Brookhaven National Laboratory Thomas Jefferson National Accelerator Facility

Electron Ion Collider Parameter Lists

Editors: S. Peggs, T. Satogata

UNDER CONSTRUCTION

Core version 2025-02-08 April 1, 2025

Contents

1	Introductio	on (S. Nagaitsev)	1
	1.0.1	Full Capability proton collisions	3
2	Electron In	jector (Q. Wu)	4
	2.0.1	Preinjector	5
	2.0.2	Beam Accumulator Ring	6
	2.0.3	Rapid Cycling Synchrotron	7
3	Electron St	orage Ring (C. Montag)	8
	3.0.1	Top level	9
	3.0.2	Lattice and orbit	9
4	Hadron Sto	brage Ring (V. Ptitsyn)	10
	4.0.1	Proton and gold bunches	10
	4.0.2	Layout, lattice, RF voltages	11
	4.0.3	Radial shift	11
	4.0.4	Injection line magnets	11
	4.0.5	Transition crossing	12
5	New super	conducting magnets (W. Wahl)	13
	5.1 Had	ron Storage Ring	14
	5.1.1	Dipoles	14
	5.1.2	Quadrupoles	14
	5.1.3	Correctors	15
	5.2 Elec	tron Storage Ring	16
	5.2.1	Quadrupoles	16
	5.2.2	Correctors	16
	5.2.3	Spin rotator solenoids	17
6	Hadron Co	oling (A. Fedotov)	18
	6.0.1	Proton cooling at injection	18
	6.0.2	Low Energy Cooler	19
	6.0.3	LEC beam diagnostics	19
	6.0.4	LEC magnets	20
7	Cryogenic	Systems (B. Shell)	21

8	Glossary		23
	7.0.3	Satellite plants	22
	7.0.2	Detector	22
	7.0.1	Central plant	21

Introduction (S. Nagaitsev)

The EIC collides polarized electrons in an Electron Storage Ring (ESR) with ions in a Hadron Storage Ring (HSR), with species that range from polarized protons and deuterons to unpolarized heavy ions. Figure 1.1 shows the scope of the EIC project.

Electron injector complex. A new electron injector complex delivers full-energy electron bunches to the ESR. It comprises a high-intensity preinjector (a polarized electron source and a linac), a Beam Accumulator Ring (BAR), and a Rapid Cycling Synchrotron (RCS). Each ESR electron bunch is replaced every few minutes, in order to maintain the required average ESR beam polarization. To do this the electron injector provides a new electron bunch at a rate of at least 1 Hz.

Preinjector. The polarized electron source is a polarized, room temperature photo-cathode electron gun. The subsequent copper S-band linac is installed in a new enclosure, connected to the RCS ring enclosure.

Beam Accumulator Ring. The new BAR ring is installed between the S-band linac and the RCS, with a circumference of about 40 m. It accumulates highly-polarized electron bunches from the preinjector before transportation to the RCS.

Rapid Cycling Synchrotron. The RCS is installed in a new enclosure near RHIC Insertion Region 4 (IR4), with a circumference of 1,421 m. It accelerates highly-polarized electron bunches to the ESR collision energy after extraction from the BAR, using normal conducting magnets and superconducting RF cavities.

Electron Storage Ring. The ESR is a new ring installed in the RHIC tunnel, with a circumference close to that of the HSR. The HSR and ESR revolution frequencies are locked when injection is complete, synchronizing bunch collisions. The ESR is comprised of room temperature magnets, superconducting RF systems, and a vacuum system that can absorb up to 10 MW of synchrotron radiation.

Hadron Storage Ring. The HSR is a modified version of the existing RHIC yellow ring; the RHIC blue ring will be removed. Several HSR modifications and upgrades are necessary to support HSR beam parameters, including removal of DX magnets to enhance the

Figure 1.1: The EIC scope starts downstream of the "YD26" dipole in the last section of the AGS-to-RHIC transfer line. For the EIC, the warm transfer line is extended to the IR4 HSR area, where the beam is injected into the cold HSR. Apart from this transfer line extension, the EIC scope does not include any other modifications to the existing Hadron Injector.

maximum hadron energy, addition of a superconducting RF system, and a revised AGSto-RHIC (AtR) injection beamline. The HSR beampipe vacuum chamber, bellows, and diagnostics are modified and updated. The existing RHIC superconducting hadron spin rotators are upgraded and relocated to support high beam polarization.

Cryogenic systems. The Collider-Accelerator Department (C-AD) upgrades the RHIC Liquid Helium (LHe) central refrigerator plant to improve efficiency, reduce helium loss, and meet the EIC cryogenic load requirements. The EIC project provides 2 K helium to the SRF cavities and the new superconducting magnets near the interaction pont, using three new satellite plants that draw 4.6 K liquid helium from the central cryogenic plant.

Collisions						
Proton energy	GeV	275	275			
Electron energy	GeV	10	18			
Luminosity L	$10^{33} \text{cm}^{-2} \text{s}^{-1}$	10.0	1.54			
Hourglass factor H		0.94	0.91			
No. of bunches M		1160	290			
RMS beam size σ_H	μm	95	119			
σ_V	μm	8.5	11.0			
$K_x \equiv \sigma_H / \sigma_V$		11.1	11.1			
Prot	tons					
Bunch intensity	10^{10}	6.9	19.1			
Beam current	А	1.00	0.69			
RMS normalized emittance H	μm	3.3	5.2			
V	μm	0.30	0.47			
RMS emittance H	nm	11.3	18.0			
V	nm	1.0	1.6			
Collision β^* H	m	0.80	0.80			
V	m	0.072	0.071			
RMS beam angle H	µrad	119	150			
V	µrad	119	150			
Beam-beam parameter ξ H		0.012	0.003			
V		0.012	0.003			
RMS longitudinal emittance	eV.s	0.036	0.036			
RMS bunch length	mm	60	60			
RMS $\Delta p/p$	10^{-3}	0.68	0.68			
Maximum space charge ΔQ		0.004	0.007			
Piwinski angle	rad	7.9	6.3			
IBS growth time L	h	2.9	2.0			
Н	h	2.0	2.0			
V	h	67	82			
Elect	rons					
Bunch intensity	10 ¹⁰	17.2	6.2			
Beam current	А	2.5	0.227			
RMS normalized emittance H	μm	391	845			
V	μm	26	71			
RMS emittance H	nm	20	24			
V	nm	1.3	2.0			
Collision β^* H	m	0.45	0.59			
V	m	0.056	0.057			
RMS beam angle H	µrad	211	202			
V	µrad	152	187			
Beam-beam parameter ξ H		0.072	0.093			
V		0.100	0.100			
RMS bunch length	mm	7	9			
RMS $\Delta p/p$	10^{-3}	0.58	1.09			
Piwinski angle	rad	2.4	2.1			

1.0.1 Full Capability proton collisions

Electron Injector (Q. Wu)

The **Electron Injector** complex generates, accumulates, accelerates, and injects up to two 28 nC polarized electron bunches per second into the Electron Storage Ring. The complex minimizes intensity and polarization loss, and ensures reliable operation.

The **Preinjector** produces bunches with a charge as large as 1 nC at a rate of 30 Hz, and accelerates them to 750 MeV. Many bunches are accumulated into a single bunch with an intensity as large as 28 nC in the Beam Accumulator Ring, before being transferred to the Rapid Cycling Synchrotron, where they are further accelerated to a final energy in the range from 5 to 18 GeV. Beam is then extracted from the RCS and transported to the constant-energy Electron Storage Ring. The Preinjector consists of a High Voltage Direct Current (HVDC) polarized electron gun, a spin rotator, a ballistic bunching section employing a buncher and drift, a capture cavity, and a Traveling Wave (TW) linear accelerator. It includes a gun diagnostics beamline, a spin diagnostics beamline with Mott polarimetry, and energy spectrum diagnostics.

The **Beam Accumulator Ring** is a constant-energy storage ring dedicated to accumulating a single full intensity bunch from many electron linac bunches. Single bunches from BAR are injected into the RCS.

The **Rapid Cycling Synchrotron** accepts vertically polarized electron bunches from the Beam Accumulator Ring, or directly from the Preinjector, and accelerates them for delivery to the RCS-to-ESR transport line and the Electron Storage Ring.

2.0.1 Preinjector

General					
Beam extraction energy	MeV	750			
Beam repetition rate	Hz	30			
Energy spread at end of linac	%	0.25			
Normalized RMS horizontal emittance	μm	60			
Normalized RMS vertical emittance	μm	40			
Bunch charge	nC	1			
Spin direction		vertical			
Polarization	%	≥ 86			
RMS bunch length	mm	0.75			
Electron Gun					
Gun voltage	kV	310			
Bunch length	ps	300			
Laser pulse energy	μJ	up to 6			
Low Energy RF					
Buncher frequency	MHz	197			
Buncher voltage	kV	500			
Capture cavities frequency	MHz	1300			
Capture cavity 1 voltage	MV	5			
Capture cavity 2 voltage	MV	10			
Electron Linac					
Number of TW accelerating units		14			
Linac frequency	MHz	2856			
Linac voltage	MV	60			

2.0.2 Beam Accumulator Ring

General					
Number of bunches		1			
Bunch length	mm	43			
Injection					
Energy	MeV	750			
Bunch charge	nC	1			
Repetition rate	Hz	30			
Horizontal RMS emittance (norm)	μm	~ 30			
Vertical RMS emittance (norm)	μm	$\sim \! 50$			
RMS energy spread		0.0045			
Extraction					
Energy	MeV	750			
Bunch charge	nC	28			
Repetition rate	Hz	1			
Horizontal RMS emittance (geom)	nm	124			
Horizontal RMS emittance (norm)	μm	182			
Vertical RMS emittance (geom, 3% coupling)	nm	4			
Vertical RMS emittance (norm, 3% coupling)	μm	5.9			
RMS energy spread	10^{-3}	0.47			
RF					
Frequency	MHz	52.88			
Voltage	kV	100			
Magnet					
Main dipole number		8			
Main dipole effective length	m	1.5			
Main dipole field	Т	1.3099			
Quad number		24			
Quad effective length	m	0.3			
Quad field gradient	T/m	4.6/-2.9/4.7			

General					
Repetition rate	Hz	1			
Acceleration time	ms, turns	100, 21000			
Number of bunches		1			
Bunch charge	nC	1–28			
Circumference	m	1421.257			
Betatron tunes $Q_{x,y}$		41.195, 58.128			
Max beta functions (x,y)	m	30.48, 35.73			
Max dispersion (x)	m	0.5882			
Momentum compaction	10^{-4}	6.48			
Injection	ı				
Energy	MeV	750			
RMS emittance (norm; x,y)	μm	<180			
RMS energy spread	10^{-3}	< 0.5			
RMS bunch length	mm, ps	<12, <40			
Extractio	n				
Energy	GeV	5–18			
RMS emittance (norm; x,y)	μm	196–845, 18–113			
RMS energy spread	10^{-3}	0.58-1.09			
RMS bunch length	mm, ps	7–9, 23–30			
Energy radiated per electron (18 GeV)	MeV/turn	101.3			
Horizontal damping time (18 GeV)	ms	2.75			
RF					
Frequency	MHz	591.039			
Voltage	MV	130			
Magnet/Vac	uum				
Main dipole number		320			
Main dipole effective length	m	1.8			
Main dipole bend angle	mrad	19.635			
Main dipole field (max)	Т	0.65			
Quad number		352			
Quad effective length	m	0.6			
Quad strength K_1 (max)	m^{-2}	0.785			
Sext number		640			
Sext effective length	m	0.2			
Sext strength K_2 (max)	m^{-3}	27.5			
Beam pipe ID, thickness	mm	36.32, 0.89			

2.0.3 Rapid Cycling Synchrotron

Electron Storage Ring (C. Montag)

The ESR is installed in the existing RHIC tunnel, where it intersects with the HSR in IR6 and IR8. IR6 is equipped with spin rotators, crab cavities, and dedicated low- β magnets, while IR8 contains only a simple cross-over section with the future potential to host a second detector. The circumference ensures that that the electron revolution frequency matches that of 133 GeV on-axis proton beams.

The ESR plane is tilted by 200 μ rad with respect to the HSR, about an axis through IP6 and IP8. This results in elevation differences of 104 mm and 208 mm at IP4 and IP12, facilitating the accelerator cross-overs there.

Arc magnets are arranged in a FODO cell pattern. Each half-cell contains two 2.73 m long D13 dipoles and a single 0.89 m D2 dipole, in a "super-bend" structure. All three dipoles are powered uniformly at energies of 10 GeV and above, minimizing synchrotron radiation losses. The D2 dipoles are powered with reverse polarity below 10 GeV, increasing the equilibrium emittance to about 20 nm and increasing radiation damping in order to support a large beam-beam tune shift parameter even at low energy. Arc sextupoles are powered to maximize the dynamic aperture, in family structures that depend on the betatron phase advance in the arc FODO cells, which in turn is chosen depending on the beam energy.

3.0.1 Top level

Top level						
Beam energy	GeV	5	10	18		
Maximum circulating current	mA	2500	2500	230		
Bunch count		1160	1160	290		
Maximum bunch charge	nC	28	28	11		
Harmonic number		7560	7560	7560		
Natural unnormalized RMS emittance	nm	20	20	30		
RMS fractional momentum spread	10^{-3}	0.48	0.54	0.97		
RMS bunch length	mm	7	7	9		
Sokolov-Ternov time constant	min	1124	679	33.4		
Equilibrium polarization	%	16.0	47.4	33.9		
Bunch replacement time, spin up	min	149	451	10.1		
spin down	min	231	98.6	3.75		
Filling rate	bunches/s	1	1	1		
Filling time	min	20	20	5		
Beam stored energy	kJ	162	325	57.4		

3.0.2 Lattice and orbit

Lattice and orbit							
Beam energy	GeV	5	10	18			
Circumference	m	3834.0002	3834.0042	3834.0042			
Revolution frequency	kHz	78.1931257	78.1930444	78.1930445			
Radio frequency	MHz	591	591	591			
Harmonic number		7560	7560	7560			
Energy loss per turn	MeV	1.15	3.71	40			
Momentum compaction factor	10^{-3}	0.60	1.19	0.60			
RF Voltage	MV	5.0	22.5	56.0			
Number of FODO cells per arc		16	16	16			
Phase advance per arc FODO cell	deg.	60	60	90			
Average arc bending radius	m	380	380	380			
Arc dipole bending radius, D13	m	-52.44	262.26	262.26			
D2	m	132.37	262.26	262.26			
Arc dipole field, D13	Т	-0.32	0.12	0.23			
D2	Т	0.13	0.12	0.23			
Arc quadrupole gradient	T/m	3.74	7.22	18.56			
Number of sextupole families per arc		6	6	4			

Hadron Storage Ring (V. Ptitsyn)

The HSR, based on the Yellow ring, inherits RHIC's versatility to collide a large range of ion species over a wide energy range. It operates with three times more hadron beam current, a larger number of bunches, and a 10% larger maximum beam energy. Copper and amorphous carbon coated beam screens are installed in the vacuum chamber to mitigate resistive wall heating and electron cloud effects. The proton beam circumference is varied by changing the radial orbit, in order to synchronize collisions with the electron beam over an energy range from 100 to 275 GeV. Proton collisions at 41 GeV energy are realized by using an inner arc bypass in the sextant from IP12 to IP2. The warm AtR injection line is considerably extended, bringing hadron beams to IR4 before injection into cold HSR magnets.

		protons	gold
Injection energy	GeV or GeV/u	23.8	10.0
Top energy	GeV or GeV/u	275	110
Polarization	%	70	0
Bunch count, injection		290	290
top		1160	1160
Ions per bunch at store		69×10^{9}	$0.5 imes10^9$
Beam current	А	1.0	0.57
Beam stored energy	MJ	3.53	1.97

4.0.1 Proton and gold bunches

Layout and lattice						
Magnetic rigidity, injection	Tm	79.3				
top	Tm	917.3				
Arc dipole, bend radius	m	242.78				
top field	Т	3.804				
current	kA	5.602				
Arc quadrupole gradient	T/m	75.4				
Arc beam screen aperture, H	mm	62.4				
V	mm	47.4				
RF voltages	RF voltages					
h = 315 injection & ramp	MV	0.6				
h = 630 bunch splitting	MV	0.6				
h = 1260 bunch splitting	MV	0.6				
h = 2520 bunch compression	n MV	6.0				
h = 7560 bunch compression	n MV	20.0				

4.0.2 Layout, lattice, RF voltages

4.0.3 Radial shift

			protons			go	ld
Total energy	GeV or GeV/u	41	100	133	275	40.7	110.0
Relativistic γ		43.7	106.6	141.8	293.1	43.7	118.1
Circumference shift	mm	-908.7	-73.4	0.0	73.1	-908.7	-42.1
Average radial shift	mm	_	-11.7	0.0	11.6	-	-6.7

4.0.4 Injection line magnets

Magnet style	Count	Length	Bend angle	Quad strength	Inventory
		m	mrad	m^{-2}	
Combined function	25	3.657	48.15	0.03808	RHIC X-arc recycle
Quadrupole	42	0.6		variable	Build to APS Q5 design
Vertical dipole	2	0.5	1.7		New design
Horizontal dipole	2	2.0	30.2		New design
Current septum	1	3.976	50.11		New design
Induction septum	1	1.5	18.41		New design
Dipole corrector	TBD	TBD	TBD		Existing

4.0.5 Transition crossing

Transition crossing							
Transition energy	GeV	21.407					
Transition γ		24.79					
RF voltage	kV	200					
RF harmonic number		315					
Stable phase	rad	0.074					
Acceleration rate	γ/s	0.5					
Momentum spread max.		0.0055					
Nonlinear factor α_1		-1.12×10^{-3}					

New superconducting magnets (W. Wahl)

Electron and hadron beams collide with a crossing angle of 25 mrad at Interaction Point (IP6). There is a total of 27 new superconducting magnets in Interaction Region 6 (IR6), with a mixture of dipoles, quadruples, correctors, and solenoids. Multiple construction technologies are leveraged, including Direct Wind (DW) and cable. Cable magnets use a Rutherford style cable (Ruth.), while the Direct Wind magnets use a six-around-one conductor (6-R-1). Except for dipoles B2pF and B0pF, the new superconducting dipoles and quadrupoles share interconnected cryostats – four on the hadron-forward side, and three in the hadron-rear. The combined function B0pF magnet resides in a dedicated cryostat that includes Q0eF. Some magnets are tapered, with minimum and maximum coil and beampipe radii.

Spin rotator solenoids. Electron spin rotation is performed by solenoids, with help from neighboring dipoles. There are two sets of solenoids on each side of IP6 – a pair of long solenoids used at 18 GeV, and a pair of short solenoids used at 5 GeV. Both pairs are powered at intermediate energies.

5.1 Hadron Storage Ring

5.1.1 Dipoles

		B0pF	B0ApF	B1pF	B1ApF	B2pF
Construction		DW	DW	Cable	Cable	Cable
Coil radius	mm	328	TBD	150	TBD	60
Beampipe radius	mm	TBD	43	135	168	50
Lattice length	m	< 1.2	< 0.6	< 3	< 1.5	2.47
Coil length	m	1.2	0.6	3	1.5	2.85
Reference radius	mm	50	26	45	45	30
Field	Т	-1.3	3.3	3.4	2.7	6.28
Layers		2	12	1	1	2
Current	kA	1.2	2	11.9	13.4	8.2
Ramp rate	T/s	-0.0065	0.0165	0.017	0.0135	0.031
Temperature	Κ	1.9	1.9	1.9	1.9	1.9
Strand diameter	mm	0.473	0.473	1.065	1.065	1.065
Conductor style		6-R-1	6-R-1	Ruth.	Ruth.	Ruth.

5.1.2 Quadrupoles

		Q1ApF	Q1BpF	Q2pF	Q1ApR	Q1BpR	Q2pR
Construction		Cable	Cable	Cable	DW	DW	DW
Focus/Defocus		D	D	F	D	D	F
Gradient max.	T/m	89	56	41	78	78	26
Coil rad. min.	mm	71	93		28.35		
max.	mm				34.65		
Pipe rad. min.	mm	56	78	131	20.0	28	54
max.	mm				25.5		
Lattice length	m	<1.46	<1.61	<3.8	<1.8	<1.4	<4.5
Coil length	m	1.46	1.61	3.8	1.8	1.4	4.5
Ref. radius	mm	45	45	83	17	19	36
Layers		2	1	2	8	8	4
Current	kA	11	16	8.5	0.9	0.89	1.3
Ramp rate	T/ms	-0.44	-0.28	0.21	-0.39	-0.39	0.17
Temperature	Κ	1.9	1.9	1.9	4.5	4.5	4.5
Strand diam.	mm				0.33	0.33	0.473
Conductor		Ruth.	Ruth.	Ruth.	6-R-1	6-R-1	6-R-1

5.1.3 Correctors

		B0ApF -SkQ	B0ApF -Vcorr	Q1ApR -SkQ	Q2pR -Hcorr	Q2pR -Vcorr
Construction		DW	DW	DW	DW	DW
Corrector type		Skew quad	V dipole	Skew quad	H dipole	V dipole
Coil rad. min.	mm	TBD	TBD	28.35		
max	mm			34.65		
Beampipe rad. min.	mm	43.0	43.0	20.0	54	54
max.	mm			25.5		
Lattice length	m	< 0.6	< 0.6	< 1.8	<4.5	<4.5
Coil length	m	0.6	0.6	1.8	4.5	4.5
Field	Т		0.6		0.6	0.6
Integrated gradient	Т	3.0		3.0		
Layers		2	2	2	2	2
Current	kA	TBD	TBD	TBD	TBD	TBD
Temperature	Κ	1.9	1.9	4.5	4.5	4.5
Strand diam.	mm	0.33	0.33	0.33	0.33	0.33
Conductor		strand	strand	strand	strand	strand

5.2 Electron Storage Ring

5.2.1 Quadrupoles

		Q0eF	Q1eF	Q1eR	Q2eR
Construction		DW	DW	DW	DW
Corrector					
Focus/Defocus		D	F	D	F
Gradient max.	T/m	14	6.3	14	14.1
Coil radius	mm				
Beampipe rad min.	mm	26	64.8	47.6	64.5
max.	mm			55.5	
Lattice length	m	<1.2	<1.61	<1.8	<1.4
Coil length	m	1.2	1.61	1.8	1.4
Reference radius	mm	17	43	TBD	20
Layers		4	2	4	2
Current	kA	0.08	1	1.8	1.8
Temperature	Κ	4.5	1.9	4.5	4.5
Strand diameter	mm	0.33	1.0	0.33	1.0
Conductor style			6-R-1		6-R-1

5.2.2 Correctors

		B2eRDrift -Vcorr	Q0eF -Hcorr	Q0eF -shield	Q1eF -Vcorr	Q1eF -SkQ	Q2eR -SkQ
Construction		DW	DW	DW	DW	DW	DW
Corrector type		V dipole	H dipole		V dipole	Skew Q	Skew Q
Coil radius	mm						
Pipe rad min.	mm	50.0	26.0	26.0	64.8	64.8	50.0
Lattice length	m	<5.5	<1.2	<1.2	<1.61	<1.61	<1.54
Coil length	m	TBD	1.2	1.2	1.61	1.61	1.54
Field	Т	0.6	0.6	TBD	0.6		
Integ. gradient	Т					3.0	3.0
Layers		2	2	2	2	2	2
Current	А	TBD	80	80	1	TBD	TBD
Temperature	Κ	4.5	4.5	4.5	1.9	1.9	4.5
Strand diameter	mm	0.33	0.33	0.33	0.33	0.33	0.33
Conductor style		strand	strand	strand	strand	strand	strand

		Short SSR	Long LSR
Coil radius	mm	86.0	86.0
Beampipe radius	mm	50.0	50.0
Lattice length	m	2.5	6.2
Coil length	m	1.874	5.68
Reference radius	mm	33.0	33.0
Integrated field	Tm	15.30	46.75
Layers		33	33
Current	kA	0.866	0.874
Inductance	mΗ	6.04	18.71
Stored energy	MJ	2.26	7.14
Temperature	Κ	1.9	1.9
Strand diameter	mm	1.6	1.6
Conductor style		WIC	WIC

5.2.3 Spin rotator solenoids

Hadron Cooling (A. Fedotov)

The Low Energy Cooler (LEC) uses electron cooling to decrease the vertical emittance of proton bunches just after they are injected into the Hadron Storage Ring. Electron and proton beams co-move in a common straight section. A second harmonic RF system is used to alleviate space-charge effects during cooling, producing a longitudinally flattened proton bunch distribution with a peak current that is reduced by a factor of two. After cooling the proton bunches are accelerated to the collision energy, and are each split into four bunches. The LEC uses a 12.5 MeV RF electron accelerator to deliver electron bunches for hadron beam cooling.

6.0.1 Proton cooling at injection

Proton cooling at injection					
Relativistic gamma	_	25.4			
Proton energy	GeV	23.8			
Electron kinetic energy	MeV	12.5			
Length of cooling section	m	170			
Proton repetition rate	MHz	24.6			
Proton bunch length, RMS	m	1.0			
Proton beta function in the cooling section	m	150			
Electron beta function in the cooling section	m	150			
Total electron charge per proton bunch	nC	3			
Single electron bunch charge (3 electron bunches)	nC	1			
Average electron current	mA	74			
Electron emittance in cooling section, normalized RMS	μm	<1.5			
Electron angular spread in cooling section, RMS	µrad	25			
Electron energy spread in cooling section, RMS	-	$4 imes 10^{-4}$			
Electron bunch length in cooling section, RMS	mm	40			

6.0.2 Low Energy Cooler

Low Energy Cooler		
DC gun voltage	kV	400
Final electron kinetic energy	MeV	12.5
Main RF bunch frequency	MHz	197
Number of 197MHz NCRF cavities		17
Voltage per 197MHz RF cavity	kV	850
Energy correction RF frequency	MHz	591
Number of 591MHz NCRF correction cavities		4
Voltage per 591MHz cavity	kV	375
Number of 591MHz deflecting cavities		1
Voltage of deflecting cavity	kV	150
Number of 24.6MHz cavities		1
Voltage of 24.6MHz cavity	kV	10
Bunch train repetition rate	MHz	24.6
Photocathode material		CsK ₂ Sb
Laser wavelength	nm	532
Electron bunch full length on cathode	ps	400
Average electron current	mA	74
Beam dump power	kW	925

6.0.3 LEC beam diagnostics

Beam diagnostics	Count
Faraday cups (FC)	3
DC Current Transformer (DCCT)	2
Fast Current Transformer (FCT)	3
Integrated Current Transformer (ICT)	1
Profile Monitors	13
Beam Position Monitors	44
Loss Monitors (PMTs, fibers, PIN diodes)	32
Temperature sensors	32
Emittance slits	2
Recombination monitor	1
NMR Gaussmeter	1
Ion clearing	2
Gun radiation monitors	2
Remote scopes	2

6.0.4 LEC magnets

Magnet	Count	Field	Gradient	Effective			
				length			
		Т	T/m	m			
Dipoles							
180 degree	2	0.07		2.04			
20 degree	2	0.065		0.30			
	Solenoi	ds					
Gun area	2	0.04		0.10			
Linac area	3	0.08		0.10			
Transport	8	0.02		0.30			
Cooling section	15	0.02		0.134			
Extraction	2	0.01		0.1			
Q	uadrup	oles					
Diagnostics & extraction lines	3		1.0	0.1			
U-turn	2		0.1	0.1			
Dip	ole corr	ectors					
Gun area	2	1×10^{-3}		0.1			
Linac and transport	8	$1 imes 10^{-3}$		0.1			
Transport	10	$6 imes 10^{-4}$		0.1			
U-turn	4	$1 imes 10^{-3}$		0.1			
Cooling section	15	$1 imes 10^{-4}$		0.1			
Diagnostics & extraction lines	8	1×10^{-3}		0.1			

Cryogenic Systems (B. Shell)

The Cryogenics Systems consist of the existing Central Plant located near sector 5, and Satellite Plants located near their associated loads. The Central Plant provides 4.5 K cooling to HSR components, interfaces with the Satellite Plants, and processes return gas from the Satellite Plants. Satellite Plants provide 1.92 K and 2 K cooling to components located in IR4, IR6, and IR10 by processing the 4.5 K helium down to 1.92 K for spin rotators, or 2.0 K for other SRF components. They also return helium gas back to the Central Plant.

Central Plant		
Refrigeration capacity at 4.5 K	kW	55
Temperature	Κ	4.5
Pressure	bar	16
Compressor flow at full capacity	g/s	4500
Existing distribution length (RHIC)	km	~ 4
Liquefaction load (4.5 to 300 K)	g/s	45
Re-liquefaction load (4.5 to 4.5 K)	g/s	288
Non-isothermal load (4.5 to 10 K	g/s	282
Non-isothermal load (45 to 80 K)	g/s	102
Valve box count	-	8
Cryogenic controls I/O channel count		7500

7.0.1 Central plant

7.0.2 Detector

Detector cryogenics		
Temperature	K	4.6
Cryogenic load at 4.6 K	W	100
Flow rate at 4.6 K load	g/s	6
Load on thermal shield (45 to 80 K)	Ŵ	600
Flow rate on thermal shield	g/s	3
Current lead intercepts load (4.5 to 300 K)	Ŵ	85
Flow rate on current lead intercepts (4.5 to 80 K)	g/s	0.5
Electrical cryogenic heater count	U	4
Cryogenic distribution length	m	40
Valve box count		2
Cryogenic valve count		14

7.0.3 Satellite plants

	IR4	IR6	IR10	
W	500	650	1250	
Κ	2	1.92	2	
Κ	2	2	2	
g/s	24	45	63	
Ŵ	TBD	6050	2220	
g/s	TBD	17.14	24	
m	TBD	168	163	
	8	19	12	
	56	95	60	
Cryo-Controls				
	1272	1744	1220	
	32	76	50	
	W K g/s W g/s m	IR4 W 500 K 2 K 2 g/s 24 W TBD g/s TBD g/s 56 I 1272 32	IR4 IR6 W 500 650 K 2 1.92 K 2 2 g/s 24 45 W TBD 6050 g/s TBD 17.14 m TBD 168 8 19 56 56 95 55 1272 1744 32 76	

Glossary

AGS	Alternating Gradient Synchrotron
AtR	AGS-to-RHIC
APS	Argonne Photon Source
BAR	Beam Accumulator Ring
C-AD	Collider-Accelerator Department
D	Defocus
DW	Direct Wind
EIC	Electron-Ion Collider
ESR	Electron Storage Ring
F	Focus
FODO	Focusing-drift-Defocusing-drift
Н	Horizontal
HSR	Hadron Storage Ring
HVDC	High Voltage Direct Current
IP	Interaction Point
IR	Insertion Region
LEC	Low Energy Cooler
LHe	Liquid Helium
linac	Linear accelerator
NMR	Nuclear Magnetic Resonance
PMT	Photo-Multiplier Tube
RF	Radio Frequency
RHIC	Relativistic Heavy Ion Collider
RCS	Rapid Cycling Synchrotron
RMS	Root Mean Square
Ruth.	Rutherford cable
SC	SuperConducting
TBD	To Be Determined
TW	Traveling Wave
V	Vertical
WIC	Wire-In-Channel
6-R-1	6 around 1 conductor