require appropriate support structure to hold the detector in place.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the backward region will require appropriate support DC voltage and power for operating detector sensors and associated electronics. HV up to 2000V negative for 68x5 channels and LV for 68x4 channels.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the backward region will require cooling and removal of heat generated by detector electronics and digitizers.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the backward region will require survey marks or hooks for survey tools to determine its physical location in the barrel as a whole and its sub-components.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the backward region will require detector signal transmission electronics and lines defined by the DAQ system.05/16/2025ApprovedFALSE
- 6.10.04The particle identification system will provide 3 sigma pi/K separation from 1 up to 7 GeV/c.05/16/2025ApprovedFALSE
- DET-PID-BCK-RICH EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.04The PID detector in the backward region will require a continuous flow of dry nitrogen to protect the aerogel radiator.05/16/2025ApprovedFALSE
DET-PID-FWD : Forward Particle ID Systems (WBS 6.10.04)
- 6.10The EIC detector system shall be capable to detect all reaction products, related to the scattered electron, the scattered parton, and the remnant proton/ion, such that the impact of incomplete kinematic coverage on the respective science is minimized.05/16/2025In ProcessFALSE
DET-PID-FWD-RICH : Forward Ring Imaging Cerenkov Counter (WBS 6.10.04)
- 6.10.04The forward RICH detector is responsible for high momenta particle identification.05/16/2025ApprovedFALSE
- 6.10.04The PID detector in the forward region shall differentiate between pions, kaons and protons.05/16/2025ApprovedFALSE
- 6.10.04The dRICH system will provide 3 sigma pi/K separation between 3 and 50 GeV/c.05/16/2025ApprovedFALSE
- DET-PID-FWD-RICH EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.04The PID Detector in the forward region will require appropriate support structure to hold the detector in place.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the forward region will require appropriate support DC voltage and power for operating detector sensors and associated electronics. The expected LV are 70V/1mA 312 channels, 4V/5A 312 channels, 3V/5A 312 channels 4V/2A 312 channels.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the forward region will require cooling and removal of heat generated by detector electronics and digitizers. Expect coolant at “room” temperature to remove 2.75kW heat for each of the 6 sectors.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the forward region will require detector signal transmission electronics and lines defined by the DAQ system.05/16/2025ApprovedFALSE
- 6.10.04The PID Detector in the forward region will require survey marks or hooks for survey tools to determine its physical location in the barrel as a whole and its sub-components.05/16/2025ApprovedFALSE
- 6.10.04The RICH detector will require a continuous recirculating flow of radiator gas. This will require a gas recovery system operating at high pressure outside the detector on the platform. (Design authority required)05/16/2025ApprovedFALSE
- 6.10.04The RICH detector will require a continuous flow of dry nitrogen to protect the aerogel radiator.05/16/2025ApprovedFALSE
- 6.10.04The RICH detector will require sub zero cooling for its photo-sensors at -30deg C. Cooling lines with insulation required.05/16/2025ApprovedFALSE
- 6.10.04Input from tracking with an angular resolution of about 0.Xmrad is required to reach full performance of the dRICH.05/16/2025ApprovedFALSE
DET-PID-FWD-TOF : Forward Time of Flight Systems (WBS 6.10.04)
- 6.10.04The forward time of flight detector is responsible for low momenta particle identification.05/16/2025ApprovedFALSE
- 6.10.04The forward time of flight system will provide separation of pions from kaons to match the forward RICH detector in particle momentum range.05/16/2025ApprovedFALSE
- 6.10.04The time of flight system will provide 3 sigma pi/K separation from 0.2 up to 2.3 GeV/c.05/16/2025ApprovedFALSE
- DET-PID-FWD-TOF EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.04The PID Detector in the forward region will require appropriate support structure to hold the detector in place.05/16/2025ApprovedFALSE
- 6.10.04Will require DC voltage supply of approximately 11V. There will be 2 lines for each of the 212 connections .05/16/2025ApprovedFALSE
- 6.10.04Will require sensor voltage supply of approximately 200V. There will be 2 lines for each of the 212 connections .05/16/2025ApprovedFALSE
- 6.10.04Will require DAQ fiber optics. Two lines for each of the 212 connections.05/16/2025ApprovedFALSE
- 6.10.04Will require cooling to remove 13kW of heat05/16/2025ApprovedFALSE
DET-ECAL : Electromagnetic Calorimetry Systems (WBS 6.10.05)
- 6.10.05EMCal shall provide measurements of photons, including ones from pi0, eta and other decays; and shall play a key role to identify scattered and decay electrons and measure their kinematic parameters05/16/2025ApprovedFALSE
- 6.10.05Must operate at full luminosity and expected background conditions (rad. dose, neutron flux).05/16/2025ApprovedFALSE
- 6.10.05The noise level per channel shall be low enough to provide photon measurements down to the minimal photon energy.05/16/2025ApprovedFALSE
- 6.10.05Must provide adequate energy and position resolution for photon and electron measurements, and eID through E/p cut.05/16/2025ApprovedFALSE
- 6.10.05Shall provide discrimination between single photon and merged photon from pi0 decay.05/16/2025ApprovedFALSE
- 6.10.05Must provide timing sufficient to discriminate between different bunch crossings.05/16/2025ApprovedFALSE
- 6.10.05Shall provide photon measurements down to 100 MeV.05/16/2025ApprovedFALSE
- 6.10.05Material in front of EMCals will be minimized to the level not jeopardizing EMCal performance.05/16/2025ApprovedFALSE
- 6.10.05EMCal subsystem(s) shall cover the backward, the barrel and the forward region.05/16/2025ApprovedFALSE
- 6.10.05Design must minimize the loss of functionality in transition between barrel and endcap regions.05/16/2025ApprovedFALSE
- 6.10.05The EMCAL subsystems will be functionally integrated with the other detectors, with the interaction region components, and with the facility infrastructure.05/16/2025ApprovedFALSE
- 6.10.05The EMCAL subsystems will require adequate infrastructure resources (i.e. power, cooling, cryogens, etc.) to ensure it can function reliably during continous operations.05/16/2025ApprovedFALSE
- 6.10.05The EMCal systems will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.05The EMCal systems will require communications infrastructure to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.05The EMCal systems will require electrical power to support the operation of the detector sub-components and electronics.05/16/2025ApprovedFALSE
- 6.10.05The monitoring system shall contain: Light system (LED or laser), test pulse (for electronics), dark current (for SiPM).05/16/2025ApprovedFALSE
- 6.10.05The EMCAL subsystems and its support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.05The EMCal detectors and support system must fit within the constraints of the surrounding detector sub-systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.05The EMCal systems will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor, and will require survey marks to determine their physical location.05/16/2025ApprovedFALSE
- 6.10.05The EMCal systems will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.05The EMCal systems will require communications infrastructure to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.05The EMCal systems will require electrical power to support the operation of the detector sub-components and electronics.05/16/2025ApprovedFALSE
- 6.10.05The monitoring system shall contain: Light system (LED or laser), test pulse (for electronics), dark current (for SiPM).05/16/2025ApprovedFALSE
- 6.10.05The configuration of the EMCAL subsystems within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10.05The EMCal detectors and support system must fit within the constraints of the surrounding detector sub-systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.05System shall have low material budget on the way from the vertex: <5%X0 in the 1st half a way, or <10%X0 on the second half a way, or <30%X0 just in front of EMCal (within 10cm).05/16/2025ApprovedFALSE
- 6.10.05Photosensors and readout electronics must tolerate the magnetic field in the subsystem location.05/16/2025ApprovedFALSE
- 6.10.05A structural support infrastructure must be provided that supports the weight of the EMCAL subsystems and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
- 6.10.05The EMCal detectors and support system must fit within the constraints of the surrounding detector sub-systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.05The EMCal systems will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor, and will require survey marks to determine their physical location.05/16/2025ApprovedFALSE
- 6.10.05The EMCAL subsystems must fit within the available space in the experimental hall, and be consistent with the available infrastructure and resources.05/16/2025ApprovedFALSE
- 6.10.05The EMCAL subsystems and its support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.05The EMCal detectors and support system must fit within the constraints of the surrounding detector sub-systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.05The EMCal systems will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor, and will require survey marks to determine their physical location.05/16/2025ApprovedFALSE
- 6.10.05The EMCal systems will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.05The EMCal systems will require communications infrastructure to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.05The EMCal systems will require electrical power to support the operation of the detector sub-components and electronics.05/16/2025ApprovedFALSE
- 6.10.05The monitoring system shall contain: Light system (LED or laser), test pulse (for electronics), dark current (for SiPM).05/16/2025ApprovedFALSE
- 6.10.05The configuration of the EMCAL subsystems within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10.05The EMCal detectors and support system must fit within the constraints of the surrounding detector sub-systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.05System shall have low material budget on the way from the vertex: <5%X0 in the 1st half a way, or <10%X0 on the second half a way, or <30%X0 just in front of EMCal (within 10cm).05/16/2025ApprovedFALSE
- 6.10.05Photosensors and readout electronics must tolerate the magnetic field in the subsystem location.05/16/2025ApprovedFALSE
- 6.10.05A structural support infrastructure must be provided that supports the weight of the EMCAL subsystems and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
- 6.10.05The EMCal detectors and support system must fit within the constraints of the surrounding detector sub-systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.05The EMCal systems will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor, and will require survey marks to determine their physical location.05/16/2025ApprovedFALSE
DET-ECAL-BAR : Barrel EMCal Systems (WBS 6.10.05)
- 6.10.05Barrel EMCal shall identify scattered electrons and measure their energy, in high Q² events; it also serves to identify decay electrons, e.g. from vector or heavy flavor meson decays, and to measure DVCS photons and decay photons05/16/2025ApprovedFALSE
- 6.10.05Shall provide electron ID up to 50 GeV and down to 1 GeV and below.05/16/2025ApprovedFALSE
- 6.10.05System shall provide high power for e/pi separation down to 1 GeV/c.05/16/2025ApprovedFALSE
- 6.10.05Energy resolution shall be s(E)/E < 10%/sqrt(E) + (2-3)%.05/16/2025ApprovedFALSE
- 6.10.05Shall have sufficient dynamic range to detect MIP signals in all layers.05/16/2025ApprovedFALSE
- 6.10.05Must provide discrimination between single photon and merged photon from pi0 decay up to 10 GeV.05/16/2025ApprovedFALSE
- 6.10.05System shall be capable of distinguishing two showers with opening angle down to 30 mrad.05/16/2025ApprovedFALSE
- 6.10.05Shall provide photon measurements up to 10 GeV.05/16/2025ApprovedFALSE
- 6.10.05Four imaging planes shall be produced for a baseline, with mechanical design being capable to accommodate six imaging planes.05/16/2025ApprovedFALSE
- 6.10.05System shall provide high power for e/pi separation down to 1 GeV/c.05/16/2025ApprovedFALSE
- 6.10.05Shall have sufficient dynamic range to detect MIP signals in all layers.05/16/2025ApprovedFALSE
- 6.10.05EMCal shall provide a charged tracking point behind the DIRC to help charged hadron PID05/16/2025ApprovedFALSE
- 6.10.05The first imaging layer shall provide a charged tracking point behind the DIRC to help charged hadron PID05/16/2025ApprovedFALSE
- 6.10.05The first imaging layer shall provide a charged tracking point with space resolution of <150um.05/16/2025ApprovedFALSE
- 6.10.05EMCal shall assist with muon identification.05/16/2025ApprovedFALSE
- 6.10.05Four imaging planes shall be produced for a baseline, with mechanical design being capable to accommodate six imaging planes.05/16/2025ApprovedFALSE
- 6.10.05System shall provide high power for e/pi separation down to 1 GeV/c.05/16/2025ApprovedFALSE
- 6.10.05Shall have sufficient dynamic range to detect MIP signals in all layers.05/16/2025ApprovedFALSE
DET-ECAL-BCK : Backward EMCal Systems (WBS 6.10.05)
- 6.10.05Backward EMCal shall identify scattered electrons and measure their energy, in low and medium Q² events; it also serves to identify decay electrons, e.g. from vector or heavy flavor meson decays, and measure DVCS photons and decay photons05/16/2025ApprovedFALSE
- 6.10.05Shall provide high precision measurements for electrons up to 18 GeV and pseudo rapidity down to -3.5.05/16/2025ApprovedFALSE
- 6.10.05System shall cover pseudo rapidity down to -3.5.05/16/2025ApprovedFALSE
- 6.10.05Shall provide measurements of scattered electrons for the events down to Q²=1 GeV² (=> acceptance requirements).05/16/2025ApprovedFALSE
- 6.10.05Must provide strong eID capabilities down to 1 GeV/c.05/16/2025ApprovedFALSE
- 6.10.05Energy resolution shall be s(E)/E ~ (2-3)%/sqrt(E) + (1-2)%05/16/2025ApprovedFALSE
- 6.10.05System shall have high power for e/pi separation down to 1 GeV/c.05/16/2025ApprovedFALSE
- 6.10.05Must provide discrimination between single photon and merged photon from pi0 decay up to 18 GeV.05/16/2025ApprovedFALSE
- 6.10.05System shall have high granularity and be capable of distinguishing two showers with opening angle down to 0.015 (=>tower size).05/16/2025ApprovedFALSE
- 6.10.05Shall provide photon measurements up to 18 GeV.05/16/2025ApprovedFALSE
- 6.10.05A cooling system shall be provided for the lead-tungstate based detector.05/16/2025ApprovedFALSE
- 6.10.05A cooling system shall be provided.05/16/2025ApprovedFALSE
- DET-ECAL-BCK EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.05System shall have low material budget on the way from the vertex: <5%X0 in the 1st half a way, or <10%X0 on the second half a way, or <30%X0 just in front of EMCal (within 10cm).05/16/2025ApprovedFALSE
DET-ECAL-FWD : Forward EMCal Systems (WBS 6.10.05)
- 6.10.05Forward EMCal shall identify decay electrons, e.g. from vector or heavy flavor meson decays, and to measure DVCS photons and decay photons, e.g. from pi0 decays05/16/2025ApprovedFALSE
- 6.10.05Must provide discrimination between single photon and merged photon from pi0 decay up to 50 GeV.05/16/2025ApprovedFALSE
- 6.10.05System shall have sufficient granularity to be capable of distinguishing two showers with opening angle down to 0.005 (=>tower size).05/16/2025ApprovedFALSE
- 6.10.05Shall provide electron and photon measurements up to 50 GeV.05/16/2025ApprovedFALSE
- 6.10.05System shall have energy resolution s(E)/E < (10-12)%/sqrt(E) + (2-3)%.05/16/2025ApprovedFALSE
- 6.10.05Along with forward HCal, shall provide high precision jet measurements.05/16/2025ApprovedFALSE
- 6.10.05System shall have energy resolution s(E)/E < (10-12)%/sqrt(E) + (2-3)%.05/16/2025ApprovedFALSE
DET-HCAL : Hadronic Calorimetry Systems (WBS 6.10.06)
- 6.10.06Hadronic calorimeter (HCal) subsystem must provide hadron energy measurement, in particular for the jet neutral component identification (neutrons and K-long's), as well as to serve as a tail catcher for the e/m calorimeters05/16/2025ApprovedFALSE
- 6.10.06Must provide a reasonable energy measurement for charged hadrons.05/16/2025ApprovedFALSE
- 6.10.06Must operate reliably at a full projected EIC luminosity.05/16/2025ApprovedFALSE
- 6.10.06Must provide means for neutral hadron identification and energy measurement.05/16/2025ApprovedFALSE
- 6.10.06Shall provide practical detection threshold ~500 MeV as defined in the EIC Yellow Report.05/16/2025ApprovedFALSE
- 6.10.06Functionality shall cover the barrel and the forward region, and should cover the backward region.05/16/2025ApprovedFALSE
- 6.10.06The Hadronic Calorimetry subsystem will be functionally integrated with the other detectors, with the interaction region components, and with the facility infrastructure.05/16/2025ApprovedFALSE
- 6.10.06The Hadronic Calorimetry subsystem will require adequate infrastructure resources (i.e. power, cooling, cryogens, etc.) to ensure it can function reliably during continous operations.05/16/2025ApprovedFALSE
- 6.10.06The HCal systems will require electrical power to support the operation of the detector sub-components and electronics.05/16/2025ApprovedFALSE
- 6.10.06The HCal systems will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.06The HCal systems will require communications infrastructure to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.06The Hadronic Calorimetry subsystem and its support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.06Must be compact enough to fit in the limited space allocated for the EIC detector, but at the same time provide a hermetic coverage and have sufficient depth in order to efficiently contain the hadronic showers.05/16/2025ApprovedFALSE
- 6.10.06The HCal systems will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor, and will require survey marks to determine their physical location.05/16/2025ApprovedFALSE
- 6.10.06The HCal systems will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.06The HCal systems will require communications infrastructure to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.06The HCal systems will require electrical power to support the operation of the detector sub-components and electronics.05/16/2025ApprovedFALSE
- 6.10.06HCal layout shall minimize the gaps in coverage between barrel and endcaps.05/16/2025ApprovedFALSE
- 6.10.06The configuration of the Hadronic Calorimetry subsystem within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10.06Should be built of non-magnetic materials05/16/2025ApprovedFALSE
- 6.10.06Shall not interfere with the detector solenoid magnetic field05/16/2025ApprovedFALSE
- 6.10.06Must be resilient against harsh background conditions, high neutron flux in the IR area in particular, at the levels specified by the simulation studies.05/16/2025ApprovedFALSE
- 6.10.06Must be compact enough to fit in the limited space allocated for the EIC detector, but at the same time provide a hermetic coverage and have sufficient depth in order to efficiently contain the hadronic showers.05/16/2025ApprovedFALSE
- 6.10.06HCal layout shall minimize the gaps in coverage between barrel and endcaps.05/16/2025ApprovedFALSE
- 6.10.06A structural support infrastructure must be provided that supports the weight of the Hadronic Calorimetry subsystem and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
- 6.10.06The HCal systems will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor, and will require survey marks to determine their physical location.05/16/2025ApprovedFALSE
- 6.10.06The Hadronic Calorimetry subsystem must fit within the available space in the experimental hall, and be consistent with the available infrastructure and resources.05/16/2025ApprovedFALSE
- 6.10.06The Hadronic Calorimetry subsystem and its support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.06Must be compact enough to fit in the limited space allocated for the EIC detector, but at the same time provide a hermetic coverage and have sufficient depth in order to efficiently contain the hadronic showers.05/16/2025ApprovedFALSE
- 6.10.06The HCal systems will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor, and will require survey marks to determine their physical location.05/16/2025ApprovedFALSE
- 6.10.06The HCal systems will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.06The HCal systems will require communications infrastructure to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.06The HCal systems will require electrical power to support the operation of the detector sub-components and electronics.05/16/2025ApprovedFALSE
- 6.10.06HCal layout shall minimize the gaps in coverage between barrel and endcaps.05/16/2025ApprovedFALSE
- 6.10.06The configuration of the Hadronic Calorimetry subsystem within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10.06Should be built of non-magnetic materials05/16/2025ApprovedFALSE
- 6.10.06Shall not interfere with the detector solenoid magnetic field05/16/2025ApprovedFALSE
- 6.10.06Must be resilient against harsh background conditions, high neutron flux in the IR area in particular, at the levels specified by the simulation studies.05/16/2025ApprovedFALSE
- 6.10.06Must be compact enough to fit in the limited space allocated for the EIC detector, but at the same time provide a hermetic coverage and have sufficient depth in order to efficiently contain the hadronic showers.05/16/2025ApprovedFALSE
- 6.10.06HCal layout shall minimize the gaps in coverage between barrel and endcaps.05/16/2025ApprovedFALSE
- 6.10.06A structural support infrastructure must be provided that supports the weight of the Hadronic Calorimetry subsystem and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
- 6.10.06The HCal systems will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor, and will require survey marks to determine their physical location.05/16/2025ApprovedFALSE
DET-HCAL-BAR : Barrel HCal Systems (WBS 6.10.06)
- 6.10.06Barrel HCal shall provide adequate functionality for hadronic jet neutral component reconstruction at central rapidities05/16/2025ApprovedFALSE
- 6.10.06Shall be optimized to provide hadron energy measurements at relatively small jet energies (up to few dozens of GeV).05/16/2025ApprovedFALSE
- 6.10.06Must have sufficient granularity in azimuthal and polar angle to resolve neutral clusters.05/16/2025ApprovedFALSE
- 6.10.06Should have a moderate energy resolution s(E)/E ~ 100%/sqrt(E) + 10% constant term.05/16/2025ApprovedFALSE
- 6.10.06Shall have sufficient radial depth to contain medium energy hadronic showers past 2-3 interaction length material of the e/m calorimeter and the solenoid.05/16/2025ApprovedFALSE
DET-HCAL-BCK : Backward HCal Systems (WBS 6.10.06)
- 6.10.06Backward HCal shall provide functionality of a tail catcher for the high resolution e/m calorimeter in electron identification, as well as for jet kinematics measurement at small Bjorken x05/16/2025ApprovedFALSE
- 6.10.06Shall accommodate the possibility of hadron energy measurements in the range up to few dozens of GeV and pseudorapidity down to -3.5 .05/16/2025ApprovedFALSE
- 6.10.06Must provide capability to cover pseudo rapidity range down to at least -3.5.05/16/2025ApprovedFALSE
- 6.10.06Shall accommodate the ability to complement e/m calorimeter by tail catching capability for electron ID purposes, especially below 3-4 GeV/c.05/16/2025ApprovedFALSE
- 6.10.06Shall provide capability to have energy resolution s(E)/E ~ 100%/sqrt(E) + a 10% constant term.05/16/2025ApprovedFALSE
- 6.10.06Must provide space to have tower depth of 3-4 interaction lengths (together with the e/m PWO crystal calorimeter) in order to suppress longitudinal leakage for relatively small hadron energies in the e-endcap.05/16/2025ApprovedFALSE
- DET-HCAL-BCK EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.06Should be built of non-magnetic materials05/16/2025ApprovedFALSE
- 6.10.06Shall not interfere with the detector solenoid magnetic field05/16/2025ApprovedFALSE
DET-HCAL-FWD : Forward HCal Systems (WBS 6.10.06)
- 6.10.06Forward HCal shall play a crucial role in jet energy and kinematics reconstruction in the hadron endcap, complementing tracking and e/m calorimetry in the particle flow algorithms, and be consistent with the ePIC detector solenoid design05/16/2025ApprovedFALSE
- 6.10.06Must provide hadron energy measurements up to the highest hadron energies in a 250(p) x 18(e) GeV beam configuration and pseudorapidity up to 3.5, with energy resolution defined by the community Yellow Report and subsequent ePIC simulation studies05/16/2025ApprovedFALSE
- 6.10.06Must cover pseudo rapidity range up to at least 3.5.05/16/2025ApprovedFALSE
- 6.10.06Shall have energy resolution s(E)/E ~ 50%/sqrt(E) + a 10 % constant term.05/16/2025ApprovedFALSE
- 6.10.06The design must be coupled well with a compensated forward e/m calorimeter for high precision jet energy measurements.05/16/2025ApprovedFALSE
- 6.10.06Must have tower depth of 6-7 interaction lengths (together with the e/m section) in order to avoid longitudinal leakage for highest energy hadrons at the EIC.05/16/2025ApprovedFALSE
- 6.10.06Granularity (transverse tower size) should be adequate to resolve deposits from different charged and neutral hadrons taking into account the local abundance, resulting in transverse tower sizes of at least ~5x5 cm^2 for \eta < 2.5 and 3x3 cm^2 for 2.5 < \eta < 405/16/2025ApprovedFALSE
- 6.10.06Granularity (longitudinal tower size) should be adequate to allow for association of showers starting at different depth to the corresponding charged and neutral hadrons. At least 5 longitudinal segments should be read out to determine the shower maximum reliably. For higher rapidity the segmentation should be increased due to the higher particle density05/16/2025ApprovedFALSE
- 6.10.06The calorimeter structure must serve as part of the solenoid flux return05/16/2025ApprovedFALSE
- 6.10.06Calorimeter absorber blocks in the volume allocated for the flux return must be partly built out of a magnetic steel with the permeability defined by the solenoid designers05/16/2025ApprovedFALSE
DET-MAG : Solenoid Magnet (WBS 6.10.07)
- 6.10.07The EIC detector magnet shall provide a central field, a sufficiently large room temperature bore, and a magnet length consistent with the detector need to fulfill EIC science requirements05/16/2025ApprovedFALSE
- 6.10.07.03Magnet power shall be able to supply required current to the magnet to produce a 1.7 T central field, with a stretch goal of 2 T.05/16/2025ApprovedFALSE
- 6.10.07.03Magnet power supply shall be able to dump the magnet stored energy in a dump resistor.05/16/2025ApprovedFALSE
- 6.10.07.01The magnet shall require a cryocan and cryogenic line that will deliver Liquid Helium to the solenoid.05/16/2025ApprovedFALSE
- 6.10.07.01Supercritcal helium at 4.6 K and Gaseous helium at 300K & shall be provided 50K with flow rates upto 10 g/s10/23/2025ApprovedFALSE
- 6.10.07.01Cryogenic supply and return shall be provided within the experimental hall and assembly hall at IP610/23/2025ApprovedFALSE
- 6.10.07.01The maximum average temperature shall be 4.7 K, 80 K & 100K during operation, shutdown and transport respectively10/23/2025ApprovedFALSE
- 6.10.07.01A low pressure relief valve shall be placed in the magnet side transferline to relieve pressure during transport10/23/2025ApprovedFALSE
- 6.10.07.02The magnet control and instrumentation shall be able to read all the temperature and stress sensor in the magnet.05/16/2025ApprovedFALSE
- 6.10.07.02The magnet I&C should be able diagnose a quench and initiate the energy dumping procedure.05/16/2025ApprovedFALSE
- 6.10.07.02The magnet I&C should be able to provide all the interlocks required for the magnet safe operation.05/16/2025ApprovedFALSE
- 6.10.07The EIC detector magnet shall fulfill the field specification (as specified in the magnetic field specification document), the main area for field specifications are (i) flat field area, (ii) RICH detector area, (iii) stray field at IR magnets, and (iv) stray field at the RCS location.05/16/2025ApprovedFALSE
- 6.10.07The EIC detector magnet shall be able to operate at 4.5K (liquid Helium).05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid shall be able to operate at a lower field (0.5 T), without sacrificing the field quality.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid shall be aligned along the electron axis.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid's magnetic field extends beyond its physical boundaries, and must be accounted for and managed.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid must produce a consistent, stable magnetic field that is sufficient to satisfy the requirements of all subordinate detectors.05/16/2025ApprovedFALSE
- 6.10.07The flux return shall reduce the magnetic field to no more than 10 Gauss at the location of the most nearby active beam transport elements (IR magnets and RCS beamline).05/16/2025ApprovedFALSE
- 6.10.07The EIC detector magnet will be functionally integrated with the other detectors, with the interaction region components, and with the facility infrastructure.05/16/2025ApprovedFALSE
- 6.10.07The EIC detector magnet will require adequate infrastructure resources (i.e. power, cooling, cryogens, etc.) to ensure it can function reliably during continous operations.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid systems will require conventional cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid will require cryogenic cooling infrastructure that is sufficient to maintain the solenoid cryostat temperature within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid will require an ice management system.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid systems will require communications infrastructure to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid systems will require electrical power to support the operation of the magnet and its peripheral sub-systems.05/16/2025ApprovedFALSE
- 6.10.07To remain below 100K, cryogens cannot be discontinued to the solenoid magnet for more than 48 hours.12/01/2025ApprovedFALSE
- 6.10.07The EIC detector magnet and its support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid and supporting infrastructure must fit within the constraints of the surrounding detector sub-systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid systems will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid systems will require conventional cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid will require cryogenic cooling infrastructure that is sufficient to maintain the solenoid cryostat temperature within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid will require an ice management system.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid systems will require communications infrastructure to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid systems will require electrical power to support the operation of the magnet and its peripheral sub-systems.05/16/2025ApprovedFALSE
- 6.10.07The magnet shall provide a minimum 2.8 meter bore diameter to support insertion of the detector elements.05/16/2025ApprovedFALSE
- 6.10.07The configuration of the EIC detector magnet within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid and supporting infrastructure must fit within the constraints of the surrounding detector sub-systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.07A structural support infrastructure must be provided that supports the weight of the EIC detector magnet and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid systems will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor.05/16/2025ApprovedFALSE
- 6.10.07The EIC detector magnet must fit within the available space in the experimental hall, and be consistent with the available infrastructure and resources.05/16/2025ApprovedFALSE
- 6.10.07The EIC detector magnet and its support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid and supporting infrastructure must fit within the constraints of the surrounding detector sub-systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid systems will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid systems will require conventional cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid will require cryogenic cooling infrastructure that is sufficient to maintain the solenoid cryostat temperature within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid will require an ice management system.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid systems will require communications infrastructure to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid systems will require electrical power to support the operation of the magnet and its peripheral sub-systems.05/16/2025ApprovedFALSE
- 6.10.07The magnet shall provide a minimum 2.8 meter bore diameter to support insertion of the detector elements.05/16/2025ApprovedFALSE
- 6.10.07The configuration of the EIC detector magnet within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid and supporting infrastructure must fit within the constraints of the surrounding detector sub-systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.07A structural support infrastructure must be provided that supports the weight of the EIC detector magnet and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
- 6.10.07The detector solenoid systems will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor.05/16/2025ApprovedFALSE
- DET-MAG EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.07The EIC detector magnet must be consistent with the cryogenic capability of the supply.05/16/2025ApprovedFALSE
DET-MAG-CCR : Magnet Cryogenics
- DET-MAG-CCR EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.07.01The magnet shall require a cryocan and cryogenic line that will deliver Liquid Helium to the solenoid.05/16/2025ApprovedFALSE
- 6.10.07.01Supercritcal helium at 4.6 K and Gaseous helium at 300K & shall be provided 50K with flow rates upto 10 g/s10/23/2025ApprovedFALSE
- 6.10.07.01Cryogenic supply and return shall be provided within the experimental hall and assembly hall at IP610/23/2025ApprovedFALSE
- 6.10.07.01The maximum average temperature shall be 4.7 K, 80 K & 100K during operation, shutdown and transport respectively10/23/2025ApprovedFALSE
- 6.10.07.01A low pressure relief valve shall be placed in the magnet side transferline to relieve pressure during transport10/23/2025ApprovedFALSE
DET-MAG-I&C : Magnet Instrumentation and Control
- DET-MAG-I&C EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.07.02The magnet control and instrumentation shall be able to read all the temperature and stress sensor in the magnet.05/16/2025ApprovedFALSE
- 6.10.07.02The magnet I&C should be able diagnose a quench and initiate the energy dumping procedure.05/16/2025ApprovedFALSE
- 6.10.07.02The magnet I&C should be able to provide all the interlocks required for the magnet safe operation.05/16/2025ApprovedFALSE
DET-MAG-PSU : Magnet Power Supply
- DET-MAG-PSU EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.07.03Magnet power shall be able to supply required current to the magnet to produce a 1.7 T central field, with a stretch goal of 2 T.05/16/2025ApprovedFALSE
- 6.10.07.03Magnet power supply shall be able to dump the magnet stored energy in a dump resistor.05/16/2025ApprovedFALSE
DET-ELEC : Electronic Systems (WBS 6.10.08)
- 6.10.08The EIC detector readout electronics shall provide the means to acquire, process and deliver detector signals to the DAQ system. Streaming readout shall be the default or nominal operation mode; to facilitate calibration and testing or debugging, a triggered operation mode shall be implemented at every level.05/16/2025ApprovedFALSE
- 6.10.08The EIC detector readout electronics will provide signal conditioning to detector signals by the shaping constants, amplification, digitization and signal drive via discrete components and Application Specific Integrated Circuits (ASIC).05/16/2025ApprovedFALSE
- 6.10.08In the current conceptual design, two ASICs shall be used for the readout of MPGD and photonic sensors. These will be 64-channel, 1 W nominal power consumption. MPGDs: amplification (1 to 10), shaping (40 to 250 ns), digitization (12-bit precision), better than 20 ns timing resolution. Photonic sensors: amplification (2 to 30 mV/fC), shaping (1 to 40 ns), digitization (10 to 14-bit precision), timing resolution (100 ps to <1 ns).05/16/2025ApprovedFALSE
- 6.10.08The EIC detector readout electronics will process, collect and aggregate data within the Readout Board (RDO). The RDO is typically characterized by the use of FPGAs. Data transport off the RDO is made via optical fibers to the DAQ, which may consist of FELIX-type cards, network servers or network switches.05/16/2025ApprovedFALSE
- 6.10.08RDO shall include FPGAs and interface via optical fibers to the DAQ. Data aggregation (10:1), reduction techniques and processing via ML/AI algorithms shall reduce data volume by a factor of 10 or more during normal operation.05/16/2025ApprovedFALSE
- 6.10.08The EIC detector readout electronics will process detector signals on the Front End Board (FEB). The FEB is typically characterized by the use of ASICs and customized for each type of sub-detector. Data transport off the FEB is made via copper links to the RDOs (Readout Boards) or DAQ system.05/16/2025ApprovedFALSE
- 6.10.08FEB shall include ASICs, support components and interfaces, where applicable. FEBs may implement data reduction techniques, such as zero suppression, to reduce data volume.05/16/2025ApprovedFALSE
- 6.10.08The FEB and RDO boards will be remotely configured for proper operation of their programmable logic device, such as FPGAs. Processor boards or single board computers used with critical detector systems may require remote booting of OS.05/16/2025ApprovedFALSE
- 6.10.08All components and equipment will comply with standards established by the EIC project.05/16/2025ApprovedFALSE
- 6.10.08All components, whether procured or manufactured, will, at a minimum, meet the standards specified by the EIC project AND meet the additional standards and specifications identified in these requirements.05/16/2025ApprovedFALSE
- 6.10.08Electronics and electronic components shall meet commercial operating environment specifications; critical systems shall consider conformance to industrial specifications, and use industrial/automotive grade components when available and economically feasible.05/16/2025ApprovedFALSE
- 6.10.08The detector ground (i.e., Clean Ground) shall be segregated from other equipment grounding. The grounding around the solenoid and the south platform from the detector ground reference, which shall be isolated from other systems and structures and connected to the experimental area ground via six (6) low impedance, insulated 4/0 wires. Other equipment, such as the solenoid power supplies and control systems, shall connect to the experimental area grounding connection separately from the clean ground. All connections shall be effected via low impedance insulated wires (e.g., 4/0). These wires shall have differently colored insulation for easy identification of segregated grounds.05/16/2025ApprovedFALSE
- 6.10.08Power supplies (HV, LV, Bias) shall be of the floating type and referenced to the detector clean ground.05/16/2025ApprovedFALSE
- 6.10.08Cabling shall be rated to National Electrical Code (NEC) 2020, NFPA 70, UL CL2 or better. Cable jackets shall be marked to UL standards by the manufacturer. Cables rated with the X suffix (Dwellings) (e.g., CL2X, CMX) are not permitted.05/16/2025ApprovedFALSE
- 6.10.08Cable routing shall conform to NECA/NEMA 105/2007 for open cable tray systems.05/16/2025ApprovedFALSE
- 6.10.08All electrical equipment in the experimental area shall conform to EMI/RFI standards FCC Class B, CISPR11/EN 55011 Class B, CISPR22/EN 55022 Class B, EN 61000-6-3 or equivalent. Exceptions shall be evaluated via EMI/RFI measurement surveys.05/16/2025ApprovedFALSE
- 6.10.08Cabinet racks (19 inch type), open or closed frame types (e.g., Hammond C4F247736), shall be COTS and equipped with horizontal and vertical cable managers. These shall accommodate a minimum of three equipment crates or chassis.05/16/2025ApprovedFALSE
- 6.10.08Equipment crates or chassis for HV, LV and Bias supplies and for data acquisition shall be rated for a maximum of 2.5 kW each and powered from 120 VAC or 208 VAC 3-phase, preferably.05/16/2025ApprovedFALSE
- 6.10.08Any equipment that is powered by a plug and cord shall be either listed by a Nationally Recognized Testing Lab (NRTL) such as UL or have been approved by the Laboratory EEI (Electrical Equipment Inspection) program.05/16/2025ApprovedFALSE
- 6.10.08Electrical components shall be derated to 80%, if the manufacturer has not already done so, and if such derating is economically feasible.05/16/2025ApprovedFALSE
- 6.10.08Cables shall have sufficient excess length (slack or service loop) to allow connection without strain. Cables outside of the enclosure shall be dressed in a way that allows removal of any module without obstruction, those inside the enclosure shall have sufficient slack to allow visual inspection, connection, and disconnection with all other modules installed.05/16/2025ApprovedFALSE
- 6.10.08Enclosures and removable modules should use captive hardware when possible.05/16/2025ApprovedFALSE
- 6.10.08Where not governed by specific standards, components will be implemented, installed, and utilized in a manner that is consistent with industry best practices.05/16/2025ApprovedFALSE
- 6.10.08Electronics and electronic components shall meet commercial operating environment specifications; critical systems shall consider conformance to industrial specifications, and use industrial/automotive grade components when available and economically feasible.05/16/2025ApprovedFALSE
- 6.10.08The detector ground (i.e., Clean Ground) shall be segregated from other equipment grounding. The grounding around the solenoid and the south platform from the detector ground reference, which shall be isolated from other systems and structures and connected to the experimental area ground via six (6) low impedance, insulated 4/0 wires. Other equipment, such as the solenoid power supplies and control systems, shall connect to the experimental area grounding connection separately from the clean ground. All connections shall be effected via low impedance insulated wires (e.g., 4/0). These wires shall have differently colored insulation for easy identification of segregated grounds.05/16/2025ApprovedFALSE
- 6.10.08Power supplies (HV, LV, Bias) shall be of the floating type and referenced to the detector clean ground.05/16/2025ApprovedFALSE
- 6.10.08Cabling shall be rated to National Electrical Code (NEC) 2020, NFPA 70, UL CL2 or better. Cable jackets shall be marked to UL standards by the manufacturer. Cables rated with the X suffix (Dwellings) (e.g., CL2X, CMX) are not permitted.05/16/2025ApprovedFALSE
- 6.10.08Cable routing shall conform to NECA/NEMA 105/2007 for open cable tray systems.05/16/2025ApprovedFALSE
- 6.10.08All electrical equipment in the experimental area shall conform to EMI/RFI standards FCC Class B, CISPR11/EN 55011 Class B, CISPR22/EN 55022 Class B, EN 61000-6-3 or equivalent. Exceptions shall be evaluated via EMI/RFI measurement surveys.05/16/2025ApprovedFALSE
- 6.10.08Cabinet racks (19 inch type), open or closed frame types (e.g., Hammond C4F247736), shall be COTS and equipped with horizontal and vertical cable managers. These shall accommodate a minimum of three equipment crates or chassis.05/16/2025ApprovedFALSE
- 6.10.08Equipment crates or chassis for HV, LV and Bias supplies and for data acquisition shall be rated for a maximum of 2.5 kW each and powered from 120 VAC or 208 VAC 3-phase, preferably.05/16/2025ApprovedFALSE
- 6.10.08Any equipment that is powered by a plug and cord shall be either listed by a Nationally Recognized Testing Lab (NRTL) such as UL or have been approved by the Laboratory EEI (Electrical Equipment Inspection) program.05/16/2025ApprovedFALSE
- 6.10.08Electrical components shall be derated to 80%, if the manufacturer has not already done so, and if such derating is economically feasible.05/16/2025ApprovedFALSE
- 6.10.08Cables shall have sufficient excess length (slack or service loop) to allow connection without strain. Cables outside of the enclosure shall be dressed in a way that allows removal of any module without obstruction, those inside the enclosure shall have sufficient slack to allow visual inspection, connection, and disconnection with all other modules installed.05/16/2025ApprovedFALSE
- 6.10.08Enclosures and removable modules should use captive hardware when possible.05/16/2025ApprovedFALSE
- 6.10.08The EIC detector readout electronics will be functionally integrated with the other detectors, with the interaction region components, and with the facility infrastructure.05/16/2025ApprovedFALSE
- 6.10.08The EIC detector readout electronics will require adequate infrastructure resources (i.e. power, cooling, cryogens, etc.) to ensure it can function reliably during continous operations.05/16/2025ApprovedFALSE
- 6.10.08The electronics systems will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.08The electronics systems will require communications infrastructure that will be used to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.08The electronics systems will require a source of electrical power that will energize local devices and be distributed to other detectors and systems.05/16/2025ApprovedFALSE
- 6.10.08The electronics systems must be shielded against the effects of electromagnetic interference, radiation, and other external influences that may impact their performance.05/16/2025ApprovedFALSE
- 6.10.08The EIC detector readout electronics and its support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.08The electronics systems, their support systems, enclosures, and distribution systems must fit within the space constraints of their areas of installation, and leave adequate space for the delivery of other services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.08The electronics systems will require a structural support system to deliver cabling and services throughout the experimental hall and control room.05/16/2025ApprovedFALSE
- 6.10.08The electronics systems will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.08The electronics systems will require communications infrastructure that will be used to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.08The electronics systems will require a source of electrical power that will energize local devices and be distributed to other detectors and systems.05/16/2025ApprovedFALSE
- 6.10.08The electronics systems must be shielded against the effects of electromagnetic interference, radiation, and other external influences that may impact their performance.05/16/2025ApprovedFALSE
- 6.10.08The configuration of the EIC detector readout electronics within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10.08The electronics systems, their support systems, enclosures, and distribution systems must fit within the space constraints of their areas of installation, and leave adequate space for the delivery of other services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.08A structural support infrastructure must be provided that supports the weight of the EIC detector readout electronics and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
- 6.10.08The electronics systems will require a structural support system to deliver cabling and services throughout the experimental hall and control room.05/16/2025ApprovedFALSE
- 6.10.08The EIC detector readout electronics must fit within the available space in the experimental hall, and be consistent with the available infrastructure and resources.05/16/2025ApprovedFALSE
- 6.10.08The EIC detector readout electronics and its support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.08The electronics systems, their support systems, enclosures, and distribution systems must fit within the space constraints of their areas of installation, and leave adequate space for the delivery of other services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.08The electronics systems will require a structural support system to deliver cabling and services throughout the experimental hall and control room.05/16/2025ApprovedFALSE
- 6.10.08The electronics systems will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.08The electronics systems will require communications infrastructure that will be used to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.08The electronics systems will require a source of electrical power that will energize local devices and be distributed to other detectors and systems.05/16/2025ApprovedFALSE
- 6.10.08The electronics systems must be shielded against the effects of electromagnetic interference, radiation, and other external influences that may impact their performance.05/16/2025ApprovedFALSE
- 6.10.08The configuration of the EIC detector readout electronics within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10.08The electronics systems, their support systems, enclosures, and distribution systems must fit within the space constraints of their areas of installation, and leave adequate space for the delivery of other services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.08A structural support infrastructure must be provided that supports the weight of the EIC detector readout electronics and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
- 6.10.08The electronics systems will require a structural support system to deliver cabling and services throughout the experimental hall and control room.05/16/2025ApprovedFALSE
DET-COMP : Data Acquisition and Computing Systems (WBS 6.10.09)
- 6.10.09The DAQ subsystem shall consist of all resources necessary to communicate with all DET subsystems in order to configure, control and monitor these systems as well as read, process and store data they generate.05/16/2025ApprovedFALSE
- 6.10.09The DAQ subsystem shall be designed to operate continuously, independent of the state of the other detector subsystems.05/16/2025ApprovedFALSE
- 6.10.09The Data Acquisition system will support triggerless (streaming) readout of all DET subsystems as part of normal operation. Asynchronous (triggered) readout from front-end systems will also be supported as an option.05/16/2025ApprovedFALSE
- 6.10.09The DAQ system will support independent and simultaneous operation (configuration, control and readout) from multiple DET sub-systems.05/16/2025ApprovedFALSE
- 6.10.09There will be sufficient online processing and networking resources to manage the full DET subsystem output for purposes of zero suppression, primary noise and background filtering as well as event identification for purposes of filtering non-physics related signals.05/16/2025ApprovedFALSE
- 6.10.09Fiber connected to patch panels from the Rack Room to Experimental Hall Patch panel shall be implemented with enough single and/or multi-mode fiber capable of supporting both commercial and proprietary bidirectional serial links for all detector system requirements. Minimum aggregate bandwidth capabilities shall not be less than 10Tb/s.05/16/2025ApprovedFALSE
- 6.10.09Online data storage capabilities within the counting house COMP resources shall be fast enough to keep up with processed data rates and large enough to hold all acquired data locally for up to 72 hours.05/16/2025ApprovedFALSE
- 6.10.09Online data processing capabilities within the experimental hall and counting house shall be sufficient to support event identification, background & noise suppression and data quality monitoring necessary to be able to keep up with front-end data rates and temporarily store filtered data - ready for further offline processing.05/16/2025ApprovedFALSE
- 6.10.09Network infrastructure for online computing will provide at least 100Gb non-blocking ethernet links between compute nodes.05/16/2025ApprovedFALSE
- 6.10.09All DAQ system communication with DET subsystems will be supported through proprietary fiber-based links. This includes distribution of a system-wide common clock that can be used to synchronize all DET subsystems. This also includes configuration and monitoring of all DET subsystem front end electronics.05/16/2025ApprovedFALSE
- 6.10.09The DAQ system will require interfaces to the accelerator which provide timing and data exchange, and allow the accelerator to read the state and condition of detector systems.05/16/2025ApprovedFALSE
- 6.10.09Fiber connected to patch panels from the DAQ Room to the external Data Center shall at a minimum be implemented with enough single mode fiber capable of supporting experimental data bandwidths with redundant 100Gb and 400Gb bidirectional network links.05/16/2025ApprovedFALSE
- 6.10.09The DAQ system will transfer collected data from the local systems to an offline storage facility.05/16/2025ApprovedFALSE
- 6.10.09Global Timing Unit (GTU) wil provide common timing information to all DET sub systems.05/16/2025ApprovedFALSE
- 6.10.09The GTU will deliver a stable high resolution clock at the level of 100ps jitter to DET subsystems, with an option to deliver up to a 5ps jitter clock to DET subsystems requiring very high-resolution timing measurements.05/16/2025ApprovedFALSE
- 6.10.09The DAQ subsystem shall consist of COTS hardware where possible, and custom electronics as needed.05/16/2025ApprovedFALSE
- 6.10.09Global Timing Unit (GTU) wil provide common timing information to all DET sub systems.05/16/2025ApprovedFALSE
- 6.10.09The GTU will deliver a stable high resolution clock at the level of 100ps jitter to DET subsystems, with an option to deliver up to a 5ps jitter clock to DET subsystems requiring very high-resolution timing measurements.05/16/2025ApprovedFALSE
- 6.10.09The DAQ subsystem shall use COTS and Open Source software where possible, and collaboration developed software, firmware libraries and applications as needed.05/16/2025ApprovedFALSE
- 6.10.09The DAQ subsystem shall distribute all experimental data generated to an external data center for supplemental and optional data processing and archival storage.05/16/2025ApprovedFALSE
- 6.10.09Temperature and humidity levels in all spaces where DAQ hardware exists must be maintained within specifications defined by the manufacturer or by custom electronics operational requirements.05/16/2025ApprovedFALSE
- 6.10.09The DAQ subsystem will be functionally integrated with the other detectors, with the interaction region components, and with the facility infrastructure.05/16/2025ApprovedFALSE
- 6.10.09DAQ related resources shall require physical space in the experimental hall (e.g. electronics racks). In the experimental hall multiple designated locations must be available to provide necessary proximity to all instrumented DET systems.05/16/2025ApprovedFALSE
- 6.10.09DAQ related resources shall require physical space within the "counting house". A single separated closed space for computing resources (DAQ Room) shall be required in addition to a User occupied operations space (Control room).05/16/2025ApprovedFALSE
- 6.10.09The DAQ subsystem shall be designed to operate continuously, independent of the state of the other detector subsystems.05/16/2025ApprovedFALSE
- 6.10.09DAQ Room computing shall have an alternate power source available that is battery or generator backed-up for a subset of core resources in case of power outages.05/16/2025ApprovedFALSE
- 6.10.09The DAQ system will provide resources for communication with DET subsystems via fiber links between the experimental hall and the DAQ room.05/16/2025ApprovedFALSE
- 6.10.09Individual fiber interfaces with all DET subsystems will support at least a 10Gb serial link to DAQ online processing.05/16/2025ApprovedFALSE
- 6.10.09The DAQ subsystem will require adequate infrastructure resources (i.e. power, cooling, cryogens, etc.) to ensure it can function reliably during continous operations.05/16/2025ApprovedFALSE
- 6.10.09The DAQ systems will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.09The DAQ systems will require electrical power to support the operation of the detector sub-components and electronics.05/16/2025ApprovedFALSE
- 6.10.09All DAQ powered services in the experimental hall and counting house must have access to either 120V AC or 208V AC three phase power.05/16/2025ApprovedFALSE
- 6.10.09DAQ Room computing shall require electrical power via raised floor distribution sufficient to support XX kW total power usage levels.05/16/2025ApprovedFALSE
- 6.10.09All DAQ services in the experimental hall must have access to a "clean" ground to maintain good signal quality.05/16/2025ApprovedFALSE
- 6.10.09DAQ Room computing shall require HVAC cooling via raised floor distribution sufficient to support a XX kW power outlay at tempuratures at or below 76 degrees Fahrenheit.05/16/2025ApprovedFALSE
- 6.10.09The DAQ subsystem and its support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.09The DAQ systems, their support systems, enclosures, and distribution systems must fit within the space constraints of their areas of installation, and leave adequate space for the delivery of other services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.09The DAQ systems will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.09The DAQ systems will require consoles, cabinets, and structural support systems to hold equipment and deliver cabling and services throughout the experimental hall, control room, and to locations in the interaction region.05/16/2025ApprovedFALSE
- 6.10.09The DAQ systems will require electrical power to support the operation of the detector sub-components and electronics.05/16/2025ApprovedFALSE
- 6.10.09The configuration of the DAQ subsystem within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10.09The DAQ systems, their support systems, enclosures, and distribution systems must fit within the space constraints of their areas of installation, and leave adequate space for the delivery of other services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.09User management of required cabling shall be facilitated via a combination of cable trays and/or conduit or rigging between the DAQ room patch panels and the experimental hall areas where DAQ and general network fibers are required.05/16/2025ApprovedFALSE
- 6.10.09All DAQ services in the experimental hall must be adequately shielded from prompt radiation from the beam crossing region of the EIC detector to minimize electronics failures.05/16/2025ApprovedFALSE
- 6.10.09DAQ Room resources shall sit on a raised floor to allow for forced air, power and signal cabling to be routed to all racks.05/16/2025ApprovedFALSE
- 6.10.09A structural support infrastructure must be provided that supports the weight of the DAQ subsystem and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
- 6.10.09The DAQ systems will require consoles, cabinets, and structural support systems to hold equipment and deliver cabling and services throughout the experimental hall, control room, and to locations in the interaction region.05/16/2025ApprovedFALSE
- 6.10.09The DAQ subsystem must fit within the available space in the experimental hall, assembly hall, and control rooms, and be consistent with the available infrastructure and resources.05/16/2025ApprovedFALSE
- 6.10.09DAQ related resources shall require physical space in the experimental hall (e.g. electronics racks). In the experimental hall multiple designated locations must be available to provide necessary proximity to all instrumented DET systems.05/16/2025ApprovedFALSE
- 6.10.09DAQ related resources shall require physical space within the "counting house". A single separated closed space for computing resources (DAQ Room) shall be required in addition to a User occupied operations space (Control room).05/16/2025ApprovedFALSE
- 6.10.09The DAQ subsystem and its support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.09The DAQ systems, their support systems, enclosures, and distribution systems must fit within the space constraints of their areas of installation, and leave adequate space for the delivery of other services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.09The DAQ systems will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.09The DAQ systems will require consoles, cabinets, and structural support systems to hold equipment and deliver cabling and services throughout the experimental hall, control room, and to locations in the interaction region.05/16/2025ApprovedFALSE
- 6.10.09The DAQ systems will require electrical power to support the operation of the detector sub-components and electronics.05/16/2025ApprovedFALSE
- 6.10.09The configuration of the DAQ subsystem within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10.09The DAQ systems, their support systems, enclosures, and distribution systems must fit within the space constraints of their areas of installation, and leave adequate space for the delivery of other services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.09User management of required cabling shall be facilitated via a combination of cable trays and/or conduit or rigging between the DAQ room patch panels and the experimental hall areas where DAQ and general network fibers are required.05/16/2025ApprovedFALSE
- 6.10.09All DAQ services in the experimental hall must be adequately shielded from prompt radiation from the beam crossing region of the EIC detector to minimize electronics failures.05/16/2025ApprovedFALSE
- 6.10.09DAQ Room resources shall sit on a raised floor to allow for forced air, power and signal cabling to be routed to all racks.05/16/2025ApprovedFALSE
- 6.10.09A structural support infrastructure must be provided that supports the weight of the DAQ subsystem and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
- 6.10.09The DAQ systems will require consoles, cabinets, and structural support systems to hold equipment and deliver cabling and services throughout the experimental hall, control room, and to locations in the interaction region.05/16/2025ApprovedFALSE
DET-COMP-OFFLINE : Offline DAQ and Computing Systems (WBS 6.10.09)
- 6.10Offline computing resources shall be available via an external data center for optional experimental data processing and archival storage.05/16/2025In ProcessFALSE
DET-COMP-SC : Slow Controls (WBS 6.10.09)
- 6.10.09The DET that will require a slow control system that provides system interlocks, interfaces, monitoring, and control.05/16/2025ApprovedFALSE
- 6.10.09General network infrastructure for support of Slow Controls management, configuration and operation will be provided for all DET subsystems as well as all the general ancillary network capable equipment in the counting house and experimental hall.05/16/2025ApprovedFALSE
- 6.10.09The general network infrastructure within the counting house and expeimental hall will support at a minimum 1 and 10 Gb ethernet links.05/16/2025ApprovedFALSE
- 6.10.09Shared hardware and software computing components will be available for Slow Controls configuration, operation, monitoring and mangement.05/16/2025ApprovedFALSE
- 6.10.09Enough computing hardware will be made available for all DET subsytems to run a minimum of 20 input/output controllers (IOCs) to encapsulate subsystem performance.05/16/2025ApprovedFALSE
- 6.10.09Slow Controls will monitor and modify operational parameters of DET subsystems.05/16/2025ApprovedFALSE
- 6.10.09All temperatures recorded by Slow Controls shall be measured with a minimum precision of 0.1°C.05/16/2025ApprovedFALSE
- 6.10.09All voltages recorded by Slow Controls shall be measured with a minimum precision of 10mV.05/16/2025ApprovedFALSE
- 6.10.09All currents recorded by Slow Controls shall be measured with a minimum precision of 1mA.05/16/2025ApprovedFALSE
- 6.10.09All pressures recorded by Slow Controls shall be measured with a minimum precision of 1 mbar.05/16/2025ApprovedFALSE
- 6.10.09The flow of all fluids recorded by Slow Controls shall be measured with a minimum precision of 1 lpm.05/16/2025ApprovedFALSE
- 6.10.09The concentration of gases in mixtures shall be recorded by Slow Controls with a minimum precision of 1%.05/16/2025ApprovedFALSE
- 6.10.09Slow Controls will manage an alarm chain and its responses.05/16/2025ApprovedFALSE
- 6.10.09Slow Controls shall generate alarms with at least three levels of priority: high, low, and diagnostic.05/16/2025ApprovedFALSE
- 6.10.09The alarm chain will maintain standard operation in the event of a network and/or power outage.05/16/2025ApprovedFALSE
- 6.10.09Slow Controls will provide electromechanical interlocks for the DET subsystems.05/16/2025ApprovedFALSE
- 6.10.09Interlock controllers and remote IO will maintain standard operation in the event of a network and/or power outage.05/16/2025ApprovedFALSE
- 6.10.09All interlocks will be reported in the alarm chain with a priority level of low or high.05/16/2025ApprovedFALSE
- 6.10.09Interlocks will be meet a minimum performance level (PL) appropriate for the system to be interlocked.05/16/2025ApprovedFALSE
- 6.10.09Slow controls will provide Experimental Physics and Industrial Controls System (EPICS) interface that will run on DAQ provided systems.05/16/2025ApprovedFALSE
- 6.10.09Slow controls will provide user interfaces for the adjustment of operational parameters for DET subsystems.05/16/2025ApprovedFALSE
- 6.10.09Slow controls will provide collections of operational parameters that DET subsystems will be able to use as restore points.05/16/2025ApprovedFALSE
DET-COMP-ONLINE : Online DAQ and Computing Systems
DET-INF : Infrastructure Systems (WBS 6.10.10)
- 6.10.10There will be distinct infrastructure requirements for the assembly hall, the collider hall, and the interaction region.05/16/2025ApprovedFALSE
- 6.10.10All components, equipment and assemblies will comply with standards established by the EIC project.05/16/2025ApprovedFALSE
- 6.10.10All components, whether procured or manufactured, will, at a minimum, meet the standards specified by the EIC project AND meet the additional standards and specifications identified in these requirements.05/16/2025ApprovedFALSE
- 6.10.10The main barrel and both endcaps shall be rotated 8mrad counterclockwise about the Y axis (looking top down).05/16/2025ApprovedFALSE
- 6.10.10The tolerance for this measurement shall be ± 1mrad.05/16/2025ApprovedFALSE
- 6.10.10Safety factors will be calculated based off yield strength.05/16/2025ApprovedFALSE
- 6.10.10Parts with a safety factor of 3 or greater will be generally accepted and will not require further review.05/16/2025ApprovedFALSE
- 6.10.10Parts with a safety factor of 1.5 to 3 are required to be internally reviewed to determine if it’s acceptable.05/16/2025ApprovedFALSE
- 6.10.10Parts with a safety factor of 1.5 or less will be considered unacceptable.05/16/2025ApprovedFALSE
- 6.10.10Bolts with a safety factor of 2 or greater will be generally accepted and will not require further review.05/16/2025ApprovedFALSE
- 6.10.10Bolts with a safety factor of 1 to 2 are required to be internally reviewed to determine if it’s acceptable.12/01/2025ApprovedFALSE
- 6.10.10Bolts with a safety factor of 1 or less will be considered unacceptable.12/01/2025ApprovedFALSE
- 6.10.10Engineering judgment will be used for identifying and disregarding any singularities which may go below these minimums.12/01/2025ApprovedFALSE
- 6.10.10Where not governed by specific standards, components will be implemented, installed, and utilized in a manner that is consistent with industry best practices.05/16/2025ApprovedFALSE
- 6.10.10The main barrel and both endcaps shall be rotated 8mrad counterclockwise about the Y axis (looking top down).05/16/2025ApprovedFALSE
- 6.10.10The tolerance for this measurement shall be ± 1mrad.05/16/2025ApprovedFALSE
- 6.10.10Safety factors will be calculated based off yield strength.05/16/2025ApprovedFALSE
- 6.10.10Parts with a safety factor of 3 or greater will be generally accepted and will not require further review.05/16/2025ApprovedFALSE
- 6.10.10Parts with a safety factor of 1.5 to 3 are required to be internally reviewed to determine if it’s acceptable.05/16/2025ApprovedFALSE
- 6.10.10Parts with a safety factor of 1.5 or less will be considered unacceptable.05/16/2025ApprovedFALSE
- 6.10.10Bolts with a safety factor of 2 or greater will be generally accepted and will not require further review.05/16/2025ApprovedFALSE
- 6.10.10Bolts with a safety factor of 1 to 2 are required to be internally reviewed to determine if it’s acceptable.12/01/2025ApprovedFALSE
- 6.10.10Bolts with a safety factor of 1 or less will be considered unacceptable.12/01/2025ApprovedFALSE
- 6.10.10Engineering judgment will be used for identifying and disregarding any singularities which may go below these minimums.12/01/2025ApprovedFALSE
- 6.10.10Infrastructure systems for the assembly hall shall include all power, water, environmental cooling, cryogenics, gas handling, clean compressed air delivery, space, fire protection, Helium Leak Detection, ODH Detection and any other Personnel Safety Systems, material handling and support systems required to assemble and maintain the central detector systems.05/16/2025ApprovedFALSE
- 6.10.10All detectors require isolated power and grounding from facilities power systems. This will be accomplished from existing and newly installed Delta/Wye transformers with a single point star grounding (AKA clean or magnet ground) scheme at the WAH.05/16/2025ApprovedFALSE
- 6.10.1060 Amp 4 wire power (120/ 208V AC) shall be fed to each 19-inch equipment rack from a circuit breaker on the detector platform.05/16/2025ApprovedFALSE
- 6.10.10Cabinets are bonded/ grounded to the appropriate clean ground.05/16/2025ApprovedFALSE
- 6.10.10Floors in the assembly and collider hall must be adequate to support the static and moving load of the experimental detector systems. Load limits need to be determined and verified.05/16/2025ApprovedFALSE
- 6.10.10A rail system for the Hadron end cap calorimeters shall be installed that is sufficient to carry 600ton and maintain a free center gap of 10 centimeters.05/16/2025ApprovedFALSE
- 6.10.10The floor, rails and cradle shall be capable of supporting a static or moving load of 1200 tons (central detector).05/16/2025ApprovedFALSE
- 6.10.10A rail system for the Lepton end cap calorimeters shall be installed that is sufficient to carry 400ton and maintain a free center gap of 10 centimeters.05/16/2025ApprovedFALSE
- 6.10.10Infrastructure systems for the collider hall shall include all power, water, environmental cooling, cryogenics, gas handling, clean compressed air delivery, space, fire protection, Helium Leak Detection, ODH Detection and any other Personnel Safety Systems, Cryo Protection, material handling and support systems required to operate the entire detector systems.05/16/2025ApprovedFALSE
- 6.10.10The WAH requires cooling capacity adequate for the heat generated by the detector, detector sub systems, detector support electronics and facility systems in the WAH. Comment: New airhandlers and cooling systems needed05/16/2025ApprovedFALSE
- 6.10.10Relative Humidity under 50% to prevent condensation.05/16/2025ApprovedFALSE
- 6.10.10The temperature in the WAH should be maintained between 20°C to 25°C05/16/2025ApprovedFALSE
- 6.10.10Where fan/ blower cooling is inadequate, water-cooled heat exchangers are required to maintain the ambient environment of enclosed electronic assemblies and equipment to a temperature of under 40°C.05/16/2025ApprovedFALSE
- 6.10.10A cryogenic transfer system shall be provided within the experimental hall and assembly hall at IP6 to allow cryogenic distribution for the experimental solenoid.10/23/2025ApprovedFALSE
- 6.10.10The cryogenic transfer system must be installed in the available space and have no interferences with new and existing infrastructure.05/16/2025ApprovedFALSE
- 6.10.10To limit the coil temperature below 100k, the magnet transport shall be completed within 2 days of discconection of cryogenic services to the phase separator10/23/2025ApprovedFALSE
- 6.10.10The cryogenic transfer system will have a support structure and connectors that allow the central detector to be relocated between the experimental hall and the assembly area without disconnection.05/16/2025ApprovedFALSE
- 6.10.10During detector alignment, the DBX transfer line shall be flexible against magnet motion of 2" in the Y and ±1" in the X and Z direction, relative to the electronic racks.10/23/2025ApprovedFALSE
- 6.10.10All detectors require isolated power and grounding from facilities power systems. This will be accomplished from existing and newly installed Delta/Wye transformers with a single point star grounding (AKA clean or magnet ground) scheme at the WAH.05/16/2025ApprovedFALSE
- 6.10.1060 Amp 4 wire power (120/ 208V AC) shall be fed to each 19-inch equipment rack from a circuit breaker on the detector platform.05/16/2025ApprovedFALSE
- 6.10.10Cabinets are bonded/ grounded to the appropriate clean ground.05/16/2025ApprovedFALSE
- 6.10.10Gas based detectors will require the appropriate gas mixing and handling systems.05/16/2025ApprovedFALSE
- 6.10.10Gas based detectors shall be provided with the appropriate gas handling systems.05/16/2025ApprovedFALSE
- 6.10.10Floors in the assembly and collider hall must be adequate to support the static and moving load of the experimental detector systems. Load limits need to be determined and verified.05/16/2025ApprovedFALSE
- 6.10.10A rail system for the Hadron end cap calorimeters shall be installed that is sufficient to carry 600ton and maintain a free center gap of 10 centimeters.05/16/2025ApprovedFALSE
- 6.10.10The floor, rails and cradle shall be capable of supporting a static or moving load of 1200 tons (central detector).05/16/2025ApprovedFALSE
- 6.10.10A rail system for the Lepton end cap calorimeters shall be installed that is sufficient to carry 400ton and maintain a free center gap of 10 centimeters.05/16/2025ApprovedFALSE
- 6.10.10Infrastructure systems for the interaction region shall include all power, water, environmental cooling, cryogenics, gas handling, space, material handling and support systems required to assemble, operate and maintain the far forward and far backward detector systems.05/16/2025ApprovedFALSE
- 6.10.10All detectors require isolated power and grounding from facilities power systems. This will be accomplished from existing and newly installed Delta/Wye transformers with a single point star grounding (AKA clean or magnet ground) scheme at the WAH.05/16/2025ApprovedFALSE
- 6.10.1060 Amp 4 wire power (120/ 208V AC) shall be fed to each 19-inch equipment rack from a circuit breaker on the detector platform.05/16/2025ApprovedFALSE
- 6.10.10Cabinets are bonded/ grounded to the appropriate clean ground.05/16/2025ApprovedFALSE
- 6.10.10Infrastructure systems shall provide adequate space, environmental cooling, and distribution for DAQ and local computing.05/16/2025ApprovedFALSE
- 6.10.10Space and facilities for the experimental control room and operations shall be preserved.05/16/2025ApprovedFALSE
- 6.10.10Where feasible, existing infrastructure systems will be reused.05/16/2025ApprovedFALSE
- 6.10.10Cradles, carriages, platforms and other support systems from the STAR experiment shall be preserved for reuse.05/16/2025ApprovedFALSE
- 6.10.10The existing rail system used to move the detector from the assembly hall to the collider hall should be preserved.05/16/2025ApprovedFALSE
- 6.10.10The existing crane systems in the assembly hall and collider hall shall be preserved.05/16/2025ApprovedFALSE
- 6.10.10The infrastructure systems will be functionally integrated with the other detectors, with the interaction region components, and with the facility infrastructure.05/16/2025ApprovedFALSE
- 6.10.10The infrastructure systems will require adequate infrastructure resources (i.e. power, cooling, cryogens, etc.) to ensure it can function reliably during continuous operations.12/01/2025ApprovedFALSE
- 6.10.10The configuration of the infrastructure systems within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10.10Area needed around pfRICH: 2000 cm2 + 10% = 2200 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed around EEEMcal: 2150cm2 + 10% = 2365 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed between CF tube and dRICH: 4350 cm2 + 10% = 4785 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed between dRICH boxes: 4800 cm2 + 10% = 5280 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed between dRICH and HCAL: 5650 cm2 + 10% = 6215 cm205/16/2025ApprovedFALSE
- 6.10.10The positional tolerance of the cradle shall be within ±2mm in all directions.12/01/2025ApprovedFALSE
- 6.10.10The adjustability of the cradle shall be at least ±25mm in the in the X,Z directions, and ±10mm in the Y direction.12/01/2025ApprovedFALSE
- 6.10.10The positional tolerance of the of the Global Support Tube shall be within ±3mm in all directions.12/01/2025ApprovedFALSE
- 6.10.10The adjustability of the Global Support Tube shall be at least ±10mm in all directions.12/01/2025ApprovedFALSE
- 6.10.10The positional tolerance of the Pixel Support Tube shall be within ±1mm in all directions.12/01/2025ApprovedFALSE
- 6.10.10The adjustability of the Pixel Support Tube shall be at least ±3mm in the X,Y directions, and ±5mm in the Z direction.12/01/2025ApprovedFALSE
- 6.10.10The positional tolerance of the beampipe shall be within ±1mm in the X,Y directions, and ±5mm in the Z direction.12/01/2025ApprovedFALSE
- 6.10.10The adjustability of the bellows shall be at least ±5mm in the Z direction.12/01/2025ApprovedFALSE
- 6.10.10The rotational tolerance of the beampipe shall be within ±1mm mrad in the X, Y directions.12/01/2025ApprovedFALSE
- 6.10.10The rotational adjustability of the flanges shall be at least ±1 degree in the X, Y directions.12/01/2025ApprovedFALSE
- 6.10.10Subassembly weight should not exceed 90% of the assembly hall's 40 ton crane capacity to not be a critical lift.12/01/2025ApprovedFALSE
- 6.10.10Subassembly weight should not exceed 90% of the experimental hall's 20 ton crane capacity to not be a critical lift.12/01/2025ApprovedFALSE
- 6.10.10A structural support infrastructure must be provided that supports the weight of the infrastructure systems and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
- 6.10.10The cryogenic transfer system will have a support structure and connectors that allow the central detector to be relocated between the experimental hall and the assembly area without disconnection.05/16/2025ApprovedFALSE
- 6.10.10The RCS beampipe shall be supported by either the South Platform or the Central Barrel.05/16/2025ApprovedFALSE
- 6.10.10If extra steel is needed for the fringe field, then support for it shall also be provided by either the South Platform or Central Barrel.05/16/2025ApprovedFALSE
- 6.10.10The weight limit of 1200 metric tons of the floor shall not be exceeded.05/16/2025ApprovedFALSE
- 6.10.10The combined weight of the Central Barrel shall not exceed 1200 metric tons.05/16/2025ApprovedFALSE
- 6.10.10The combined weight of both halves of the Hadron endcap shall not exceed 275 metric tons.05/16/2025ApprovedFALSE
- 6.10.10The combined weight of both halves of the Hadron endcap shall not exceed 450 metric tons.05/16/2025ApprovedFALSE
- 6.10.10Without regard to dynamic response, the detector structure must withstand an additional 1/4 g loading in any direction, in addition to existing loads.12/01/2025ApprovedFALSE
- 6.10.10The infrastructure systems and its support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.10The cryogenic transfer system must be installed in the available space and have no interferences with new and existing infrastructure.05/16/2025ApprovedFALSE
- 6.10.10Carbon Fiber Tube adjustments in the beampipe shall have an angular tolerance of ±1 mrad.12/01/2025ApprovedFALSE
- 6.10.10Carbon Fiber Tube adjustments in the Barrel Emcal will be within ±5m .12/01/2025ApprovedFALSE
- 6.10.10Carbon Fiber Tube adjustments in the STAR Cradle will be within ±~1/8” (4mm).12/01/2025ApprovedFALSE
- 6.10.10The Carbon Fiber Tube shall be able to be located within 12 mm.12/01/2025ApprovedFALSE
- 6.10.10The Barrel Emcal shall be able to be located within 5 mm.12/01/2025ApprovedFALSE
- 6.10.10The STAR Cradle shall be able to be located within 4 mm.12/01/2025ApprovedFALSE
- 6.10.10Inner Detectors will have a minimum clearance to the beampipe of 5mm all around.12/01/2025ApprovedFALSE
- 6.10.10For Inner Detectors that will be installed over flanges then the minimum clearance will be 5mm to the flange all around.12/01/2025ApprovedFALSE
- 6.10.10All other central detectors will have a minimum clearance to the beampipe of 10mm all around.12/01/2025ApprovedFALSE
- 6.10.10For all other central detectors that will be installed over flanges then the minimum clearance will be 10mm to the flange all around.12/01/2025ApprovedFALSE
- 6.10.10Endcaps will have a minimum clearance to the beampipe of 30mm all around.12/01/2025ApprovedFALSE
- 6.10.10Endcaps shall have cutouts to accommodate spaces needed for the RCS beampipe. The minimum clearance shall be 30mm12/01/2025ApprovedFALSE
- 6.10.10The RCS beampipe shall be supported by either the South Platform or the Central Barrel.05/16/2025ApprovedFALSE
- 6.10.10If extra steel is needed for the fringe field, then support for it shall also be provided by either the South Platform or Central Barrel.05/16/2025ApprovedFALSE
- 6.10.10Area needed around pfRICH: 2000 cm2 + 10% = 2200 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed around EEEMcal: 2150cm2 + 10% = 2365 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed between CF tube and dRICH: 4350 cm2 + 10% = 4785 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed between dRICH boxes: 4800 cm2 + 10% = 5280 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed between dRICH and HCAL: 5650 cm2 + 10% = 6215 cm205/16/2025ApprovedFALSE
- 6.10.10The central detector and infrastructure must be able to fit through the doorway between the experimental and assembly halls, which is 8.2 meters wide and 8.2 meters high.12/01/2025ApprovedFALSE
- 6.10.10The positional tolerance of the cradle shall be within ±2mm in all directions.12/01/2025ApprovedFALSE
- 6.10.10The adjustability of the cradle shall be at least ±25mm in the in the X,Z directions, and ±10mm in the Y direction.12/01/2025ApprovedFALSE
- 6.10.10The positional tolerance of the of the Global Support Tube shall be within ±3mm in all directions.12/01/2025ApprovedFALSE
- 6.10.10The adjustability of the Global Support Tube shall be at least ±10mm in all directions.12/01/2025ApprovedFALSE
- 6.10.10The positional tolerance of the Pixel Support Tube shall be within ±1mm in all directions.12/01/2025ApprovedFALSE
- 6.10.10The adjustability of the Pixel Support Tube shall be at least ±3mm in the X,Y directions, and ±5mm in the Z direction.12/01/2025ApprovedFALSE
- 6.10.10The positional tolerance of the beampipe shall be within ±1mm in the X,Y directions, and ±5mm in the Z direction.12/01/2025ApprovedFALSE
- 6.10.10The adjustability of the bellows shall be at least ±5mm in the Z direction.12/01/2025ApprovedFALSE
- 6.10.10The rotational tolerance of the beampipe shall be within ±1mm mrad in the X, Y directions.12/01/2025ApprovedFALSE
- 6.10.10The rotational adjustability of the flanges shall be at least ±1 degree in the X, Y directions.12/01/2025ApprovedFALSE
- 6.10.10Predefined detector envelopes shall not be infringed upon.05/16/2025ApprovedFALSE
- 6.10.10Area needed around pfRICH: 2000 cm2 + 10% = 2200 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed around EEEMcal: 2150cm2 + 10% = 2365 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed between dRICH boxes: 4800 cm2 + 10% = 5280 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed between CF tube and dRICH: 4350 cm2 + 10% = 4785 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed between dRICH and HCAL: 5650 cm2 + 10% = 6215 cm205/16/2025ApprovedFALSE
- 6.10.10The infrastructure systems must fit within the available space in the experimental hall, and be consistent with the available infrastructure and resources.05/16/2025ApprovedFALSE
- 6.10.10The configuration of the infrastructure systems within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10.10Area needed around pfRICH: 2000 cm2 + 10% = 2200 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed around EEEMcal: 2150cm2 + 10% = 2365 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed between CF tube and dRICH: 4350 cm2 + 10% = 4785 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed between dRICH boxes: 4800 cm2 + 10% = 5280 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed between dRICH and HCAL: 5650 cm2 + 10% = 6215 cm205/16/2025ApprovedFALSE
- 6.10.10The positional tolerance of the cradle shall be within ±2mm in all directions.12/01/2025ApprovedFALSE
- 6.10.10The adjustability of the cradle shall be at least ±25mm in the in the X,Z directions, and ±10mm in the Y direction.12/01/2025ApprovedFALSE
- 6.10.10The positional tolerance of the of the Global Support Tube shall be within ±3mm in all directions.12/01/2025ApprovedFALSE
- 6.10.10The adjustability of the Global Support Tube shall be at least ±10mm in all directions.12/01/2025ApprovedFALSE
- 6.10.10The positional tolerance of the Pixel Support Tube shall be within ±1mm in all directions.12/01/2025ApprovedFALSE
- 6.10.10The adjustability of the Pixel Support Tube shall be at least ±3mm in the X,Y directions, and ±5mm in the Z direction.12/01/2025ApprovedFALSE
- 6.10.10The positional tolerance of the beampipe shall be within ±1mm in the X,Y directions, and ±5mm in the Z direction.12/01/2025ApprovedFALSE
- 6.10.10The adjustability of the bellows shall be at least ±5mm in the Z direction.12/01/2025ApprovedFALSE
- 6.10.10The rotational tolerance of the beampipe shall be within ±1mm mrad in the X, Y directions.12/01/2025ApprovedFALSE
- 6.10.10The rotational adjustability of the flanges shall be at least ±1 degree in the X, Y directions.12/01/2025ApprovedFALSE
- 6.10.10Subassembly weight should not exceed 90% of the assembly hall's 40 ton crane capacity to not be a critical lift.12/01/2025ApprovedFALSE
- 6.10.10Subassembly weight should not exceed 90% of the experimental hall's 20 ton crane capacity to not be a critical lift.12/01/2025ApprovedFALSE
- 6.10.10A structural support infrastructure must be provided that supports the weight of the infrastructure systems and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
- 6.10.10The cryogenic transfer system will have a support structure and connectors that allow the central detector to be relocated between the experimental hall and the assembly area without disconnection.05/16/2025ApprovedFALSE
- 6.10.10The RCS beampipe shall be supported by either the South Platform or the Central Barrel.05/16/2025ApprovedFALSE
- 6.10.10If extra steel is needed for the fringe field, then support for it shall also be provided by either the South Platform or Central Barrel.05/16/2025ApprovedFALSE
- 6.10.10The weight limit of 1200 metric tons of the floor shall not be exceeded.05/16/2025ApprovedFALSE
- 6.10.10The combined weight of the Central Barrel shall not exceed 1200 metric tons.05/16/2025ApprovedFALSE
- 6.10.10The combined weight of both halves of the Hadron endcap shall not exceed 275 metric tons.05/16/2025ApprovedFALSE
- 6.10.10The combined weight of both halves of the Hadron endcap shall not exceed 450 metric tons.05/16/2025ApprovedFALSE
- 6.10.10Without regard to dynamic response, the detector structure must withstand an additional 1/4 g loading in any direction, in addition to existing loads.12/01/2025ApprovedFALSE
- 6.10.10The infrastructure systems and its support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.10The cryogenic transfer system must be installed in the available space and have no interferences with new and existing infrastructure.05/16/2025ApprovedFALSE
- 6.10.10Carbon Fiber Tube adjustments in the beampipe shall have an angular tolerance of ±1 mrad.12/01/2025ApprovedFALSE
- 6.10.10Carbon Fiber Tube adjustments in the Barrel Emcal will be within ±5m .12/01/2025ApprovedFALSE
- 6.10.10Carbon Fiber Tube adjustments in the STAR Cradle will be within ±~1/8” (4mm).12/01/2025ApprovedFALSE
- 6.10.10The Carbon Fiber Tube shall be able to be located within 12 mm.12/01/2025ApprovedFALSE
- 6.10.10The Barrel Emcal shall be able to be located within 5 mm.12/01/2025ApprovedFALSE
- 6.10.10The STAR Cradle shall be able to be located within 4 mm.12/01/2025ApprovedFALSE
- 6.10.10Inner Detectors will have a minimum clearance to the beampipe of 5mm all around.12/01/2025ApprovedFALSE
- 6.10.10For Inner Detectors that will be installed over flanges then the minimum clearance will be 5mm to the flange all around.12/01/2025ApprovedFALSE
- 6.10.10All other central detectors will have a minimum clearance to the beampipe of 10mm all around.12/01/2025ApprovedFALSE
- 6.10.10For all other central detectors that will be installed over flanges then the minimum clearance will be 10mm to the flange all around.12/01/2025ApprovedFALSE
- 6.10.10Endcaps will have a minimum clearance to the beampipe of 30mm all around.12/01/2025ApprovedFALSE
- 6.10.10Endcaps shall have cutouts to accommodate spaces needed for the RCS beampipe. The minimum clearance shall be 30mm12/01/2025ApprovedFALSE
- 6.10.10The RCS beampipe shall be supported by either the South Platform or the Central Barrel.05/16/2025ApprovedFALSE
- 6.10.10If extra steel is needed for the fringe field, then support for it shall also be provided by either the South Platform or Central Barrel.05/16/2025ApprovedFALSE
- 6.10.10Area needed around pfRICH: 2000 cm2 + 10% = 2200 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed around EEEMcal: 2150cm2 + 10% = 2365 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed between CF tube and dRICH: 4350 cm2 + 10% = 4785 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed between dRICH boxes: 4800 cm2 + 10% = 5280 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed between dRICH and HCAL: 5650 cm2 + 10% = 6215 cm205/16/2025ApprovedFALSE
- 6.10.10The central detector and infrastructure must be able to fit through the doorway between the experimental and assembly halls, which is 8.2 meters wide and 8.2 meters high.12/01/2025ApprovedFALSE
- 6.10.10The positional tolerance of the cradle shall be within ±2mm in all directions.12/01/2025ApprovedFALSE
- 6.10.10The adjustability of the cradle shall be at least ±25mm in the in the X,Z directions, and ±10mm in the Y direction.12/01/2025ApprovedFALSE
- 6.10.10The positional tolerance of the of the Global Support Tube shall be within ±3mm in all directions.12/01/2025ApprovedFALSE
- 6.10.10The adjustability of the Global Support Tube shall be at least ±10mm in all directions.12/01/2025ApprovedFALSE
- 6.10.10The positional tolerance of the Pixel Support Tube shall be within ±1mm in all directions.12/01/2025ApprovedFALSE
- 6.10.10The adjustability of the Pixel Support Tube shall be at least ±3mm in the X,Y directions, and ±5mm in the Z direction.12/01/2025ApprovedFALSE
- 6.10.10The positional tolerance of the beampipe shall be within ±1mm in the X,Y directions, and ±5mm in the Z direction.12/01/2025ApprovedFALSE
- 6.10.10The adjustability of the bellows shall be at least ±5mm in the Z direction.12/01/2025ApprovedFALSE
- 6.10.10The rotational tolerance of the beampipe shall be within ±1mm mrad in the X, Y directions.12/01/2025ApprovedFALSE
- 6.10.10The rotational adjustability of the flanges shall be at least ±1 degree in the X, Y directions.12/01/2025ApprovedFALSE
- 6.10.10Predefined detector envelopes shall not be infringed upon.05/16/2025ApprovedFALSE
- 6.10.10Area needed around pfRICH: 2000 cm2 + 10% = 2200 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed around EEEMcal: 2150cm2 + 10% = 2365 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed between dRICH boxes: 4800 cm2 + 10% = 5280 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed between CF tube and dRICH: 4350 cm2 + 10% = 4785 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed between dRICH and HCAL: 5650 cm2 + 10% = 6215 cm205/16/2025ApprovedFALSE
DET-INF-STD : Infrastructure Standards, Clearances, and Tolerances (WBS 6.10.10)
DET-INF-STD-ALIGN : Detector Alignment (WBS 6.10.10)
- DET-INF-STD-ALIGN EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.10The main barrel and both endcaps shall be rotated 8mrad counterclockwise about the Y axis (looking top down).05/16/2025ApprovedFALSE
- 6.10.10The tolerance for this measurement shall be ± 1mrad.05/16/2025ApprovedFALSE
DET-INF-STD-MECHCLR : Mechanical Adjustment Clearances (WBS 6.10.10)
- DET-INF-STD-MECHCLR EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.10Carbon Fiber Tube adjustments in the beampipe shall have an angular tolerance of ±1 mrad.12/01/2025ApprovedFALSE
- 6.10.10Carbon Fiber Tube adjustments in the Barrel Emcal will be within ±5m .12/01/2025ApprovedFALSE
- 6.10.10Carbon Fiber Tube adjustments in the STAR Cradle will be within ±~1/8” (4mm).12/01/2025ApprovedFALSE
- 6.10.10The Carbon Fiber Tube shall be able to be located within 12 mm.12/01/2025ApprovedFALSE
- 6.10.10The Barrel Emcal shall be able to be located within 5 mm.12/01/2025ApprovedFALSE
- 6.10.10The STAR Cradle shall be able to be located within 4 mm.12/01/2025ApprovedFALSE
DET-INF-STD-PIPECLR : Beampipe Clearances (WBS 6.10.10)
- DET-INF-STD-PIPECLR EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.10Inner Detectors will have a minimum clearance to the beampipe of 5mm all around.12/01/2025ApprovedFALSE
- 6.10.10For Inner Detectors that will be installed over flanges then the minimum clearance will be 5mm to the flange all around.12/01/2025ApprovedFALSE
- 6.10.10All other central detectors will have a minimum clearance to the beampipe of 10mm all around.12/01/2025ApprovedFALSE
- 6.10.10For all other central detectors that will be installed over flanges then the minimum clearance will be 10mm to the flange all around.12/01/2025ApprovedFALSE
- 6.10.10Endcaps will have a minimum clearance to the beampipe of 30mm all around.12/01/2025ApprovedFALSE
DET-INF-STD-RCS : RCS System (WBS 6.10.10)
- DET-INF-STD-RCS EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.10Endcaps shall have cutouts to accommodate spaces needed for the RCS beampipe. The minimum clearance shall be 30mm12/01/2025ApprovedFALSE
- 6.10.10The RCS beampipe shall be supported by either the South Platform or the Central Barrel.05/16/2025ApprovedFALSE
- 6.10.10If extra steel is needed for the fringe field, then support for it shall also be provided by either the South Platform or Central Barrel.05/16/2025ApprovedFALSE
DET-INF-STD-SAF : Safety Factors (WBS 6.10.10)
- DET-INF-STD-SAF EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.10Safety factors will be calculated based off yield strength.05/16/2025ApprovedFALSE
- 6.10.10Parts with a safety factor of 3 or greater will be generally accepted and will not require further review.05/16/2025ApprovedFALSE
- 6.10.10Parts with a safety factor of 1.5 to 3 are required to be internally reviewed to determine if it’s acceptable.05/16/2025ApprovedFALSE
- 6.10.10Parts with a safety factor of 1.5 or less will be considered unacceptable.05/16/2025ApprovedFALSE
- 6.10.10Bolts with a safety factor of 2 or greater will be generally accepted and will not require further review.05/16/2025ApprovedFALSE
- 6.10.10Bolts with a safety factor of 1 to 2 are required to be internally reviewed to determine if it’s acceptable.12/01/2025ApprovedFALSE
- 6.10.10Bolts with a safety factor of 1 or less will be considered unacceptable.12/01/2025ApprovedFALSE
- 6.10.10Engineering judgment will be used for identifying and disregarding any singularities which may go below these minimums.12/01/2025ApprovedFALSE
DET-INF-STD-SVCGAP : Services, Gaps, and Clearances (WBS 6.10.10)
- DET-INF-STD-SVCGAP EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.10Area needed around pfRICH: 2000 cm2 + 10% = 2200 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed around EEEMcal: 2150cm2 + 10% = 2365 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed between CF tube and dRICH: 4350 cm2 + 10% = 4785 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed between dRICH boxes: 4800 cm2 + 10% = 5280 cm205/16/2025ApprovedFALSE
- 6.10.10Area needed between dRICH and HCAL: 5650 cm2 + 10% = 6215 cm205/16/2025ApprovedFALSE
- 6.10.10The central detector and infrastructure must be able to fit through the doorway between the experimental and assembly halls, which is 8.2 meters wide and 8.2 meters high.12/01/2025ApprovedFALSE
- 6.10.10The positional tolerance of the cradle shall be within ±2mm in all directions.12/01/2025ApprovedFALSE
- 6.10.10The adjustability of the cradle shall be at least ±25mm in the in the X,Z directions, and ±10mm in the Y direction.12/01/2025ApprovedFALSE
- 6.10.10The positional tolerance of the of the Global Support Tube shall be within ±3mm in all directions.12/01/2025ApprovedFALSE
- 6.10.10The adjustability of the Global Support Tube shall be at least ±10mm in all directions.12/01/2025ApprovedFALSE
- 6.10.10The positional tolerance of the Pixel Support Tube shall be within ±1mm in all directions.12/01/2025ApprovedFALSE
- 6.10.10The adjustability of the Pixel Support Tube shall be at least ±3mm in the X,Y directions, and ±5mm in the Z direction.12/01/2025ApprovedFALSE
- 6.10.10The positional tolerance of the beampipe shall be within ±1mm in the X,Y directions, and ±5mm in the Z direction.12/01/2025ApprovedFALSE
- 6.10.10The rotational tolerance of the beampipe shall be within ±1mm mrad in the X, Y directions.12/01/2025ApprovedFALSE
- 6.10.10The adjustability of the bellows shall be at least ±5mm in the Z direction.12/01/2025ApprovedFALSE
- 6.10.10The rotational adjustability of the flanges shall be at least ±1 degree in the X, Y directions.12/01/2025ApprovedFALSE
DET-INF-STD-WEIGHT : Weight Limits (WBS 6.10.10)
- DET-INF-STD-WEIGHT EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.10The weight limit of 1200 metric tons of the floor shall not be exceeded.05/16/2025ApprovedFALSE
- 6.10.10The combined weight of the Central Barrel shall not exceed 1200 metric tons.05/16/2025ApprovedFALSE
- 6.10.10The combined weight of both halves of the Hadron endcap shall not exceed 450 metric tons.05/16/2025ApprovedFALSE
- 6.10.10The combined weight of both halves of the Hadron endcap shall not exceed 275 metric tons.05/16/2025ApprovedFALSE
- 6.10.10Without regard to dynamic response, the detector structure must withstand an additional 1/4 g loading in any direction, in addition to existing loads.12/01/2025ApprovedFALSE
- 6.10.10Subassembly weight should not exceed 90% of the assembly hall's 40 ton crane capacity to not be a critical lift.12/01/2025ApprovedFALSE
- 6.10.10Subassembly weight should not exceed 90% of the experimental hall's 20 ton crane capacity to not be a critical lift.12/01/2025ApprovedFALSE
DET-INF-COOL : Heating and Cooling Infrastructure
- DET-INF-COOL EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.10The WAH requires cooling capacity adequate for the heat generated by the detector, detector sub systems, detector support electronics and facility systems in the WAH. Comment: New airhandlers and cooling systems needed05/16/2025ApprovedFALSE
- 6.10.10Relative Humidity under 50% to prevent condensation.05/16/2025ApprovedFALSE
- 6.10.10The temperature in the WAH should be maintained between 20°C to 25°C05/16/2025ApprovedFALSE
- 6.10.10Where fan/ blower cooling is inadequate, water-cooled heat exchangers are required to maintain the ambient environment of enclosed electronic assemblies and equipment to a temperature of under 40°C.05/16/2025ApprovedFALSE
DET-INF-COOL-CW : Chilled Water Systems
DET-INF-COOL-HR : Heat Rejection Systems
DET-INF-COOL-HVAC : Heating, Ventilation and Air Conditioning Systems
DET-INF-COOL-LCW : Low Conductivity Water
DET-INF-COOL-OTH : Other Heating/Cooling Systems
DET-INF-CRYO : Cryogenic Infrastructure
- DET-INF-CRYO EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.10A cryogenic transfer system shall be provided within the experimental hall and assembly hall at IP6 to allow cryogenic distribution for the experimental solenoid.10/23/2025ApprovedFALSE
- 6.10.10The cryogenic transfer system must be installed in the available space and have no interferences with new and existing infrastructure.05/16/2025ApprovedFALSE
- 6.10.10To limit the coil temperature below 100k, the magnet transport shall be completed within 2 days of discconection of cryogenic services to the phase separator10/23/2025ApprovedFALSE
- 6.10.10The cryogenic transfer system will have a support structure and connectors that allow the central detector to be relocated between the experimental hall and the assembly area without disconnection.05/16/2025ApprovedFALSE
- 6.10.10During detector alignment, the DBX transfer line shall be flexible against magnet motion of 2" in the Y and ±1" in the X and Z direction, relative to the electronic racks.10/23/2025ApprovedFALSE
DET-INF-ELEC : Electrical Infrastructure
- DET-INF-ELEC EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.10All detectors require isolated power and grounding from facilities power systems. This will be accomplished from existing and newly installed Delta/Wye transformers with a single point star grounding (AKA clean or magnet ground) scheme at the WAH.05/16/2025ApprovedFALSE
- 6.10.1060 Amp 4 wire power (120/ 208V AC) shall be fed to each 19-inch equipment rack from a circuit breaker on the detector platform.05/16/2025ApprovedFALSE
- 6.10.10Cabinets are bonded/ grounded to the appropriate clean ground.05/16/2025ApprovedFALSE
DET-INF-ELEC-DIST : Power Distribution
DET-INF-ELEC-UPS : Uninterruptable Power Supplies
DET-INF-GAS : Gas Infrastructure
- DET-INF-GAS EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.10Gas based detectors will require the appropriate gas mixing and handling systems.05/16/2025ApprovedFALSE
- 6.10.10Gas based detectors shall be provided with the appropriate gas handling systems.05/16/2025ApprovedFALSE
DET-INF-MECH : Mechanical, Structural and Plumbing Infrastructure
- DET-INF-MECH EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.10Floors in the assembly and collider hall must be adequate to support the static and moving load of the experimental detector systems. Load limits need to be determined and verified.05/16/2025ApprovedFALSE
- 6.10.10A rail system for the Hadron end cap calorimeters shall be installed that is sufficient to carry 600ton and maintain a free center gap of 10 centimeters.05/16/2025ApprovedFALSE
- 6.10.10The floor, rails and cradle shall be capable of supporting a static or moving load of 1200 tons (central detector).05/16/2025ApprovedFALSE
- 6.10.10A rail system for the Lepton end cap calorimeters shall be installed that is sufficient to carry 400ton and maintain a free center gap of 10 centimeters.05/16/2025ApprovedFALSE
- 6.10.10The existing rail system used to move the detector from the assembly hall to the collider hall should be preserved.05/16/2025ApprovedFALSE
- 6.10.10Cradles, carriages, platforms and other support systems from the STAR experiment shall be preserved for reuse.05/16/2025ApprovedFALSE
- 6.10.10The existing crane systems in the assembly hall and collider hall shall be preserved.05/16/2025ApprovedFALSE
DET-INF-SPACE : Space Management
DET-INF-VAC : Vacuum Infrastructure
DET-ANC : Ancillary Detector Systems (WBS 6.10.11)
- 6.10.11The EIC ancillary detectors should provide a measurement of particle scattering at small angles.05/16/2025ApprovedFALSE
- 6.10.11The roman pot detectors shall provide a means to measure charged particles close to the beam core.05/16/2025ApprovedFALSE
- 6.10.11The zero-degree calorimeter shall provide a means to measure neutral particles at small angles.05/16/2025ApprovedFALSE
- 6.10.11The forward ancillary detectors shall provide a means to measure forward going charged particles (including those close to the beam core), forward going neutral particles, and to tag charged and neutral particles following decay.05/16/2025ApprovedFALSE
- 6.10.11The B0 system shall provide a means to measure charged particles in the forward direction and to tag neutral particles in the forward direction.05/16/2025ApprovedFALSE
- 6.10.11The off-momentum detectors shall provide a means to measure charged particles (e.g. primarily protons and/or other decay particles), where this particles have a different magnetic rigidity than the beam being used.05/16/2025ApprovedFALSE
- 6.10.11The backward ancillary detectors shall provide a means to measure scattered electrons.05/16/2025ApprovedFALSE
- 6.10.11The Low Q² detectors shall provide a means to measure scattered electrons at small angles in the backward direction.05/16/2025ApprovedFALSE
- 6.10.11The EIC ancillary detectors will be functionally integrated with the other detectors, with the interaction region components, and with the facility infrastructure.05/16/2025ApprovedFALSE
- 6.10.11B0-system must fit and be integrated into the warm area of the B0-dipole. The B0-systems shall require appropriate power and cabling to support operation of the detector elements.Should have survey marks to determine their physical location05/16/2025ApprovedFALSE
- 6.10.11B0 tracker shall provide momentum resolution p_T< 7% for charged particles with p_T>1GeV08/05/2025ApprovedFALSE
- 6.10.11B0-calorimeter transverse cell size shall be < 2 [cm] in X and < 2[cm] in Y08/05/2025ApprovedFALSE
- 6.10.11B0-calorimeter thickness shall be <20 [cm]08/05/2025ApprovedFALSE
- 6.10.11detectors, readout electronics, and support system must tolerate the magnetic field in the subsystem location.08/05/2025ApprovedFALSE
- 6.10.11B0-system must operate at a full projected EIC luminosity and must be resistant to extreme background conditions, high neutron flux in particular, at the levels specified by the simulation studies05/16/2025ApprovedFALSE
- 6.10.11Must handle a data rate and operate reliably at a full projected EIC luminosity (<1MHz)08/05/2025ApprovedFALSE
- 6.10.11B0 should tolerate radiation close up to peak 5x 10^9 neutron fluence / fb-108/05/2025ApprovedFALSE
- 6.10.11LowQ2 system must operate at a full projected EIC luminosity05/16/2025ApprovedFALSE
- 6.10.11Low- Q² tagger will be able to measure the momentum of more than 10 electrons per bunch crossing.05/16/2025ApprovedFALSE
- 6.10.11The Low-Q2 detectors must handle a data rate and operate reliably at a full projected EIC luminosity.05/16/2025ApprovedFALSE
- 6.10.11The position of the Low-Q² tracker should be removable and adjustable to accommodate different running conditions.05/16/2025ApprovedFALSE
- 6.10.11The performance of the Low-Q2 detector will be dependent on the characteristics of the electron beam pipe exit window.05/16/2025ApprovedFALSE
- 6.10.11LowQ2 system must be resistant to extreme background conditions (synchrotron radiation, bremsstrahlung events and slow neutrons in particular) at the levels specified by the simulation studies05/16/2025ApprovedFALSE
- 6.10.11The Low-Q2 detector must be protected from magnetic interference.05/16/2025ApprovedFALSE
- 6.10.11The luminosity detectors shall be composed of a Pair Spectrometer (PS) with 2 stations (above and below zero degree line) with tracking layers in front, and a direct photon CAL along the zero degree line.05/16/2025ApprovedFALSE
- 6.10.11The PS CAL energy resolution for electrons shall be s(E)/E < 15%/sqrt(E) .05/16/2025ApprovedFALSE
- 6.10.11The PS CALs, direct CAL, and trackers shall all provide timing resolution sufficient to resolve 10ns beam buckets05/16/2025ApprovedFALSE
- 6.10.11The PS CAL dimensions shall be 18 [cm] in X , 18 [cm] in Y, and 18 [cm] in Z05/16/2025ApprovedFALSE
- 6.10.11The PS CAL readout granularity shall be 3 [mm] in X, 3 [mm] in Y, and 3 [mm] in Z05/16/2025ApprovedFALSE
- 6.10.11The PS tracker dimensions shall cover the transverse face of the calorimeter with no acceptance gaps.05/16/2025ApprovedFALSE
- 6.10.11The direct photon CAL dimensions is expected to be similar to the PS CAL05/16/2025ApprovedFALSE
- 6.10.11The direct photon CAL energy resolution for electrons shall be s(E)/E < 15%/sqrt(E).05/16/2025ApprovedFALSE
- 6.10.11The direct photon CAL readout granularity is expecte to be more course grained than the PS CAL05/16/2025ApprovedFALSE
- 6.10.11The PS must measure the energy and position of e+e- pairs from bremsstrahlung conversions. The direct photon CAL must measure the energy of the large bremsstrahlung flux while mitigating the high rates of background synchrotron radiation.05/16/2025ApprovedFALSE
- 6.10.11The PS CAL energy resolution for electrons shall be s(E)/E < 15%/sqrt(E) .05/16/2025ApprovedFALSE
- 6.10.11The PS CALs, direct CAL, and trackers shall all provide timing resolution sufficient to resolve 10ns beam buckets05/16/2025ApprovedFALSE
- 6.10.11The PS CAL dimensions shall be 18 [cm] in X , 18 [cm] in Y, and 18 [cm] in Z05/16/2025ApprovedFALSE
- 6.10.11The PS CAL readout granularity shall be 3 [mm] in X, 3 [mm] in Y, and 3 [mm] in Z05/16/2025ApprovedFALSE
- 6.10.11The PS tracker dimensions shall cover the transverse face of the calorimeter with no acceptance gaps.05/16/2025ApprovedFALSE
- 6.10.11The direct photon CAL dimensions is expected to be similar to the PS CAL05/16/2025ApprovedFALSE
- 6.10.11The direct photon CAL energy resolution for electrons shall be s(E)/E < 15%/sqrt(E).05/16/2025ApprovedFALSE
- 6.10.11The direct photon CAL readout granularity is expecte to be more course grained than the PS CAL05/16/2025ApprovedFALSE
- 6.10.11Must be resistant to extreme background conditions, magnetic interference and radiation.05/16/2025ApprovedFALSE
- 6.10.11Some components of the luminosity detector and its electronics must be protected from magnetic interference and radiation.05/16/2025ApprovedFALSE
- 6.10.11The two luminosity detector dipoles must be connected by a beamline that is under vacuum.05/16/2025ApprovedFALSE
- 6.10.11Must be resistant to extreme background conditions, high neutron flux in particular, at the levels specified by the simulation studies.05/16/2025ApprovedFALSE
- 6.10.11OFFM should tolerate radiation close up to peak 1x 10^8 neutron fluence / fb -1 [TBD]08/05/2025ApprovedFALSE
- 6.10.11Must handle data rate and operate reliably at full projected EIC luminosity (<1MHz)08/05/2025ApprovedFALSE
- 6.10.11RPOT will be integrated into the accelerator vacuum system.05/16/2025ApprovedFALSE
- 6.10.11The RPOTs need cooling of ~100 Watts per active layer,05/16/2025ApprovedFALSE
- 6.10.11RPOT layers should be movable in X and Y and extractable to the home position during the injection with a prediction of … [TBD]08/05/2025ApprovedFALSE
- 6.10.11Must be resistant to extreme background conditions, high neutron flux in particular, at the levels specified by the simulation studies.05/16/2025ApprovedFALSE
- 6.10.11RPOT should tolerate radiation close up to peak 5x 10^7 neutron fluence / fb -108/05/2025ApprovedFALSE
- 6.10.11Must handle a data rate and operate reliably at a full projected EIC luminosity (<1MHz)08/05/2025ApprovedFALSE
- 6.10.11Must be resistant to extreme background conditions, high neutron flux in particular, at the levels specified by the simulation studies.05/16/2025ApprovedFALSE
- 6.10.11Must handle a data rate and operate reliably at a full projected EIC luminosity and background (<1MHz)08/05/2025ApprovedFALSE
- 6.10.11ZDC should tolerate radiation close up to peak 3.5 x 10^9 neutron fluence / fb -108/05/2025ApprovedFALSE
- 6.10.11Ability to identify bunch crossing (Timing < 10ns)08/05/2025ApprovedFALSE
- 6.10.11Must be compact enough to fit in the limited space allocated in the accelerator tunnel05/16/2025ApprovedFALSE
- 6.10.11ZDC system active area will have dimensions 60 [cm] in X and 60 [cm] in Y and <200 [cm] in Z08/05/2025ApprovedFALSE
- 6.10.11The EIC ancillary detectors will require adequate infrastructure resources (i.e. power, cooling, cryogens, etc.) to ensure it can function reliably during continous operations.05/16/2025ApprovedFALSE
- 6.10.11The Low-Q² system shall provide cooling (air/liquid) for silicon sensors.05/16/2025ApprovedFALSE
- 6.10.11The Low-Q² system shall provide power supplies for bias and low voltages.05/16/2025ApprovedFALSE
- 6.10.11The ZDC system shall provide cooling (air/liquid) for silicon sensors.05/16/2025ApprovedFALSE
- 6.10.11The ZDC system shall provide power supplies for bias, HV and low voltages.05/16/2025ApprovedFALSE
- 6.10.11The ancillary systems will require electrical power to support the operation of the detector sub-components and electronics.05/16/2025ApprovedFALSE
- 6.10.11The ancillary systems will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.11The ancillary systems will require communications infrastructure to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.11The EIC ancillary detectors and its support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.11The Low-Q² system shall provide cooling (air/liquid) for silicon sensors.05/16/2025ApprovedFALSE
- 6.10.11The Low-Q² system shall provide power supplies for bias and low voltages.05/16/2025ApprovedFALSE
- 6.10.11The ZDC system shall provide cooling (air/liquid) for silicon sensors.05/16/2025ApprovedFALSE
- 6.10.11The ZDC system shall provide power supplies for bias, HV and low voltages.05/16/2025ApprovedFALSE
- 6.10.11The ancillary detectors and support system must fit within the constraints of the surrounding systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.11The ancillary systems will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor, and will require survey marks to determine their physical location.05/16/2025ApprovedFALSE
- 6.10.11The ancillary systems will require electrical power to support the operation of the detector sub-components and electronics.05/16/2025ApprovedFALSE
- 6.10.11The ancillary systems will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.11The ancillary systems will require communications infrastructure to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.11The configuration of the EIC ancillary detectors within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10.11The ancillary detectors and support system must fit within the constraints of the surrounding systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.11A structural support infrastructure must be provided that supports the weight of the EIC ancillary detectors and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
- 6.10.11The ancillary systems will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor, and will require survey marks to determine their physical location.05/16/2025ApprovedFALSE
- 6.10.11The EIC ancillary detectors must fit within the available space in the experimental hall, and be consistent with the available infrastructure and resources.05/16/2025ApprovedFALSE
- 6.10.11B0-system must fit and be integrated into the warm area of the B0-dipole. The B0-systems shall require appropriate power and cabling to support operation of the detector elements.Should have survey marks to determine their physical location05/16/2025ApprovedFALSE
- 6.10.11B0 tracker shall provide momentum resolution p_T< 7% for charged particles with p_T>1GeV08/05/2025ApprovedFALSE
- 6.10.11B0-calorimeter transverse cell size shall be < 2 [cm] in X and < 2[cm] in Y08/05/2025ApprovedFALSE
- 6.10.11B0-calorimeter thickness shall be <20 [cm]08/05/2025ApprovedFALSE
- 6.10.11detectors, readout electronics, and support system must tolerate the magnetic field in the subsystem location.08/05/2025ApprovedFALSE
- 6.10.11Low-Q² tagger will be positioned next to the outgoing electron beampipe, between the B2eR dipole and Q3eR quadrupole.05/16/2025ApprovedFALSE
- 6.10.11Low-Q2 will have one or more tagger stations to cover the maximum momentum acceptance05/16/2025ApprovedFALSE
- 6.10.11The EIC ancillary detectors and its support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.11The Low-Q² system shall provide cooling (air/liquid) for silicon sensors.05/16/2025ApprovedFALSE
- 6.10.11The Low-Q² system shall provide power supplies for bias and low voltages.05/16/2025ApprovedFALSE
- 6.10.11The ZDC system shall provide cooling (air/liquid) for silicon sensors.05/16/2025ApprovedFALSE
- 6.10.11The ZDC system shall provide power supplies for bias, HV and low voltages.05/16/2025ApprovedFALSE
- 6.10.11The ancillary detectors and support system must fit within the constraints of the surrounding systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.11The ancillary systems will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor, and will require survey marks to determine their physical location.05/16/2025ApprovedFALSE
- 6.10.11The ancillary systems will require electrical power to support the operation of the detector sub-components and electronics.05/16/2025ApprovedFALSE
- 6.10.11The ancillary systems will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.11The ancillary systems will require communications infrastructure to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.11The configuration of the EIC ancillary detectors within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10.11The ancillary detectors and support system must fit within the constraints of the surrounding systems and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.11A structural support infrastructure must be provided that supports the weight of the EIC ancillary detectors and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
- 6.10.11The ancillary systems will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor, and will require survey marks to determine their physical location.05/16/2025ApprovedFALSE
DET-ANC-B0 : B-Zero Detectors (WBS 6.10.11)
- 6.10.11The B0 system will provide measurements of charged particles in the forward directions.05/16/2025ApprovedFALSE
- 6.10.11B0-system shall measure photons down to 100 MeV.05/16/2025ApprovedFALSE
- 6.10.11The B0-tracking system shall provide a low material budget: < 5% X0.08/05/2025ApprovedFALSE
- 6.10.11B0-calorimeter should provide an energy resolution for photons s(E)/E < 20%/sqrt(E) + (3)%.08/05/2025ApprovedFALSE
- 6.10.11Silicon detector with sufficient timing and spatial resolution will provide tracking measurements of the charged particles in the hadron-outgoing direction.05/16/2025ApprovedFALSE
- 6.10.11B0-tracker shall have a timing resolution < 35ps08/05/2025ApprovedFALSE
- 6.10.11B0- tracker shall have a spatial resolution in (x,y) < 20um08/05/2025ApprovedFALSE
- 6.10.11B0-tracker shall have at least 4 layers08/05/2025ApprovedFALSE
- 6.10.11B0-system must operate at a full projected EIC luminosity and must be resistant to extreme background conditions, high neutron flux in particular, at the levels specified by the simulation studies05/16/2025ApprovedFALSE
- 6.10.11Must handle a data rate and operate reliably at a full projected EIC luminosity (<1MHz)08/05/2025ApprovedFALSE
- 6.10.11B0 should tolerate radiation close up to peak 5x 10^9 neutron fluence / fb-108/05/2025ApprovedFALSE
- 6.10.11The B0-system will tag protons at higher angles (especially important for lower beam energies).05/16/2025ApprovedFALSE
- 6.10.11B0-system shall provide theta coverage in the range 5.5 < θ < 20.0 mrad (4.6 < ƞ < 5.9) with respect to the hadron beam line.05/16/2025ApprovedFALSE
- 6.10.11B0 tracker shall provide momentum resolution p_T< 7% for charged particles with p_T>1GeV08/05/2025ApprovedFALSE
- 6.10.11The B0 system will provide measurements of forward photons and pi0.05/16/2025ApprovedFALSE
- 6.10.11B0-system shall measure photons down to 100 MeV.05/16/2025ApprovedFALSE
- 6.10.11The B0-tracking system shall provide a low material budget: < 5% X0.08/05/2025ApprovedFALSE
- 6.10.11B0-calorimeter should provide an energy resolution for photons s(E)/E < 20%/sqrt(E) + (3)%.08/05/2025ApprovedFALSE
- DET-ANC-B0 EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.11B0-system must fit and be integrated into the warm area of the B0-dipole. The B0-systems shall require appropriate power and cabling to support operation of the detector elements.Should have survey marks to determine their physical location05/16/2025ApprovedFALSE
- 6.10.11B0 tracker shall provide momentum resolution p_T< 7% for charged particles with p_T>1GeV08/05/2025ApprovedFALSE
- 6.10.11B0-calorimeter transverse cell size shall be < 2 [cm] in X and < 2[cm] in Y08/05/2025ApprovedFALSE
- 6.10.11B0-calorimeter thickness shall be <20 [cm]08/05/2025ApprovedFALSE
- 6.10.11detectors, readout electronics, and support system must tolerate the magnetic field in the subsystem location.08/05/2025ApprovedFALSE
DET-ANC-LOWQ2 : Low Q2 Detectors (WBS 6.10.11)
- 6.10.11The Low-Q² detectors will measure the momentum of scattered electrons with Q² below 0.1 GeV² in the far-backward region.05/16/2025ApprovedFALSE
- 6.10.11The acceptance for the low-Q² tagger should complement the central detector to reach the coverage close to the limits given by the divergence of the beam and beamline magnets.05/16/2025ApprovedFALSE
- 6.10.11Low- Q² trackers shall provide timing resolution sufficient to resolve 10ns beam buckets05/16/2025ApprovedFALSE
- 6.10.11Low-Q2 will have one or more tagger stations to cover the maximum momentum acceptance05/16/2025ApprovedFALSE
- 6.10.11Low-Q² trackers will have Q² acceptance between 0 and 0.1 GeV²05/16/2025ApprovedFALSE
- 6.10.11To measure the momentum of the scattered electron the Low-Q² tagger will include a tracker.05/16/2025ApprovedFALSE
- 6.10.11Each Low-Q2 station will have up to 4 silicon tracking layers05/16/2025ApprovedFALSE
- 6.10.11The Low-Q2 tracking system shall have a spatial resolution providing a momentum resolution < 5%.05/16/2025ApprovedFALSE
- 6.10.11Low- Q² trackers shall provide timing resolution sufficient to resolve 10ns beam buckets05/16/2025ApprovedFALSE
- 6.10.11Low- Q² tagger 1 calorimeter will have dimensions at least 18 cm in X and 18 cm in Y [TBD]08/05/2025ApprovedFALSE
- 6.10.11Low-Q² trackers will have Q² acceptance between 0 and 0.1 GeV²05/16/2025ApprovedFALSE
- 6.10.11Low- Q² tagger 2 calorimeter will have dimensions at least 18cm in X and 18cm in Y [TBD]08/05/2025ApprovedFALSE
- 6.10.11To measure the energy of the scattered electrons the Low-Q² tagger will include a calorimeter.05/16/2025ApprovedFALSE
- 6.10.11Low-Q2 calorimeter energy resolution for electrons shall be s(E)/E < 10%/sqrt(E) + 3%.05/16/2025ApprovedFALSE
- 6.10.11Each Low-Q2 station will have up to 4 silicon tracking layers05/16/2025ApprovedFALSE
- 6.10.11The Low-Q2 detectors must handle a data rate and operate reliably at a full projected EIC luminosity.05/16/2025ApprovedFALSE
- 6.10.11Low-Q² tagger will be positioned next to the outgoing electron beampipe, between the B2eR dipole and Q3eR quadrupole.05/16/2025ApprovedFALSE
- 6.10.11Low-Q2 will have one or more tagger stations to cover the maximum momentum acceptance05/16/2025ApprovedFALSE
- DET-ANC-LOWQ2 EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.11LowQ2 system must operate at a full projected EIC luminosity05/16/2025ApprovedFALSE
- 6.10.11Low- Q² tagger will be able to measure the momentum of more than 10 electrons per bunch crossing.05/16/2025ApprovedFALSE
- 6.10.11The Low-Q2 detectors must handle a data rate and operate reliably at a full projected EIC luminosity.05/16/2025ApprovedFALSE
- 6.10.11The position of the Low-Q² tracker should be removable and adjustable to accommodate different running conditions.05/16/2025ApprovedFALSE
- 6.10.11The performance of the Low-Q2 detector will be dependent on the characteristics of the electron beam pipe exit window.05/16/2025ApprovedFALSE
- 6.10.11LowQ2 system must be resistant to extreme background conditions (synchrotron radiation, bremsstrahlung events and slow neutrons in particular) at the levels specified by the simulation studies05/16/2025ApprovedFALSE
- 6.10.11The Low-Q2 detector must be protected from magnetic interference.05/16/2025ApprovedFALSE
- 6.10.11The Low-Q² system shall provide cooling (air/liquid) for silicon sensors.05/16/2025ApprovedFALSE
- 6.10.11The Low-Q² system shall provide power supplies for bias and low voltages.05/16/2025ApprovedFALSE
DET-ANC-LUMI : Luminosity Detectors (WBS 6.10.11)
- 6.10.11The luminosity system utilizes the bremsstrahlung process to provide measurements of the absolute luminosity to a precision of δL/L<= 1% and relative luminosity at 10^-4.05/16/2025ApprovedFALSE
- 6.10.11The PS must measure the energy and position of e+e- pairs from bremsstrahlung conversions. The direct photon CAL must measure the energy of the large bremsstrahlung flux while mitigating the high rates of background synchrotron radiation.05/16/2025ApprovedFALSE
- 6.10.11The PS CAL energy resolution for electrons shall be s(E)/E < 15%/sqrt(E) .05/16/2025ApprovedFALSE
- 6.10.11The PS CALs, direct CAL, and trackers shall all provide timing resolution sufficient to resolve 10ns beam buckets05/16/2025ApprovedFALSE
- 6.10.11The PS CAL dimensions shall be 18 [cm] in X , 18 [cm] in Y, and 18 [cm] in Z05/16/2025ApprovedFALSE
- 6.10.11The PS CAL readout granularity shall be 3 [mm] in X, 3 [mm] in Y, and 3 [mm] in Z05/16/2025ApprovedFALSE
- 6.10.11The PS tracker dimensions shall cover the transverse face of the calorimeter with no acceptance gaps.05/16/2025ApprovedFALSE
- 6.10.11The direct photon CAL dimensions is expected to be similar to the PS CAL05/16/2025ApprovedFALSE
- 6.10.11The direct photon CAL energy resolution for electrons shall be s(E)/E < 15%/sqrt(E).05/16/2025ApprovedFALSE
- 6.10.11The direct photon CAL readout granularity is expecte to be more course grained than the PS CAL05/16/2025ApprovedFALSE
- 6.10.11The luminosity detectors shall be composed of a Pair Spectrometer (PS) with 2 stations (above and below zero degree line) with tracking layers in front, and a direct photon CAL along the zero degree line.05/16/2025ApprovedFALSE
- 6.10.11The PS CAL energy resolution for electrons shall be s(E)/E < 15%/sqrt(E) .05/16/2025ApprovedFALSE
- 6.10.11The PS CALs, direct CAL, and trackers shall all provide timing resolution sufficient to resolve 10ns beam buckets05/16/2025ApprovedFALSE
- 6.10.11The PS CAL dimensions shall be 18 [cm] in X , 18 [cm] in Y, and 18 [cm] in Z05/16/2025ApprovedFALSE
- 6.10.11The PS CAL readout granularity shall be 3 [mm] in X, 3 [mm] in Y, and 3 [mm] in Z05/16/2025ApprovedFALSE
- 6.10.11The PS tracker dimensions shall cover the transverse face of the calorimeter with no acceptance gaps.05/16/2025ApprovedFALSE
- 6.10.11The direct photon CAL dimensions is expected to be similar to the PS CAL05/16/2025ApprovedFALSE
- 6.10.11The direct photon CAL energy resolution for electrons shall be s(E)/E < 15%/sqrt(E).05/16/2025ApprovedFALSE
- 6.10.11The direct photon CAL readout granularity is expecte to be more course grained than the PS CAL05/16/2025ApprovedFALSE
- 6.10.11Must be resistant to extreme background conditions, magnetic interference and radiation.05/16/2025ApprovedFALSE
- 6.10.11Some components of the luminosity detector and its electronics must be protected from magnetic interference and radiation.05/16/2025ApprovedFALSE
- 6.10.11The two luminosity detector dipoles must be connected by a beamline that is under vacuum.05/16/2025ApprovedFALSE
DET-ANC-OFFMO : Off-Momentum Detectors (WBS 6.10.11)
- 6.10.11The Off-Momentum detectors should provide measurements of charged particles with different magnetic rigidity05/16/2025ApprovedFALSE
- 6.10.11Silicon detector with sufficient timing and spatial resolution will provide tracking measurements of the charged particles in the hadron-outgoing direction.05/16/2025ApprovedFALSE
- 6.10.11The OFFM tracking system shall provide a low material budget: < 5% X0.05/16/2025ApprovedFALSE
- 6.10.11OFFM tracker shall provide pT resolution of <10% for pT > 1 GeV/c.08/05/2025ApprovedFALSE
- 6.10.11Must be resistant to extreme background conditions, high neutron flux in particular, at the levels specified by the simulation studies.05/16/2025ApprovedFALSE
- 6.10.11OFFM should tolerate radiation close up to peak 1x 10^8 neutron fluence / fb -1 [TBD]08/05/2025ApprovedFALSE
- 6.10.11Must handle data rate and operate reliably at full projected EIC luminosity (<1MHz)08/05/2025ApprovedFALSE
- DET-ANC-OFFMO EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.11OMD will be integrated into the accelerator vacuum system.08/06/2025ApprovedFALSE
- 6.10.11OFFM tracker shall have granularity of 500um (pixels) with charge-sharing to achieve spatial resolution < 20um per hit.05/16/2025ApprovedFALSE
- 6.10.11OFFM will have 2 layers per station05/16/2025ApprovedFALSE
- 6.10.11OFFM will have 2 stations , separated by 2m05/16/2025ApprovedFALSE
- 6.10.11OFFM system dimensions will be 10[cm] in X and 20 [cm] in Y (to be determined)05/16/2025ApprovedFALSE
- 6.10.11The OMDs need cooling of ~60 Watts per active layer,05/16/2025ApprovedFALSE
- 6.10.11OFFM tracker will have timing resolution X<35ps05/16/2025ApprovedFALSE
- 6.10.11OMD layers should be movable in X and Y and extractable to the home position during the injection with a prediction of … [TBD]08/05/2025ApprovedFALSE
DET-ANC-ROMAN : Roman Pots (WBS 6.10.11)
- 6.10.11The Roman-Pots should provide measurements of charged particles close to the beam core.05/16/2025ApprovedFALSE
- 6.10.11RPOT will provide good t-measurements of far-forward charged particles.05/16/2025ApprovedFALSE
- 6.10.11RPOT tracker will have granularity of 500um (pixels) with charge-sharing to achieve spatial resolution < 140um per hit.08/05/2025ApprovedFALSE
- 6.10.11The RPOT tracking system shall provide a low material budget: < 5% X0.05/16/2025ApprovedFALSE
- 6.10.11RPOT tracker will have timing resolution < 35 ps05/16/2025ApprovedFALSE
- 6.10.11RPOT tracker shall provide momentum resolution < 5% and pT resolution of 5% for pT > 500 MeV/c.05/16/2025ApprovedFALSE
- 6.10.11The Roman-Pots will provide coverage in the range 0.0* < θ < 5.0 mrad (ƞ > 6) (*depends on beam optics, ca 10 sigma)05/16/2025ApprovedFALSE
- 6.10.11RPOT will have 2 stations , separated by 2m08/05/2025ApprovedFALSE
- 6.10.11RPOT will have 2 layers per each station08/05/2025ApprovedFALSE
- 6.10.11RPOT system dimensions will have 26 [cm] in X and 13 [cm] in Y (to be determined)05/16/2025ApprovedFALSE
- 6.10.11Must be resistant to extreme background conditions, high neutron flux in particular, at the levels specified by the simulation studies.05/16/2025ApprovedFALSE
- 6.10.11RPOT should tolerate radiation close up to peak 5x 10^7 neutron fluence / fb -108/05/2025ApprovedFALSE
- 6.10.11Must handle a data rate and operate reliably at a full projected EIC luminosity (<1MHz)08/05/2025ApprovedFALSE
- DET-ANC-ROMAN EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.11RPOT will be integrated into the accelerator vacuum system.05/16/2025ApprovedFALSE
- 6.10.11The RPOTs need cooling of ~100 Watts per active layer,05/16/2025ApprovedFALSE
- 6.10.11RPOT layers should be movable in X and Y and extractable to the home position during the injection with a prediction of … [TBD]08/05/2025ApprovedFALSE
DET-ANC-ZDC : Zero Degree Calorimeter (WBS 6.10.11)
- 6.10.11The Zero Degree Calorimeter should provide measurements of neutral particles (neutrons and photons).05/16/2025ApprovedFALSE
- 6.10.11ZDC will provide theta coverage in the range 0 < θ < 4 mrad (aperture limit, symmetric in phi).08/05/2025ApprovedFALSE
- 6.10.11ZDC system active area will have dimensions 60 [cm] in X and 60 [cm] in Y and <200 [cm] in Z08/05/2025ApprovedFALSE
- 6.10.11ZDC will provide good PT ( or t) -measurements of far-forward neutral particles (photons and neutrons )05/16/2025ApprovedFALSE
- 6.10.11The ZDC will have at least two sections: electromagnetic (EMCAL) and hadronic pars (HCAL)05/16/2025ApprovedFALSE
- 6.10.11ZDC shall have granularity : EMCAL crystal 2cmx2cm towers Angular resolution 3mrad/ sqrt(E)08/05/2025ApprovedFALSE
- 6.10.11The ZDC EMCAL calorimeter hall provide photon measurements down to 100 MeV.05/16/2025ApprovedFALSE
- 6.10.11ZDC will provide good identification and energy measurements of far-forward neutral particles (photons and neutrons )05/16/2025ApprovedFALSE
- 6.10.11Energy resolution for photons shall be s(E)/E < 20%/sqrt(E) + 5%, and measure energy of photons down to 100 MeV.08/05/2025ApprovedFALSE
- 6.10.11Energy resolution for neutrons shall be s(E)/E < 50%/sqrt(E) + 5%.05/16/2025ApprovedFALSE
- 6.10.11ZDC should provide a VETO for the charged particles05/16/2025ApprovedFALSE
- 6.10.11ZDC should have two layers of SiPM-on-Tile scintillators boards in front of the calorimeter(s) for charged particle veto.08/05/2025ApprovedFALSE
- 6.10The Zero Degree Calorimeter should provide measurements of neutral particles (neutrons and photons).05/16/2025In ProcessFALSE
- DET-ANC-ZDC EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.11Must be resistant to extreme background conditions, high neutron flux in particular, at the levels specified by the simulation studies.05/16/2025ApprovedFALSE
- 6.10.11Must handle a data rate and operate reliably at a full projected EIC luminosity and background (<1MHz)08/05/2025ApprovedFALSE
- 6.10.11ZDC should tolerate radiation close up to peak 3.5 x 10^9 neutron fluence / fb -108/05/2025ApprovedFALSE
- 6.10.11Ability to identify bunch crossing (Timing < 10ns)08/05/2025ApprovedFALSE
- 6.10.11Must be compact enough to fit in the limited space allocated in the accelerator tunnel05/16/2025ApprovedFALSE
- 6.10.11ZDC system active area will have dimensions 60 [cm] in X and 60 [cm] in Y and <200 [cm] in Z08/05/2025ApprovedFALSE
- 6.10.11The ZDC system shall provide cooling (air/liquid) for silicon sensors.05/16/2025ApprovedFALSE
- 6.10.11The ZDC system shall provide power supplies for bias, HV and low voltages.05/16/2025ApprovedFALSE
DET-POL : Polarimetry and Luminosity (WBS 6.10.14)
- 6.10.14The polarimeters at EIC shall measure the spin polarizations of the colliding beams.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters must measure the beam polarizations at all flattop energies.05/16/2025ApprovedFALSE
- 6.10.14The beam polarizations shall be measured to within 1% or less (relative).05/16/2025ApprovedFALSE
- 6.10.14.01.01The systematic and statistical uncertainty will be 1% or better.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters must be able to determine the polarization vector.05/16/2025ApprovedFALSE
- 6.10.14The beam polarimetry shall happen concurrent to the physics measurement and be non-invasive.05/16/2025ApprovedFALSE
- 6.10.14The beam polarizations shall be measured to within 1% or less (relative).05/16/2025ApprovedFALSE
- 6.10.14.01.01The systematic and statistical uncertainty will be 1% or better.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters must be able to determine the polarization vector.05/16/2025ApprovedFALSE
- 6.10.14The polarization lifetime must be measured for each fill of beams or bunches.05/16/2025ApprovedFALSE
- 6.10.14The polarization must be measured for each bunch of the beams.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters will be functionally integrated with the other detectors, with the interaction region components, and with the facility infrastructure.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters will require adequate infrastructure resources (i.e. power, cooling, cryogens, etc.) to ensure it can function reliably during continous operations.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters and their control rooms will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters and their control rooms will require electrical power to support the operation of the detector sub-components and electronics.05/16/2025ApprovedFALSE
- 6.10.14The laser labs, control rooms and access paths must be shielded to allow personnel access during beam/laser operations.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters and their control rooms will require communications infrastructure to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.14The laser labs, control rooms, and equipment must have interlocks where required for personnel safety.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters and its support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters, their control rooms and support system must fit within the constraints of the surrounding systems, be properly located relative to other systems, and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor, and will require survey marks to determine their physical location.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters and their control rooms will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters and their control rooms will require electrical power to support the operation of the detector sub-components and electronics.05/16/2025ApprovedFALSE
- 6.10.14The laser labs, control rooms and access paths must be shielded to allow personnel access during beam/laser operations.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters and their control rooms will require communications infrastructure to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.14The laser labs, control rooms, and equipment must have interlocks where required for personnel safety.05/16/2025ApprovedFALSE
- 6.10.14The configuration of the polarimeters within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters, their control rooms and support system must fit within the constraints of the surrounding systems, be properly located relative to other systems, and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.14A structural support infrastructure must be provided that supports the weight of the polarimeters and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor, and will require survey marks to determine their physical location.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters must fit within the available space in the experimental hall, and be consistent with the available infrastructure and resources.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters and its support systems must fit in the available space AND provide adequate plenums and pathways for the delivery of services, resources and communications, and for the removal of heat and waste during operations.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters, their control rooms and support system must fit within the constraints of the surrounding systems, be properly located relative to other systems, and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor, and will require survey marks to determine their physical location.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters and their control rooms will require cooling infrastructure that is sufficient to ensure the operating temperature remains within an acceptable range.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters and their control rooms will require electrical power to support the operation of the detector sub-components and electronics.05/16/2025ApprovedFALSE
- 6.10.14The laser labs, control rooms and access paths must be shielded to allow personnel access during beam/laser operations.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters and their control rooms will require communications infrastructure to support data collection, monitoring and control.05/16/2025ApprovedFALSE
- 6.10.14The laser labs, control rooms, and equipment must have interlocks where required for personnel safety.05/16/2025ApprovedFALSE
- 6.10.14The configuration of the polarimeters within the detector will be coordinated to ensure efficient operation and to minimize adverse interactions between sub-systems.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters, their control rooms and support system must fit within the constraints of the surrounding systems, be properly located relative to other systems, and have adequate space for the delivery of services and the removal of waste.05/16/2025ApprovedFALSE
- 6.10.14A structural support infrastructure must be provided that supports the weight of the polarimeters and peripheral equipment, and safely distributes that load to the ground.05/16/2025ApprovedFALSE
- 6.10.14The polarimeters will require a structural support system to carry the cumulative weight of the detectors and peripheral services, and to distribute that load to other supporting infrastructure or to the floor, and will require survey marks to determine their physical location.05/16/2025ApprovedFALSE
DET-POL-EPOL : Electron Polarimetry (WBS 6.10.14.01)
- 6.10.14.01The EIC electron polarimeter system shall provide a measurement of the absolute beam polarization in the ESR and RCS. The ESR Compton must measure the polarization bunch-by-bunch and be sensitive to the beam transverse polarization profile.05/16/2025ApprovedFALSE
- 6.10.14.01An optical system will be used to determine laser polarization at interaction point.05/16/2025ApprovedFALSE
- 6.10.14.01Laser shall provide a "photon target" for Compton reaction.05/16/2025ApprovedFALSE
- 6.10.14.01The laser average power shall be 5-10 W, with a wavelength = 532 nm.05/16/2025ApprovedFALSE
- 6.10.14.01The laser beam M2 will be approximately 1 (diffraction limited).05/16/2025ApprovedFALSE
- 6.10.14.01Windows are required to allow laser to enter and exit beamline vacuum.05/16/2025ApprovedFALSE
DET-POL-EPOL-ESR : Electron Storage Ring Polarimetry (WBS 6.10.14.01)
- 6.10.14.01.01The ESR Compton shall measure the electron polarization in the electron storage ring.05/16/2025ApprovedFALSE
- 6.10.14.01.01A strip detector will be used to detect scattered electrons from (at least) asymmetry zero crossing to kinematic endpoint.05/16/2025ApprovedFALSE
- 6.10.14.01.01The electron detector shall cover at least 6 cm (horizontal) (to be verified).05/16/2025ApprovedFALSE
- 6.10.14.01.01The time response of all detectors (electron and photon) will be sufficient to resolve beam bunch (<10 ns).05/16/2025ApprovedFALSE
- 6.10.14.01.01The electron strip detector pitch shall be 400 um or smaller (to be verified).05/16/2025ApprovedFALSE
- 6.10.14.01.01A Roman pot will be required to protect electron detector from beam Wakefield.05/16/2025ApprovedFALSE
- 6.10.14.01.01The strip detector shall be used to detect back-scattered photons with sufficient resolution measure the spatial asymmetry.05/16/2025ApprovedFALSE
- 6.10.14.01.01The electron detector shall cover at least 6 cm (horizontal) (to be verified).05/16/2025ApprovedFALSE
- 6.10.14.01.01The time response of all detectors (electron and photon) will be sufficient to resolve beam bunch (<10 ns).05/16/2025ApprovedFALSE
- 6.10.14.01.01The electron strip detector pitch shall be 400 um or smaller (to be verified).05/16/2025ApprovedFALSE
- 6.10.14.01.01The photon detector system will be at least 20 to 25 meters from the Compton IP (to be verified).05/16/2025ApprovedFALSE
- 6.10.14.01.01The photon calorimeter and strip detector will cover at least 4 x 4 cm² (to be verified).05/16/2025ApprovedFALSE
- 6.10.14.01.01The time response of all detectors (electron and photon) will be sufficient to resolve beam bunch (<10 ns).05/16/2025ApprovedFALSE
- 6.10.14.01.01The photon detector strip detector pitch shall be ~100 um (to be verified).05/16/2025ApprovedFALSE
- 6.10.14.01.01A calorimeter will be used to measure backscattered photon energy.05/16/2025ApprovedFALSE
- 6.10.14.01.01The photon calorimeter and strip detector will cover at least 4 x 4 cm² (to be verified).05/16/2025ApprovedFALSE
- 6.10.14.01.01The time response of all detectors (electron and photon) will be sufficient to resolve beam bunch (<10 ns).05/16/2025ApprovedFALSE
- 6.10.14.01.01The photon detector strip detector pitch shall be ~100 um (to be verified).05/16/2025ApprovedFALSE
- 6.10.14.01.01The electron polarization measurement shall be completed in a context appropriate time frame.05/16/2025ApprovedFALSE
- 6.10.14.01.01The laser repetition rate shall match the beam frequency (25-100 MHz) and will have the capability of achieving a ~75 kHz pulse rate.05/16/2025ApprovedFALSE
- 6.10.14.01.01The measurement time shall be less than the bunch lifetime in the ring (~2 minutes).05/16/2025ApprovedFALSE
- 6.10.14.01.01The time response of all detectors (electron and photon) will be sufficient to resolve beam bunch (<10 ns).05/16/2025ApprovedFALSE
- DET-POL-EPOL-ESR EXTERNALSRequirements who's parents are in other sub-systems.
- 6.10.14.01.01The systematic and statistical uncertainty will be 1% or better.05/16/2025ApprovedFALSE
DET-POL-EPOL-RCS : Rapid Cycling Synchrotron Polarimetry (WBS 6.10.14.01)
- 6.10.14.01.02The RCS Compton shall measure the electron polarization either in, or just after the Rapid Cycling Synchrotron.05/16/2025ApprovedFALSE
- 6.10.14.01.02The photon detector will measure the spatial asymmetry of backscattered photons in multi-photon (integrating) mode.05/16/2025ApprovedFALSE
- 6.10.14.01.02The systematic and statistical uncertainty will be better than 5% (to be verified).05/16/2025ApprovedFALSE
- 6.10.14.01.02The laser repetition rate shall be 2-100, Hz, with a 3-10 ns pulse-width.05/16/2025ApprovedFALSE
- 6.10.14.01.02The measurement time will be less than 10-20 minutes.05/16/2025ApprovedFALSE
- 6.10.14.01.02The photon detector segmentation will be XX (to be determined).05/16/2025ApprovedFALSE
- 6.10.14.01.02The photon detector system will be at least 20 to 25 meters from the Compton IP (to be verified).05/16/2025ApprovedFALSE
- 6.10.14.01.02The photon detector segmentation will be XX (to be determined).05/16/2025ApprovedFALSE
DET-POL-HPOL : Hadron Polarimetry (WBS 6.10.14.02)
- 6.10.14.02The EIC hadron polarimeter system must provide a measurement of the absolute beam polarization in the HSR, the polarization lifetime and the transverse bunch polarization profile.05/16/2025ApprovedFALSE
- 6.10.14.02Silicon detectors shall measure elastic recoil particles from the polarimeter target.05/16/2025ApprovedFALSE
- 6.10.14.02The energy resolution shall be 25 keV or better.05/16/2025ApprovedFALSE
- 6.10.14.02Each detector shall consists of 12 vertical Si strips (1.375 mm pitch).05/16/2025ApprovedFALSE
- 6.10.14.02The time resolution of the waveform digitizers shall be 0.5 ns or better.05/16/2025ApprovedFALSE
- 6.10.14.02Particle identification shall be based on time of flight and energy measurements of hits in the Si strips.05/16/2025ApprovedFALSE
- 6.10.14.02The time resolution of the waveform digitizers shall be 0.5 ns or better.05/16/2025ApprovedFALSE
- 6.10.14.02The Si detector energy response shall be calibrated with two alpha sources (Am & Gd).05/16/2025ApprovedFALSE
- 6.10.14.02A second layer of Si shall be used to reject background from punch-through particles.05/16/2025ApprovedFALSE
DET-POL-HPOL-HJET : HJET Polarimetery (WBS 6.10.14.02)
- 6.10.14.02.01The HJET polarimeter shall measure the absolute beam polarization for light hadron beams.05/16/2025ApprovedFALSE
- 6.10.14.02.01The HJET polarimeter shall measure the polarization throughout a whole hadron store (about 8 hours).05/16/2025ApprovedFALSE
- 6.10.14.02.01The relative uncertainty of the beam polarization measurement must be 1% or less.05/16/2025ApprovedFALSE
- 6.10.14.02.01Silicon detectors must be located to the left and right of the beam direction (in the accelerator plane).05/16/2025ApprovedFALSE
- 6.10.14.02.01The atomic target shall be polarized through a set of hyperfine transitions and the target polarization shall be monitored in a Breit-Rabi unit.05/16/2025ApprovedFALSE
- 6.10.14.02.01A Zero Degree Calorimeter shall be located downstream of the HJET (separated by a 10-12 Tm dipole magnet).05/16/2025ApprovedFALSE
- 6.10.14.02.01The unpolarized molecular fraction of the target shall be continuously monitored with a beam gas analyzer.05/16/2025ApprovedFALSE
- 6.10.14.02.01The HJET polarimeter will require adequate resources to successfully operate.10/23/2025ApprovedFALSE
- 6.10.14.02.01The HJET polarimeter will require space and infrastructure to support data collection and monitoring.10/23/2025ApprovedFALSE
- 6.10.14.02.01The HJET polarimeter will require infrastructure to support the operation and communications for its control systems.10/23/2025ApprovedFALSE
- 6.10.14.02.01The HJET polarimeter will require cable pathways and conduits adequate to control, collect data, and monitor.10/23/2025ApprovedFALSE
DET-POL-HPOL-PC : Proton-Carbon Polarimeter (WBS 6.10.14.02)
- 6.10The pC polarimeter shall measure the relative polarization loss at flattop energy during a store and the transverse polarization profile of the hadron bunches.05/16/2025In ProcessFALSE
- 6.10.14.02.02The pC polarimeters shall be equipped with ultra-thin fiber targets which scan the beam profile horizontally and vertically.05/16/2025ApprovedFALSE
- 6.10.14.02.02The bias current of the detectors shall be constantly monitored.05/16/2025ApprovedFALSE
- 6.10.14.02.02The pC polarimeter target stations shall carry enough fiber targets to last throughout a year of EIC operations.05/16/2025ApprovedFALSE
- 6.10.14.02.02The pC devices shall measure the relative beam polarization within 30 seconds with an uncertainty of 2% or less.05/16/2025ApprovedFALSE
- 6.10.14.02.02The pC polarimeter shall be able to measure the bunch-by-bunch polarization for each hadron beam fill.05/16/2025ApprovedFALSE
- 6.10.14.02.02The target fibers shall be thin enough to provide a measurement of the transverse polarization profile of the beam bunches.05/16/2025ApprovedFALSE
- 6.10.14.02.02Vacuum separation will be required to access and replacement targets during maintenance.05/16/2025ApprovedFALSE
- 6.10.14.02.02The pC polarimeter will require adequate resources to successfully operate.10/23/2025ApprovedFALSE
- 6.10.14.02.02The pC polarimeter will require infrastructure to support the operation and communications for its control systems.10/23/2025ApprovedFALSE
- 6.10.14.02.02The pC polarimeter will require space and infrastructure to support data collection and monitoring.10/23/2025ApprovedFALSE
- 6.10The pC polarimeter near the experimental IR shall measure the orientation of the polarization vector (local polarimetry).05/16/2025In ProcessFALSE
- 6.10.14.02.02Six silicon detectors must be located to the left and right of the beam and under 45 degrees with respect to the accelerator plane.05/16/2025ApprovedFALSE
- 6.10.14.02.02The pC polarimeter shall be able to measure the bunch-by-bunch polarization for each hadron beam fill.05/16/2025ApprovedFALSE
- 6.10.14.02.02The pC devices shall measure the relative beam polarization within 30 seconds with an uncertainty of 2% or less.05/16/2025ApprovedFALSE
- 6.10.14.02.02Vacuum separation will be required to access and replacement targets during maintenance.05/16/2025ApprovedFALSE